THE EXPECTED NUMBER OF ELEMENTS TO GENERATE A FINITE GROUP WITH d-GENERATED SYLOW SUBGROUPS

ANDREA LUCCHINI AND MARIAPIA MOSCATIELLO

Abstract

Given a finite group G, let $e(G)$ be the expected number of elements of G which have to be drawn at random, with replacement, before a set of generators is found. If all of the Sylow subgroups of G can be generated by d elements, then $e(G) \leq d+\kappa$, where κ is an absolute constant that is explicitly described in terms of the Riemann zeta function and is the best possible in this context. Approximately, κ equals 2.752394 . If G is a permutation group of degree n, then either $G=\operatorname{Sym}(3)$ and $e(G)=2.9$ or $e(G) \leq\lfloor n / 2\rfloor+\kappa^{*}$ with $\kappa^{*} \sim 1.606695$. These results improve weaker bounds recently obtained by Lucchini.

1. Introduction. In 1989, Guralnick [5] and the first author [10] independently proved that, if all of the Sylow subgroups of a finite group G can be generated by d elements, then the group G itself can be generated by $d+1$ elements. A probabilistic version of this result was obtained in [12]. Let G be a nontrivial finite group, and let $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of independent, uniformly distributed G-valued random variables. We may define a random variable τ_{G} by

$$
\tau_{G}=\min \left\{n \geq 1 \mid\left\langle x_{1}, \ldots, x_{n}\right\rangle=G\right\} .
$$

We denote by $e(G)$ the expectation $\mathrm{E}\left(\tau_{G}\right)$ of this random variable: $e(G)$ is the expected number of elements of G which have to be drawn at random, with replacement, before a set of generators is found. In [12], it was proven that, if all of the Sylow subgroups of G can be generated by d elements, then $e(G) \leq d+\eta$ with $\eta \sim 2.875065$. This bound is not too distant from being the best possible. Indeed, in [15], Pomerance proved that, if Ω_{d} is the set of all the d-generated finite abelian groups,

[^0]then
$$
\sup _{G \in \Omega_{d}} e(G)=d+\sigma, \quad \text { where } \sigma \sim 2.118457
$$

However, the bound $e(G) \leq d+\eta$ is approximative, and it may be interesting to find a best possible estimation for $e(G)$. We give an exhaustive answer to this question, proving the next result.

Theorem 1.1. Let G be a finite group. If all of the Sylow subgroups of G can be generated by d elements, then $e(G) \leq d+\kappa$, where κ is an absolute constant that is explicitly described in terms of the Riemann zeta function and is the best possible in this context. Approximately, κ equals 2.752394 .

This bound can further be improved under some additional assumptions on G. For example, we prove that, if all the Sylow subgroups of G can be generated by d elements and G is not soluble, then $e(G) \leq d+2.750065$ (Proposition 3.1). A stronger result holds if $|G|$ is odd.

Theorem 1.2. Let G be a finite group of odd order. If all the Sylow subgroups of G can be generated by d elements, then $e(G) \leq d+\widetilde{\kappa}$, with $\widetilde{\kappa} \sim 2.148668$.

In this case, the constant $\widetilde{\kappa}$ is probably not the best possible. In particular, as suggested by the proof of Theorem 1.2, a precise estimate would require a complete knowledge of the distribution of the Fermat primes.

If G is a p-subgroup of $\operatorname{Sym}(n)$, then G can be generated by $\lfloor n / p\rfloor$ elements (see [7]); thus, Theorem 1.1 has the following consequence: if G is a permutation group of degree n, then $e(G) \leq\lfloor n / 2\rfloor+\kappa$. However, this bound is not the best possible, and a better result can be obtained:

Corollary 1.3. If G is a permutation group of degree n, then either $G=\operatorname{Sym}(3)$ and $e(G)=2.9$ or $e(G) \leq\lfloor n / 2\rfloor+\kappa^{*}$ with $\kappa^{*} \sim 1.606695$.

