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ON MESOPRIMARY DECOMPOSITION
OF MONOID CONGRUENCES

CHRISTOPHER O’NEILL

ABSTRACT. We prove two main results concerning
mesoprimary decomposition of monoid congruences, as in-
troduced by Kahle and Miller. First, we identify which as-
sociated prime congruences appear in every mesoprimary de-
composition, thereby completing the theory of mesoprimary
decomposition of monoid congruences as a more faithful ana-
logue of primary decomposition. Second, we answer a ques-
tion posed by Kahle and Miller by characterizing which finite
posets arise as the set of associated prime congruences of
monoid congruences.

1. Introduction. A congruence is an equivalence relation on the el-
ements of a monoid that respects the monoid operation. This paper fo-
cuses on congruences on the monoid of monomials in a polynomial ring
S that arise from binomial ideals in S, that is, ideals whose generators
have at most two terms. In particular, any binomial ideal I ⊂ S iden-
tifies, up to scalar multiple, any two monomials appearing in the same
binomial in I, inducing a congruence ∼I on the monoid of monomials
in S. In [3], Kahle and Miller introduce mesoprimary decompositions
of binomial ideals, which are combinatorial approximations of primary
decompositions constructed from the underlying congruences.

Mesoprimary decompositions are constructed in two settings: first
for monoid congruences, and then for binomial ideals; both are de-
signed to parallel standard primary decomposition in a Noetherian ring
[1, Chapter 3]. At the heart of mesoprimary decomposition, for both
monoid congruences and binomial ideals, lies a notion of associated ob-
jects analogous to associated prime ideals in standard primary decom-
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position. In particular, any congruence ∼ has a collection of associated
prime congruences, and each component in a mesoprimary decompo-
sition for ∼ has precisely one associated prime congruence. However,
unlike standard primary decomposition, eliminating redundant meso-
primary components can produce decompositions in which some of the
associated objects do not appear as the associated object of any com-
ponent (Example 3.2).

The focus of this paper is on mesoprimary decomposition of monoid
congruences, and the two main results are as follows. First, we identify
the class of truly associated prime congruences (Definition 3.3), which
must appear as the associated prime congruence of some component in
every mesoprimary decomposition of ∼ (Theorems 3.9 and 4.9), thereby
completing the theory of mesoprimary decomposition of monoid con-
gruences as a more faithful analogue of standard primary decomposition
of ideals. Second, we characterize which finite posets arise as the set of
associated prime congruences of a congruence, and in doing so answer
[3, Problems 17.4 and 17.9].

2. Overview of mesoprimary decomposition of monoid con-
gruences. In this section, we briefly review the necessary definitions
and results found in [3] concerning mesoprimary decomposition of
monoid congruences. The full background and theory developed in
[3] is too extensive to include here; the unfamiliar reader is referred to
[3] for a thorough treatment on mesoprimary decomposition, or [4] for
a more algebraic overview that also includes mesoprimary decomposi-
tions of binomial ideals. Basic monoid definitions can also be found
in [2].

2.1. Conventions. Unless otherwise stated, Q denotes a finitely gen-
erated (equivalently, Noetherian) commutative monoid, and the nil,
i.e., universally absorbing element, of Q, if it exists, is denoted ∞ ∈ Q.

Definition 2.1. A subset P ⊂ Q is an ideal if P +a ⊂ P for all a ∈ Q,
and P is prime if Q \ P is a submonoid of Q. An equivalence relation
∼ on Q is a congruence if a ∼ b implies a+ c ∼ b+ c for all a, b, c ∈ Q.

Notation 2.2. Fix a congruence ∼ on Q, a prime P ⊂ Q, and let
F = Q \P . We write QP for the localization of Q along P (that is, the
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set of formal differences q− f for q ∈ Q and f ∈ F with the stipulation
that q−f = q′−f ′, whenever w+ q+f ′ = w+ q′+f for some w ∈ F ),
and QP = QP /∼ for the quotient of QP modulo ∼. We denote by q
the image of q ∈ Q in Q = Q/∼.

Definition 2.3. Fix a prime P ⊂ Q, and consider the equivalence
relation ∼ on QP relating a ∼ b whenever a− b ∈ QP \ PP . Given an
element a ∈ Q, the set of elements of Q lying in the same equivalence
class under ∼ in QP is called Green’s class of a. By [3, Lemma 2.19],
the set of Green’s classes in QP is partially ordered by divisibility, and
the induced preorder on elements of QP is called Green’s preorder.

Definition 2.4 ([3, Definitions 2.12, 3.4, 4.7, 4.10, 7.1, 7.2, 7.7, 7.12]).
Fix a congruence ∼ on Q and a prime P ⊂ Q.

(a) An element q ∈ Q is an aide for an element w ∈ Q and a
generator p ∈ P if

(i) w ̸= q;
(ii) w + p = q + p; and
(iii) q is maximal (under Green’s preorder) in the set {q, w}. If q is

an aide for w for each generator of P , then q is a key aide.

(b) An element w ∈ Q is a witness for P if it has an aide for each
p ∈ P , and a key witness for P if it has a key aide. A key witness w is
a cogenerator for ∼ if w + p is nil modulo ∼ for all p ∈ P .

(c) The congruence ∼ is P -primary if every p ∈ P is nilpotent in Q
and every f ∈ Q \ P is cancelative in Q. A P -primary congruence ∼
is mesoprimary if a + b = a + c ̸= ∞ implies b = c for all a, b, c ∈ Q,
that is, every element of Q is partly cancelative. The congruence ∼ is
coprincipal if it is mesoprimary and every cogenerator for ∼ generates
the same ideal in Q.

(d) The coprincipal component ∼P
w of ∼ cogenerated by a wit-

ness w ∈ Q for P is the coprincipal congruence that relates a ∼P
w b

if one of the following is satisfied:

(i) both a and b generate an ideal not containing w in QP ; or
(ii) a and b differ by a unit in QP and a+ c = b+ c = w for some

c ∈ QP .
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A (key) witness for P may be called a (key) ∼-witness for P to speci-
fy ∼. Congruences may be called P -mesoprimary or P -coprincipal to
specify P .

Theorem 2.5 ([3, Theorem 8.4]). Each congruence ∼ on Q is the
common refinement of the coprincipal components cogenerated by its
key witnesses.

Lastly, we recall the definition of prime congruences from [3], which
play the role of “associated objects” in this setting.

Definition 2.6 ([3, Definitions 5.1 and 5.2]). Fix a congruence ∼ on
a monoid Q, a prime ideal P ⊂ Q, and an element q ∈ Q that is not
nil modulo ∼.

(a) Let ≈ denote the congruence on QP that sets a ≈ b when

(i) a and b both lie in PP , or
(ii) a and b both lie in QP \ PP and a + q = b + q. The P -prime

congruence of ∼ at q is ker(Q → QP /≈).

(b) The P -prime congruence at q is associated to ∼ if q is a key
witness for P .

We emphasize here that, in contrast to the setting of groups, the
kernel ker(Q → Q′) of a monoid homomorphism is a congruence on Q,
not a submonoid of Q.

Remark 2.7. By [3, Corollary 6.7], a congruence is P -mesoprimary
if and only if it is P -primary and the P -prime congruences at every
non-nil element all coincide. Generally speaking, each witness w for
P detects an element whose P -prime congruence differs from those in
the direction(s) of P , and the coprincipal component at w distinguishes
the P -prime congruence at w from those above it in the decomposition
in Theorem 2.5. We direct the unfamiliar reader to [3, Example 1.3]
and the accompanying graphics, which are a particularly enlightening
illustration of mesoprimary decomposition at the level of congruences.
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3. True witnesses of monoid congruences. Key witnesses (Defi-
nition 2.4) form a restricted class of witnesses sufficient for decomposing
any monoid congruence, but the coprincipal components they cogener-
ate may still be redundant (Example 3.2). In this section, we further
restrict to the class of true witnesses (Definition 3.3), which are still
sufficient for decomposing any congruence (Theorem 3.9).