The number κ^{*} is the best possible. Let $m=\lfloor n / 2\rfloor$, and set

$$
G_{n}=\operatorname{Sym}(2)^{m}
$$

if m is even,

$$
G_{n}=\operatorname{Sym}(2)^{m-1} \times \operatorname{Sym}(3)
$$

if m is odd. If $n \geq 8$, then $e\left(G_{n}\right)-m$ increases with n and $\lim _{n \rightarrow \infty} e(G)-m=\kappa^{*}$.

Our proofs implicitly depend on the classification of the finite simple groups. More precisely, the proof of Theorem 1.1 requires a result, proved by Pyber, which states that, for every finite group G and every $n \geq 2, G$ has at most n^{2} core-free maximal subgroups of index n (this is necessary in the proof of Lemma 2.3), while the proof of Corollary 1.3 uses a bound on the chief length of a permutation group of degree n (see Theorem 5.2).
2. Preliminary results. Let G be a finite group, and use the following notation:

- For a given prime $p, d_{p}(G)$ is the smallest cardinality of a generating set of a Sylow p-subgroup of G.
- For a given prime p and a positive integer $t, \alpha_{p, t}(G)$ is the number of complemented factors of order p^{t} in a chief series of G.
- For a given prime $p, \alpha_{p}(G)=\sum_{t} \alpha_{p, t}(G)$ is the number of complemented factors of p-power order in a chief series of G.
- $\beta(G)$ is the number of nonabelian factors in a chief series of G.

Lemma 2.1. For every finite group G, we have:
(i) $\alpha_{p}(G) \leq d_{p}(G)$.
(ii) $\alpha_{2}(G)+\beta(G) \leq d_{2}(G)$.
(iii) If $\beta(G) \neq 0$, then $\beta(G) \leq d_{2}(G)-1$.
(iv) If $\alpha_{2,1}(G)=0$, then $\alpha_{2}(G)+\beta(G) \leq d_{2}(G)-1$.
(v) If $\alpha_{p, 1}(G)=0$, then $\alpha_{p}(G) \leq d_{p}(G)-1$.

Proof. (i), (ii) and (iii) are proven in [12, Lemma 4]. Now, assume that no complemented chief factor of G has order 2 , and let $r=$ $\alpha_{2}(G)+\beta(G)$. There exists a sequence

$$
X_{r} \leq Y_{r} \leq \cdots \leq X_{1} \leq Y_{1}
$$

of normal subgroups of G such that, for every $1 \leq i \leq r, Y_{i} / X_{i}$ is a complemented chief factor of G of even order. Note that $\beta\left(G / Y_{1}\right)=$
$\alpha_{2}\left(G / Y_{1}\right)=0$; hence, G / Y_{1} is a finite soluble group, all of whose complemented chief factors have odd order, but, then, G / Y_{1} has odd order, and consequently, $d_{2}(G)=d_{2}\left(Y_{1}\right)$. Moreover, as in the proof of [12, Lemma 4],

$$
d_{2}\left(Y_{1}\right) \geq d_{2}\left(Y_{1} / X_{1}\right)+r-1
$$

Since $\left|Y_{1} / X_{1}\right| \neq 2$ and the Sylow 2-subgroups of a finite nonabelian simple group cannot be cyclic $[\mathbf{1 6}, 10.1 .9]$, we deduce $d_{2}\left(Y_{1} / X_{1}\right) \geq 2$, and consequently, $d_{2}(G)=d_{2}\left(Y_{1}\right) \geq r+1$. This proves (iv). The proof of (v) is similar.

Recall (see [12, (1.1)] for more details) that

$$
\begin{equation*}
e(G)=\sum_{n \geq 0}\left(1-P_{G}(n)\right) \tag{2.1}
\end{equation*}
$$

where

$$
P_{G}(n)=\frac{\left|\left\{\left(g_{1}, \ldots, g_{n}\right) \in G^{n} \mid\left\langle g_{1}, \ldots, g_{n}\right\rangle=G\right\}\right|}{|G|^{n}}
$$

is the probability that n randomly chosen elements of G generate G. Denote by $m_{n}(G)$ the number of index n maximal subgroups of G. We have (see [9, 11.6]):

$$
\begin{equation*}
1-P_{G}(k) \leq \sum_{n \geq 2} \frac{m_{n}(G)}{n^{k}} \tag{2.2}
\end{equation*}
$$