Although this paper is focused on monoid congruences, examples are
easiest to state using the language of binomial ideals; thus, first we give
a few basic definitions. In what follows, k denotes an arbitrary field.

Definition 3.1. A binomial in k[Q] is an element of the form ta−λtb

where a, b ∈ Q and λ ∈ k. An ideal I ⊂ k[Q] is binomial (respectively,
monomial) if it can be generated by binomials (respectively, monomi-
als). The congruence ∼I on Q induced by a binomial ideal I ⊂ k[Q]
sets a ∼I b whenever ta − λtb ∈ I for some nonzero λ ∈ k.

Example 3.2. Let

I = ⟨x3 − xy2, x3(z − 1), x2y − y3, y3(w − 1), x4, y4⟩ ⊂ k[x, y, z, w].

Its congruence ∼I on Q = N4 is depicted in Figure 1, projected onto
the xy-plane. The congruence ∼I is P -primary for mP = ⟨x, y⟩ and
has five Green’s classes of key witnesses, namely, those containing the
monomials x2, y2, x3, y3 and x3y, respectively. Indeed, x2 and y2 are
each key aides for the other, wx3 is a key aide for x3, zy3 is a key aide
for y3 and x3y has nil as a key aide. Of these, x2 and y2 yield redundant
components in the coprincipal decomposition for ∼I in Theorem 2.5,
and the remaining three comprise a mesoprimary decomposition for ∼I

with no redundant components.

Definition 3.3. Fix a congruence ∼ on Q, a prime P ⊂ Q, and an
element w ∈ Q.

(a) A P -cover congruence of w is the P -prime congruence at a non-
nil element w + p for some generator p of P .

(b) The discrete testimony of w at P is the set TP (w) of P -
cover congruences of w. The discrete testimony of w is suspicious if
the common refinement of the P -cover congruences in the testimony
coincides with the P -prime congruence at w.
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Figure 1. A congruence ∼ on N4 with key witnesses whose coprincipal
components are redundant, projected onto the xy-plane.

(c) We say w is a true witness if

(i) w is maximal among ∼-witnesses for P , or
(ii) the discrete testimony of w is not suspicious.

(d) A P -prime congruence ≈ is truly associated to ∼ if it is the
P -prime congruence at a true ∼-witness for P .

Example 3.4. Conditions (i) and (ii) in Definition 3.3 (c) are both
necessary. Indeed,

I1 = ⟨x2 − xy, xy − y2⟩ ⊂ k[x, y]

induces a congruence on N2 with two witnesses for the maximal
prime P , both of which are maximal among witnesses for P , but nei-
ther of which has suspicious testimony since Q has no nil element.
Additionally, the congruence induced by

I2 = ⟨z4 − 1, x(z − 1), y(z2 − 1), x2, xy, y2⟩ ⊂ k[x, y, z]

has three witnesses for the maximal prime P , one of which (the origin)
has suspicious testimony but is not maximal among witnesses for P .
The congruences induced by I1 and I2∩k[x, y] are depicted in Figure 2.

Remark 3.5. Character witnesses [3, Definition 16.3] are the bino-
mial ideal analogues of true witnesses, except that their testimony is
computed by intersecting ideals instead of refining congruences. In
general, however, character witnesses need not be true, and true wit-
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Figure 2. Congruences for the ideals I1 (left) and I2 (right) in Example 3.4.

nesses need not be character. Additionally, Corollary 3.8 states that
true witnesses are key, a fact that fails for character witnesses; see [3,
Examples 16.5–16.7] for a demonstration of this behavior.

Proposition 3.6 and Corollary 3.7 each give an equivalent condition
for identifying true witnesses that will be useful in proving Theorem 4.9.

Proposition 3.6. Fix a congruence ∼ on Q and a witness w for P .
The discrete testimony of w is not suspicious if and only if w has a key
aide that is nil or generates the same ideal as w in QP .

Proof. If w has ∞ as a key aide, then its discrete testimony is empty.
If w has a key aide w′ in its Green’s class in QP , then each prime
congruence in its discrete testimony identifies w and w′, and thus, so
does their common refinement. Either way, the discrete testimony of w
is not suspicious.

Now, suppose that the discrete testimony of w is not suspicious and
that ∞ ∈ Q is not a key aide. The set TP (w) is thus nonempty,
and the common refinement of the prime congruences in TP (w) relates
some distinct u and v outside of P that are not related under the prime
congruence ≈ at w. Since u and v are distinct elements outside of P ,
the Green’s class of w in QP must contain some other element w′.
Choosing w′ so that w + u = w′ + v implies w + p = w′ + p for each
p ∈ P , making w′ a key aide for w. �



2076 C. O’NEILL

Corollary 3.7. Fix a congruence ∼ on Q and a witness w for P . The
element w is a true witness if and only if

(i) w is maximal among ∼-witnesses for P , or
(ii) w has a key aide that generates the same ideal as w in QP .

Corollary 3.8. Every true ∼-witness is a key ∼-witness, and every
truly associated prime congruence of ∼ is associated to ∼.

We are now ready for the main result of this section. Theorem 3.9
shows that, when constructing an induced coprincipal decomposition
for a given congruence, it suffices to consider true witnesses. In
particular, any component in the decomposition given in Theorem 2.5,
cogenerated by a non-true witness is redundant, and can be omitted.

Theorem 3.9. Every congruence on Q is the common refinement of
the coprincipal components cogenerated by its true witnesses.

Proof. Since primary decomposition of monoid congruences com-
mutes with localization [3, Theorem 3.12], it suffices to assume that
Q = QP . Fix a congruence ∼ on Q and a key ∼ witness w for P that
is not true. By Theorem 2.5, we can write ∼ =

∩
i ∼i as the common

refinement of the congruences cogenerated by the key ∼-witnesses. In
order to prove that the congruence ∼P

w is redundant in this decompo-
sition, it suffices to produce, for q, q′ ∈ Q not identified under ∼P

w , a
component ∼j ̸= ∼P

w not identifying q and q′.

First, suppose that q and q′ lie in distinct Green’s classes in Q. Since
w is not true, it is not maximal; thus, some maximal witness v for P
lies above w. The nil class of ∼P

v is properly contained in the nil class of
∼P

w ; hence, q and q′ are both not nil under ∼P
v . Furthermore, outside

of its nil class, ∼P
v does not relate any elements that lie in separate

Green’s classes. In particular, ∼P
v does not relate q and q′.

Next, suppose that q and q′ lie in the same Green’s class in Q. Since
q and q′ are not both nil modulo ∼P

w , there exists a u ∈ Q such that
q + u and q′ + u are in the same Green’s class as w. Furthermore, any
component that does not relate q + u and q′ + u will not relate q and
q′; thus, upon replacing q with q + u and q′ with q′ + u, it suffices to
assume u = 0 and q′ = w. As w is not a true witness, q is not a key
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aide for w. Therefore, w + p � q + p for some generator p ∈ P . This
means that some component ∼j does not relate w + p and q + p, and
thus does not relate w and q, as desired. �

4. Irredundant mesoprimary decompositions of congruences.
In this section, we prove that each truly associated prime congruence
of a given congruence ∼ appears as the associated prime congruence of
some mesoprimary component in every mesoprimary decomposition for
∼ (Theorem 4.9). As a consequence, we prove that any congruence with
no embedded associated monoid primes possesses both a unique min-
imal mesoprimary decomposition and a unique irredundant mesopri-
mary decomposition (Corollary 4.12). Making statements about “all”
mesoprimary decompositions necessitates some mild restrictions, see
Remark 4.4 and [3, Example 8.2].