Using the notation introduced in [8, Section 2], we say that a maximal subgroup M of G is of type A if $\operatorname{soc}\left(G / \operatorname{Core}_{G}(M)\right)$ is abelian, of type B otherwise, and we denote by $m_{n}^{A}(G)$ (respectively, $m_{n}^{B}(G)$) the number of maximal subgroups of G of type A (respectively, B) of index n. Denote the set of the prime divisors of $|G|$ by $\pi(G)$. Given $t \in \mathbb{N}$ and $p \in \pi(G)$, define

$$
\begin{aligned}
& \mu^{*}(G, t)=\sum_{k \geq t}\left(\sum_{n \geq 5} \frac{m_{n}^{B}(G)}{n^{k}}\right), \\
& \mu_{p}(G, t)=\sum_{k \geq t}\left(\sum_{n \geq 1} \frac{m_{p^{n}}^{A}(G)}{p^{n k}}\right) .
\end{aligned}
$$

Lemma 2.2. Let $t \in \mathbb{N}$. Then,

$$
e(G) \leq t+\mu^{*}(G, t)+\sum_{p \in \pi(G)} \mu_{p}(G, t)
$$

Proof. By (2.1) and (2.2),

$$
e(G) \leq t+\sum_{n \geq t}\left(1-P_{G}(n)\right) \leq t+\sum_{k \geq t}\left(\sum_{n \geq 2} \frac{m_{n}(G)}{n^{k}}\right)
$$

Lemma 2.3. Let $t \in \mathbb{N}$. If $\beta(G)=0$, then $\mu^{*}(G, t)=0$. If $t \geq \beta(G)$ +3 , then

$$
\mu^{*}(G, t) \leq \frac{\beta(G)(\beta(G)+1)}{2 \cdot 5^{t-4}} \cdot \frac{1}{4}
$$

Proof. The result follows from [12, Lemma 8] and its proof.
Lemma 2.4. Let $t \in \mathbb{N}$ and $p \in \pi(G)$. If $\alpha_{p}(G)=0$, then $\mu_{p}(G, t)=0$.
(i) If $\alpha_{2}(G) \leq t-1$ and $\alpha_{2, u}(G) \leq t-2$ for every $u>1$, then

$$
\mu_{2}(G, t) \leq \frac{1}{2^{t-\alpha_{2}(G)-1}}
$$

(ii) Let p be an odd prime. If $\alpha_{p}(G) \leq t-2$, then

$$
\mu_{p}(G, t) \leq \frac{1}{p^{t-\alpha_{p}(G)-2}} \frac{1}{(p-1)^{2}}
$$

Proof. The result follows from [12, Lemma 7] and its proof.
Let G be a finite soluble group, and let \mathcal{A} be a set of representatives for the irreducible G-modules that are G-isomorphic to some complemented chief factor of G. For every $A \in \mathcal{A}$, let δ_{A} be the number of complemented factors G-isomorphic to A in a chief series of G,

$$
q_{A}=\left|\operatorname{End}_{G}(A)\right|, r_{A}=\operatorname{dim}_{\operatorname{End}_{G}(A)}(A)
$$

$\zeta_{A}=0$, if A is a trivial G-module, $\zeta_{A}=1$, otherwise. Moreover, for every $l \in \mathbb{N}$, let $Q_{A, l}(s)$ be the Dirichlet polynomial, defined by

$$
Q_{A, l}(s)=1-\frac{q_{A}^{l+r_{A} \cdot \zeta_{A}}}{q_{A}^{r_{A} \cdot s}}
$$

By [4, Satz 1], for every positive integer k, we have

$$
\begin{equation*}
P_{G}(k)=\prod_{A \in \mathcal{A}}\left(\prod_{0 \leq l \leq \delta_{A}-1} Q_{A, l}(k)\right) \tag{2.3}
\end{equation*}
$$