Definition 4.1 ([3, Definition 8.1]). An expression ∼ =
∩

i ≈i of a
congruence ∼ as a common refinement of mesoprimary congruences
is a mesoprimary decomposition if, for each ≈i with associated prime
Pi, the Pi-prime congruences of ∼ and ≈i at each cogenerator for ≈i

coincide. This decomposition is key if every cogenerator for every ≈i

is a key witness for ∼.

Remark 4.2. Theorems 2.5 and 3.9 both yield key mesoprimary
decompositions.

Definition 4.3. A mesoprimary decomposition ∼ =
∩

i ∼i is:

(a) induced if each ∼i is a common refinement of coprincipal com-
ponents;

(b) minimal if ∼i and ∼j have distinct associated prime congruences
for i ̸= j; or

(c) irredundant if no ∼i can be omitted.

Remark 4.4. The coprincipal component ∼P
w of a congruence ∼

at a witness w for P is determined by the congruence ∼. More
precisely, it is the finest coprincipal congruence with cogenerator w
that can appear in a mesoprimary decomposition for ∼. As such,
for the purpose of minimality, we restrict our attention to induced
mesoprimary decompositions. Indeed, if the induced condition is
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∼ = ∼1 ∩ ∼2

Figure 3. The non-induced mesoprimary decomposition from Example 4.5.

relaxed, coprincipal components whose cogenerator is a non-key ∼-
witness need not be redundant, see Example 4.5.

Example 4.5. The ideal I = ⟨x3y − x2y2, x2y2 − xy3, x5, y5⟩ is
the intersection of I1 = ⟨x3y − x2y2, x2y2 − xy3, x4, y4⟩ and I2 =
⟨x2y − xy2, x5, y5⟩. Their congruences ∼, ∼1 and ∼2, respectively, are
depicted in Figure 3. Both ∼ and ∼2 are coprincipal with cogenerator
(4, 1), but ∼2 is not the coprincipal component cogenerated by (4, 1)
since it also identifies (2, 1) and (1, 2). As such, this mesoprimary
decomposition is not induced. Additionally, ∼1 is cogenerated by a
non-key non-character witness for ∼, but neither component of this
mesoprimary decomposition can be omitted.

An important observation is that any witness whose discrete testi-
mony is not suspicious must appear as a cogenerator in every meso-
primary decomposition. Note the absence of “induced” here; we do
indeed mean every mesoprimary decomposition. This fact is recorded
in Lemma 4.6, which serves as the foundation for Theorem 4.9.

Lemma 4.6. Fix a mesoprimary decomposition ∼ =
∩

i ∼i and a ∼-
witness w for P . If the discrete testimony of w is not suspicious, then
w is a cogenerator for some ∼i.

Proof. Let ≈ denote the P -prime congruence at w, and let ≈i denote
the prime congruence associated to ∼i for each i. From Proposition 3.6,
either w has ∞ as a key aide, or w has a key aide w′ that is Green’s
equivalent to w in the localization QP . If w has ∞ as a key aide, then
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it is a cogenerator for ∼; thus, any mesoprimary component ∼i under
which w is not nil also has w as a cogenerator.

Alternatively, suppose that w has a key aide w′ in the same Green’s
class as w in QP . Since w � w′, some mesoprimary component ∼i does
not relate w and w′. Neither w nor w′ is nil under ∼i, but for each
generator p of P , the prime congruence at w+p relates w and w′. This
means that each w + p must be nil under ∼i since ∼i is mesoprimary;
hence, w is a cogenerator for ∼i. �

The symmetry in Example 4.7, which also appeared as [3, Exam-
ple 2.19], demonstrates that Lemma 4.6 cannot be generalized to ar-
bitrary true witnesses since eliminating all redundancy sometimes re-
quires making arbitrary choices. That said, Lemma 4.8 demonstrates
that the phenomenon in Example 4.7 is the only possible obstruction.

Example 4.7. Let I = ⟨x2 − xy, xy − y2⟩ ⊂ k[x, y]. The congruence
∼I has two associated primes, namely, ∅ and the maximal ideal P .
Theorem 2.5 produces the coprincipal decomposition

I = ⟨x2 − xy, xy − y2⟩ = ⟨x2, y⟩ ∩ ⟨x, y2⟩ ∩ ⟨x− y⟩.

The first two components are P -primary, and the third is ∅-primary.
Either, but not both, of the first two components can be omitted
without affecting the intersection, although each is cogenerated by a
true witness for ∼I .

Lemma 4.8. Fix a congruence ∼, a key ∼-witness w for P , and
a key aide w′ for w. If w is a maximal witness for P , then every
mesoprimary decomposition ∼ =

∩
i ∼i has a component with w or w′

as a cogenerator.

Proof. Suppose that w is maximal among ∼-witnesses for P . Since
primary decomposition of congruences commutes with localization by
[3, Theorem 3.12], it suffices to replace Q with QP so that P is
maximal. If w′ is nil, then w is a cogenerator for ∼; thus, it is a
cogenerator for any P -primary component ∼i under which it is not
nil. If, instead, w′ lies in the same Green’s class as w in QP , then we
are finished by Lemma 4.6. Lastly, assume that w′ is not nil and lies
in a different Green’s class in QP . Since w � w′, some component ∼i

separates w and w′. Localization Q at any prime P ′ properly contained
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in P identifies w and w′ since w + p = w′ + p for any p ∈ P \ P ′. This
means that any P ′-primary component also identifies w and w′. Hence,
∼i must be P -primary. Since w is maximal among witnesses for P , it
is either a cogenerator for ∼i or nil modulo ∼i; the latter implies that
w′ is a cogenerator for ∼i. In either case, the proof is complete. �

Theorem 4.9. Fix a congruence ∼, a true ∼-witness w for a prime
P , and let ≈ denote the P -prime congruence at w.

(a) If

(i) the discrete testimony of w is not suspicious, or
(ii) the P -prime congruence at some non-nil key aide w′ for w

equals ≈,

then ≈ appears as the associated prime congruence of some component
in every mesoprimary decomposition

∩
i ∼i of ∼.

(b) If w satisfies neither (i) nor (ii), then the component in the
coprincipal decomposition in Theorem 3.9 with cogenerator w is redun-
dant.

Proof. If the discrete testimony of w is not suspicious, then apply
Lemma 4.6. On the other hand, if w has a key aide w′, whose prime
congruence is also ≈, then by Lemma 4.8, one of w and w′ must appear
as a cogenerator of some component ∼i. This proves part (a).

Next, fix a, b ∈ Q with a � b. The proof of Theorem 2.5 at the
source [3, Theorem 8.4] implies that there is a prime P ⊂ Q and u ∈ Q
such that (after possibly swapping a and b) a + u is a key witness
with key aide b + u. If a + u has suspicious discrete testimony, then
by Proposition 3.6, it does not have nil as a key aide. Thus, b + u
is also a key witness for P . If, additionally, a + u and b + u have
distinct P -prime congruences, then, since a+u and b+u have identical
discrete testimony, the discrete testimony of b + u is not suspicious.
Since a �P

b+u b, this completes the proof. �

Corollary 4.10. Fix a mesoprimary decomposition ∼ =
∩

i ∼i. Each
truly associated prime congruence in of ∼ is associated to some com-
ponent ∼i, and any component whose associated prime congruence is
not truly associated to ∼ is redundant.
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We conclude this section by characterizing the minimal and irredun-
dant mesoprimary decompositions of congruences with no embedded
associated monoid primes.

Theorem 4.11. Fix a mesoprimary decomposition ∼ =
∩

i ∼i. If P
is a minimal associated prime of ∼, then every true witness w of P is
a cogenerator of some component.