For every prime p dividing $|G|$, let \mathcal{A}_{p} be the subset of \mathcal{A} consisting of the irreducible G-modules having order a power of p, and let

$$
\begin{equation*}
P_{G, p}(k)=\prod_{A \in \mathcal{A}_{p}}\left(\prod_{0 \leq l \leq \delta_{A}-1} Q_{A, l}(k)\right) \tag{2.4}
\end{equation*}
$$

Definition 2.5. For every prime p and every positive integer α, let

$$
\begin{aligned}
& C_{p, \alpha}(s)=\prod_{0 \leq i \leq \alpha-1}\left(1-\frac{p^{i}}{p^{s}}\right) \\
& D_{p, \alpha}(s)=\prod_{1 \leq i \leq \alpha}\left(1-\frac{p^{i}}{p^{s}}\right)
\end{aligned}
$$

Lemma 2.6. Let G be a finite soluble group and let k be a positive integer.
(i) If $d_{p}(G) \leq d$, then $P_{G, p}(k) \geq D_{p, d}(k)$.
(ii) If p divides $\left|G / G^{\prime}\right|$, then $P_{G, p}(k) \geq C_{p, d}(k)$.
(iii) If $\alpha_{p, 1}(G)=0$, then $P_{G, p}(k) \geq C_{p, d}(k)$.
(iv) If $d_{2}(G) \leq d$, then $P_{G, 2}(k) \geq C_{2, d}(k)$.

Proof. Suppose that $\mathcal{A}_{p}=\left\{A_{1}, \ldots, A_{t}\right\}$, and let $q_{i}=q_{A_{i}}, r_{i}=r_{A_{i}}$, $\zeta_{i}=\zeta_{A_{i}}$ and $\delta_{i}=\delta_{A_{i}}$. Recall that

$$
\begin{equation*}
P_{G, p}(k)=\prod_{\substack{1 \leq i \leq t \\ 0 \leq l \leq \delta_{i}-1}} Q_{A_{i}, l}(k) \tag{2.5}
\end{equation*}
$$

By Lemma 2.1,

$$
\delta_{1}+\delta_{2}+\cdots+\delta_{t}=\alpha_{p}(G) \leq d_{p}(G)
$$

hence, the number of factors $Q_{A_{i}, l}(k)$ in (2.5) is at most $d_{p}(G)$. We order these factors in such a way that $Q_{A_{i}, u}(k)$ precedes $Q_{A_{j}, v}(k)$ if either $i<j$ or $i=j$ and $u<v$. Moreover, we order the elements of \mathcal{A}_{p} in such a way that A_{1} is the trivial G-module if p divides $\left|G / G^{\prime}\right|$.
(i) Since $D_{p, d}(k)=0$, if $k \leq d$, we may take $k>d$. To show that $P_{G, p}(k) \geq D_{p, d}(k)$, it is sufficient to show that the j th factor $Q_{j}(k)=$ $Q_{A_{i}, l}(k)$ of $P_{G, p}(k)$ is greater than the j th factor $D_{j}(k)=1-p^{j} / p^{k}$ of $D_{p, d}(k)$. If $j \leq \delta_{1}$, then $Q_{j}(k)=Q_{A_{1}, l}(k)$ with $l=j-1$. If $j>\delta_{1}$, then $Q_{j}(k)=Q_{A_{i}, l}(k)$ for some $i \in\{2, \ldots, t\}$ and $l \in\left\{0, \ldots, \delta_{i}-1\right\}$; thus,

$$
j=\delta_{1}+\delta_{2}+\cdots+\delta_{i-1}+l+1 \geq l+2
$$

In any case,

$$
q_{i}^{r_{i} \zeta_{i}} q_{i}^{l} \leq q_{i}^{r_{i}(l+1)} \leq q_{i}^{r_{i} j}
$$

We have $q_{i}=p^{n_{i}}$ for some $n_{i} \in \mathbb{N}$. Since $j \leq d<k$, we deduce that

$$
\frac{q_{i}^{r_{i} \zeta_{i}} q_{i}^{l}}{q_{i}^{r_{i} k}} \leq \frac{q_{i}^{r_{i} j}}{q_{i}^{r_{i} k}}=\left(\frac{p^{j}}{p^{k}}\right)^{r_{i} n_{i}} \leq \frac{p^{j}}{p^{k}}
$$