Proof. Let ≈ denote the P -prime congruence at w, and let ≈i denote
the prime congruence associated to ∼i for each i. If P = ∅, then,
since P is associated to ∼, some component ∼i is P -primary, and in
fact, ∼i = ≈. Now, assume that P is nonempty. Once again, after
localizing at P , assume that P is maximal. Since P is a minimal
associated prime, ∼ is P -primary by [3, Corollary 4.21]. Since w is
true, either it is a maximal witness for P , in which case it has ∞ as a
key aide, or its testimony is not suspicious. In either case, we are done
by Lemma 4.6. �

Corollary 4.12. Any congruence ∼ on Q with no embedded associated
monoid primes has a unique irredundant induced coprincipal decompo-
sition and a unique induced mesoprimary decomposition. In particular,
this holds when ∼ is primary.

Proof. Theorem 3.9 produces the unique induced coprincipal decom-
position since omitting any component yields an expression that can-
not decompose ∼ by Theorem 4.11. Furthermore, replacing any set
of components with their common refinement whenever they share an
associated prime congruence results in a minimal mesoprimary decom-
position by [3, Proposition 6.9]. �

5. Posets of associated mesoprimes. Here, we answer a question
posed by Kahle and Miller. It is known that any poset occurs as the
set of associated primes of a monomial ideal; as such, the question is
posed only for primary congruences so that the nilpotent directions of
the associated prime congruence, i.e., the “monomial part” of an ideal
inducing the congruence, all coincide.

Problem 5.1 ([3, Problem 17.4]). Characterize the posets of associ-
ated prime congruences of primary congruences.
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Theorem 5.5 provides a full, albeit unsatisfying, answer to Prob-
lem 5.1, as stated. The issue is that, in the constructed congruence,
most of the witnesses are incomparable under the divisibility poset of
Q. In view of this, we introduce the prime congruence poset (Defini-
tion 5.6), which only renders associated prime congruences comparable
if they occur at comparable elements under divisibility in QP . Surpris-
ingly, the prime congruence poset has no further restrictions than the
poset of truly associated prime congruences (Theorem 5.8).

Note that the content of this section also answers [3, Problem 17.9],
see Remark 5.9.

Definition 5.2. The poset of truly associated prime congruences of a
congruence ∼ is

MesoAss(∼) = {≈ truly associated to ∼},

partially ordered by refinement.

Lemma 5.3. For any primary congruence ∼, MesoAss(∼) has a
unique minimum.

Proof. The prime congruence ≈ at the origin refines the prime
congruence at every non-nil element, and any nilpotent element that
is maximal among those with prime congruence ≈ is a true witness by
Theorem 3.6. As such, ≈ ∈ MesoAss(∼). �

Proposition 5.4. Fix a finite subposet Ω = {p0, . . . , pd} of the power
set of {1, . . . , n} and distinct primes a0, . . . , an ∈ Z. For 0 ≤ i ≤ d, let

bi =
∏
j∈pi

aj and Ii = ⟨ybi − 1⟩ ⊂ k[y].

(a) The posets

(i) {b0, . . . , bd}, ordered by divisibility, and
(ii) {I0, . . . , Id}, ordered by reverse containment, each coincide

with Ω.

(b) No ideal Ii equals the intersection of a collection of ideals in
{I0, . . . , Id} \ {Ii}.
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Proof. This follows from the fact that (yc − 1) | (yc′ − 1) if and only
if c | c′. �

Theorem 5.5. Suppose that Ω = {p0, p1, . . . , pd} is a finite subposet
of the power set of {1, . . . , n} with p0 = ∅. Let I0, . . . , Id ⊂ k[z] denote
the ideals from Proposition 5.4. If

I = I0 + x1I1 + · · ·+ xdId + ⟨x1, . . . , xd⟩2 ⊂ k[x1, . . . , xd, y],

then the poset MesoAss(∼I) is isomorphic to Ω.

Proof. For each i ∈ {1, . . . , d}, the monoid element corresponding to
xi is a key witness for ∼I with associated prime congruence induced by
Ii, and the prime congruence at the origin is the congruence included
by I0. As such, MesoAss(∼I) = {∼0,∼1, . . . ,∼d} is isomorphic to the
poset Ω. �

Definition 5.6. Fix a primary congruence ∼ on Q. Given q ∈ Q, let
≈q denote the P -prime congruence of ∼ at q. The prime congruence
poset (Ω(∼),≼) consists of

• the set Ω(∼) of pairs (q,≈q) for non-nil q ∈ QP modulo the
equivalence relation generated by relating (a,≈a) and ([a +
b],≈a+b) whenever ≈a = ≈a+b, and

• the partial ordering ≼ under which (a,≈a) ≼ (b,≈b) whenever
⟨a⟩ ⊃ ⟨b⟩.