Then,

$$
Q_{j}(k)=1-\frac{q_{i}^{r_{i} \zeta_{i}} q_{i}^{l}}{q_{i}^{r_{i}} k} \geq 1-\frac{p^{j}}{p^{k}}=D_{j}(k)
$$

(ii) Since $C_{p, d}(k)=0$ if $k<d$, we may take $k \geq d$. To show that $P_{G, p}(k) \geq C_{p, d}(k)$, it is sufficient to show that the j th factor $Q_{j}(k)=$ $Q_{A_{i}, l}(k)$ of $P_{G, p}(k)$ is greater than the j th factor $C_{j}(k)=1-p^{j-1} / p^{k}$ of $C_{p, d}(k)$. If $i=1$, then, by the way in which we ordered the elements of \mathcal{A}_{p}, we have $Q_{j}(k)=C_{j}(k)$. Otherwise, as we see in the proof of (i), $l+2 \leq j$; thus, $r_{i} \zeta_{i}+l \leq r_{i}+j-2 \leq r_{i}(j-1)$. Since $j \leq d \leq k$, we deduce that

$$
\frac{q_{i}^{r_{i} \zeta_{i}} q_{i}^{l}}{q_{i}^{r_{i} k}} \leq \frac{q_{i}^{r_{i}(j-1)}}{q_{i}^{r_{i} k}} \leq \frac{p^{j-1}}{p^{k}}
$$

and

$$
Q_{j}(k)=1-\frac{q_{i}^{r_{i} \zeta_{i}} q_{i}^{l}}{q_{i}^{r_{i} k}} \geq 1-\frac{p^{j-1}}{p^{k}}=C_{j}(k)
$$

(iii) Assume that no complemented chief factor of G has order p. By Lemma $2.1(\mathrm{v}), \alpha_{p}(G) \leq d_{p}(G)-1 \leq d-1$. But, then, in the factorization of $P_{G, p}(k)$ described in (2.5), the number of factors is at most $d-1$, and, arguing as in the proof of (i), we conclude that

$$
P_{G, p}(k) \geq D_{p, d-1}(k) \geq C_{p, d}(k)
$$

(iv) We may assume that $\alpha_{2}(G) \neq 0$ (otherwise, $P_{G, 2}(k)=1$). Since $\alpha_{2,1}(G) \neq 0$ if and only if 2 divides $\left|G / G^{\prime}\right|$, the conclusion follows from (ii) and (iii).

3. The main result.

Proposition 3.1. Let G be a finite group. If all of the Sylow subgroups of G can be generated by d elements and G is not soluble, then

$$
e(G) \leq d+\kappa^{*} \quad \text { with } \kappa^{*} \leq 2.750065 .
$$

Proof. Let $\beta=\beta(G)$. Since G is not soluble, $\beta>0$; hence, by Lemma 2.1 (ii), (iii), we have

$$
1 \leq \beta \leq d_{2}(G)-1 \leq d-1
$$

and

$$
\alpha_{2}(G) \leq d_{2}(G)-\beta \leq d-1
$$

We distinguish two cases:
Case (a) $\beta<d-1$. From Lemmas 2.2, 2.3 and 2.4 and, using a rather precise approximation of $\sum_{p}(p-1)^{-2}$ given in [1], we conclude:

$$
\begin{aligned}
e(G) & \leq d+2+\mu^{*}(G, d+2)+\mu_{2}(G, d+2)+\sum_{p>2} \mu_{p}(G, d+2) \\
& \leq d+2+\frac{1}{20}+\frac{1}{4}+\sum_{p>2} \frac{1}{(p-1)^{2}} \leq d+2.675065
\end{aligned}
$$

Case (b) $\beta=d-1$. By Lemma 2.1 (ii), (iv), either $\alpha_{2}(G)=0$ or $\alpha_{2}(G)=\alpha_{2,1}(G)=1$. In the first case, $\mu_{2}(G, d+2)=0$; in the second case, $m_{2}^{A}(G)=1$, and consequently,

$$
\mu_{2}(G, d+2)=\sum_{k \geq d+2} \frac{m_{2}^{A}(G)}{2^{k}} \leq \sum_{k \geq d+2} \frac{1}{2^{k}} \leq \sum_{k \geq 4} \frac{1}{2^{k}} \leq \frac{1}{8}
$$

From Lemmas 2.2, 2.3 and 2.4, we conclude:

$$
\begin{aligned}
e(G) & \leq d+2+\mu^{*}(G, d+2)+\mu_{2}(G, d+2)+\sum_{p>2} \mu_{p}(G, d+2) \\
& \leq d+2+\frac{1}{4}+\frac{1}{8}+\sum_{p>2} \frac{1}{(p-1)^{2}} \leq d+2.750065
\end{aligned}
$$

The previous proposition reduces the proof of Theorem 1.1 to the particular case when G is soluble. In order to deal with this case, we shall introduce, for every positive integer d and every set of primes π, a supersoluble group $H_{\pi, d}$, all of whose Sylow subgroups are d-generated and with the property that $e(G) \leq e\left(H_{\pi, d}\right)$, whenever G is soluble, $\pi(G) \subseteq \pi$ and the Sylow subgroups of G are d-generated.

Definition 3.2. Let π be a finite set of prime numbers with $2 \in \pi$, and let d be a positive integer. We define $H_{\pi, d}$ as the semidirect product of A with $\left\langle y, z_{1}, \ldots, z_{d-1}\right\rangle$, where A is isomorphic to

$$
\prod_{p \in \pi \backslash\{2\}} C_{p}^{d}
$$

and $\left\langle y, z_{1}, \ldots, z_{d-1}\right\rangle$ is isomorphic to C_{2}^{d} and acts on A via $x^{y}=x^{-1}$, $x^{z_{i}}=x$ for all $x \in A$ and $1 \leq i \leq d-1$. Thus,

$$
H_{\pi, d} \cong\left(\left(\prod_{p \in \pi \backslash\{2\}} C_{p}^{d}\right) \rtimes C_{2}\right) \times C_{2}^{d-1}
$$

Theorem 3.3. Let G be a finite soluble group. If all of the Sylow subgroups of G can be generated by d elements, then $e(G) \leq e\left(H_{\pi, d}\right)$, where $\pi=\pi(G) \cup\{2\}$.

Proof. Let $H=H_{\pi, d}, p \in \pi, k \in \mathbb{N}$. Let \mathcal{A} be a set of representatives for the irreducible H-modules that are H-isomorphic to some complemented chief factor of H, and let \mathcal{A}_{p} be the subset of \mathcal{A} consisting of the irreducible H-modules having as order a power of p. For every $p \in \pi$, \mathcal{A}_{p} contains a unique element A_{p}. Moreover, $\left|A_{p}\right|=p, \delta_{A_{p}}=d$ and $\zeta_{A_{p}}=1$ if $p \neq 2$, while $\zeta_{A_{2}}=0$. Hence, by (2.4), $P_{H, p}(k)=D_{p, d}(k)$ if $p \neq 2$, while $P_{H, 2}(k)=C_{2, d}(k)$. From Lemma 2.6, $P_{G, p}(k) \geq P_{H, p}(k)$
for every $p \in \pi(G)$. This implies

$$
P_{G}(k)=\prod_{p \in \pi(G)} P_{G, p}(k) \geq \prod_{p \in \pi} P_{H, p}(k)=P_{H}(G),
$$

and consequently,

$$
e(G)=\sum_{k \geq 0}\left(1-P_{G}(k)\right) \leq \sum_{k \geq 0}\left(1-P_{H}(k)\right)=e(H) .
$$

Definition 3.4. Let π be a finite set of prime numbers with $2 \in \pi$, and let d be a positive integer. We set $e_{d}=\sup _{\pi} e\left(H_{\pi, d}\right)$ and $\kappa=$ $\sup _{d}\left(e_{d}-d\right)$.