Lemma 5.7. Fix a primary congruence ∼. The poset relation of ∼ is
an equivalence relation which coarsens ∼, and the order ≼ on Ω(∼) is
a partial order.

Proof. The important observation is that, when ⟨a⟩ ⊃ ⟨b⟩ for non-nil
a, b ∈ QP , the prime congruence ≈a at a coarsens the prime congruence
≈b at b. This implies

(i) (a,≈a) and (b,≈b) are identified in Ω(∼) whenever a and b lie
in the same Green’s class in QP , and

(ii) if ⟨a⟩ ⊃ ⟨b⟩ and ≈a = ≈b, then the prime congruence ≈c at
any c satisfying ⟨a⟩ ⊃ ⟨c⟩ ⊃ ⟨b⟩ agrees with ≈a and ≈b.
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As such, any pairs (a,≈a) and (b,≈b) identified in Ω(∼) do indeed
satisfy ≈a = ≈b.

At this point, checking that ≼ is a partial order is straightforward.
Clearly, ≼ is reflexive, and transitivity of ≼ follows from transitivity of
Green’s preorder on Q and the transitivity of the equivalence relation
defining Ω(∼). Lastly, if (a,≈a) ≼ (b,≈b) and (b,≈b) ≼ (a,≈a), then
the observations in the above paragraph imply that ≈a = ≈b, meaning
that (a,≈a) and (b,≈b) are identified in Ω(∼). This completes the
proof. �

Theorem 5.8. Fix a finite subposet Ω = {p0, p1, . . . , pd} of the power
set of {1, . . . , n} with p0 = ∅. Let I0, . . . , Id denote the ideals from
Proposition 5.4, and define

M = ⟨x2
1, . . . , x

2
d⟩+ ⟨xixj : pi, pj incomparable⟩

and B = ⟨xixj − xixk : pi ⊃ pj and pi ⊃ pk⟩. The ideal

I = B + x1I1 + · · ·+ xdId +M ⊂ k[x1, . . . , xd, y]

has Ω(∼I) isomorphic to Ω.

Proof. The only monomials in the variables x1, . . . , xd that lie out-
side of I are either of degree 1 or have the form xixj for pi ⊃ pj (in par-
ticular, I contains every monomial of total degree 3). The only prime
congruences that occur are induced by I0, . . . , Id; I0 induces the prime
congruence at the origin, and Ii for i ≥ 1 induces the prime congruence
at the elements corresponding to the monomials {xi, xixj : pi ) pj}.
The binomials generating B ensure that this set has exactly two dis-
tinct elements modulo I, the larger of which corresponds to the unique
true witness, whose associated prime congruence is induced by Ii. Di-
visibility among the nonzero monomials modulo I ensures that Ω(∼)
is isomorphic to Ω. �

Remark 5.9. In general, the set of associated prime congruences, as
well as the prime congruence poset, can differ if different classes of wit-
nesses are used in place of true witnesses, e.g., they may have different
cardinalities. However, every witness for every congruence constructed
in Theorems 5.5 and 5.8 is true. This means that, if one relaxes the
problem to allow prime congruences at any more general class of wit-
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nesses, then the resulting poset would be the same. Consequently, the
content of this section also answers [3, Problem 17.9], the analogue of
Problem 5.1 for binomial ideals. Indeed, upon referencing [3, Defini-
tions 10.4 and 12.1], it can easily be verified that each ideal I defined
in Theorems 5.5 or 5.8 decomposes as an intersection of mesoprimary
ideals, whose poset of associated mesoprimes is also isomorphic to the
given poset Ω.
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