Let $\pi^{*}=\pi \backslash\{2\}$. Since $P_{H_{\pi, d}}(k)=0$, for all $k \leq d$, we have

$$
\begin{aligned}
e\left(H_{\pi, d}\right) & =\sum_{k \geq 0}\left(1-P_{H_{\pi, d}}(k)\right)=d+1+\sum_{k \geq d+1}\left(1-C_{2, d}(k) \prod_{p \in \pi^{*}} D_{p, d}(k)\right) \\
& =d+1+\sum_{k \geq d+1}\left(1-\prod_{1 \leq i \leq d}\left(1-\frac{2^{i-1}}{2^{k}}\right) \prod_{p \in \pi^{*}} \prod_{1 \leq i \leq d}\left(1-\frac{p^{i}}{p^{k}}\right)\right) \\
& =d+1+\sum_{t \geq 0}\left(1-\prod_{1 \leq i \leq d}\left(1-\frac{2^{i-1}}{2^{t+(d+1)}}\right) \prod_{p \in \pi^{*}} \prod_{1 \leq i \leq d}\left(1-\frac{p^{i}}{p^{t+(d+1)}}\right)\right) .
\end{aligned}
$$

We immediately deduce that $e\left(H_{\pi, d}\right)-d$ increases as d increases. Moreover, we have

$$
\begin{aligned}
e_{d}-d & =\sup _{\pi}\left(e\left(H_{\pi, d}\right)-d\right) \\
& =1+\sum_{k \geq d+1}\left(1-\frac{\left(1-1 / 2^{k}\right)}{\left(1-2^{d} / 2^{k}\right)} \prod_{p} \prod_{1 \leq i \leq d}\left(1-\frac{p^{i}}{p^{k}}\right)\right) .
\end{aligned}
$$

For $k=d+1$, the double product tends to 0 , while, for $k \geq d+2$, it tends to $\prod_{1 \leq i \leq d} \zeta(k-i)^{-1}$, where ζ denotes the Riemann zeta function. Hence, we obtain

$$
\begin{aligned}
e_{d}-d & =2+\sum_{k \geq d+2}\left(1-\frac{\left(1-1 / 2^{k}\right)}{\left(1-2^{d} / 2^{k}\right)} \prod_{1 \leq i \leq d} \zeta(k-i)^{-1}\right) \\
& =2+\sum_{j \geq 1}\left(1-\frac{\left(1-1 / 2^{j+(d+1)}\right)}{\left(1-1 / 2^{j+1}\right)} \prod_{1 \leq l \leq d} \zeta(j+l)^{-1}\right) \\
& =2+\sum_{j \geq 1}\left(1-\left(\frac{2^{j+1}-2^{-d}}{2^{j+1}-1}\right) \prod_{1+j \leq n \leq d+j} \zeta(n)^{-1}\right) .
\end{aligned}
$$

Let $c=\prod_{2 \leq n \leq \infty} \zeta(n)^{-1}$. Since $e_{d}-d$ increases as d grows, we get

$$
\begin{aligned}
\kappa & =\lim _{d \rightarrow \infty} e_{d}-d \\
& =2+\left(1-\left(\frac{2^{2}}{2^{2}-1}\right) c\right)+\sum_{j \geq 2}\left(1-\left(\frac{2^{j+1}}{2^{j+1}-1}\right) c \prod_{2 \leq n \leq j} \zeta(n)\right) \\
& =2+\left(1-\frac{4}{3} \cdot c\right)+\sum_{j \geq 2}\left(1-\left(1+\frac{1}{2^{j+1}-1}\right) c \prod_{2 \leq n \leq j} \zeta(n)\right) .
\end{aligned}
$$

Using the computer algebra system PARI/GP [14], we obtain

$$
\kappa=2+\left(1-\frac{4}{3} \cdot c\right)+\sum_{j \geq 2}\left(1-\left(1+\frac{1}{2^{j+1}-1}\right) c \prod_{2 \leq n \leq j} \zeta(n)\right) \sim 2.752395 .
$$

Combining this result with Proposition 3.1 and Theorem 3.3, we obtain the proof of Theorem 1.1.

4. Finite groups of odd order.

Theorem 4.1. Let G be a finite soluble group. There exists a finite supersoluble group H, such that
(i) $\pi(H)=\pi(G)$,
(ii) $P_{G}(k) \geq P_{H}(k)$ for all $k \in \mathbb{N}$,
(iii) $d_{p}(G) \geq d_{p}(H)$ for all $p \in \pi(G)$,
(iv) $\pi\left(G / G^{\prime}\right) \subseteq \pi\left(H / H^{\prime}\right)$.

Proof. Let $\pi(G)=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{1} \leq \cdots \leq p_{n}$. For $i \in$ $\{1, \ldots, n\}$, set $\pi_{i}=\left\{p_{1}, \ldots, p_{i}\right\}$. We will prove, by induction on i, that, for every $i \in\{1, \ldots, n\}$, there exists a supersoluble group H_{i} such that $\pi\left(H_{i}\right)=\pi_{i}$ and, for every $j \leq i$,
(i) $P_{H_{i}, p_{j}}(k) \leq P_{G, p_{j}}(k)$ for all $k \in \mathbb{N}$;
(ii) $d_{p_{j}}\left(H_{i}\right) \leq d_{p_{j}}(G)$;
(iii) if $C_{p_{j}}$ is an epimorphic image of G, then $C_{p_{j}}$ is an epimorphic image of H_{i};
(iv) $\pi_{i} \cap \pi\left(G / G^{\prime}\right) \subseteq \pi\left(H_{i} / H_{i}^{\prime}\right)$.

Assume that H_{i} has been constructed, and set $p=p_{i+1}$ and $d_{p}=d_{p}(G)$. We distinguish two different cases:

Case (i). Either p divides $\left|G / G^{\prime}\right|$ or G contains no complemented chief factor of order p. We consider the direct product $H_{i+1}=H_{i} \times C_{p}^{d_{p}}$. Clearly,

$$
P_{H_{i+1}, p_{j}}(k)=P_{H_{i}, p_{j}}(k) \leq P_{G, p_{j}}(k) \quad \text { if } j \leq i .
$$

Moreover, by Lemma 2.6 (ii), (iii),

$$
P_{H_{i+1}, p}(k)=C_{p, d_{p}}(k) \leq P_{G, p}(k)
$$

Case (ii). p does not divide $\left|G / G^{\prime}\right|$, but G contains a complemented chief factor which is isomorphic to a nontrivial G-module, say A, of order p. In this case, $G / C_{G}(A)$ is a nontrivial cyclic group whose order divides $p-1$. Let q be a prime divisor of $\left|G / C_{G}(A)\right|$ (it must be $q=p_{j}$ for some $j \leq i$). Since q divides $\left|G / G^{\prime}\right|$, we have that q divides also $\left|H_{i} / H_{i}^{\prime}\right|$; hence, there exists a normal subgroup N of H_{i} with $H_{i} / N \cong C_{q}$ and a nontrivial action of H_{i} on C_{p} with kernel N. We use this action to construct the supersoluble group $H_{i+1}=C_{p}^{d_{p}} \rtimes H_{i}$. Clearly, $P_{H_{i+1}, p_{j}}(k)=P_{H_{i}, p_{j}}(k) \leq P_{G, p_{j}}(k)$ if $j \leq i$. Moreover, by Lemma 2.6 (i), $P_{H_{i+1}, p}(k)=D_{p, d_{p}}(k) \leq P_{G, p}(k)$.

The proof is complete, noting that $H=H_{n}$ satisfies the requests in the statement.

Proof of Theorem 1.2. Let $\pi=\pi(G)$. From Theorem 4.1, there exists a supersoluble group H such that $\pi(H)=\pi, d_{p}(H) \leq d$ for every $p \in \pi$ and $P_{G}(k) \geq P_{H}(k)$ for every $k \in \mathbb{N}$. In particular,

$$
e(G)=\sum_{k \geq 0}\left(1-P_{G}(k)\right) \leq \sum_{k \geq 0}\left(1-P_{H}(k)\right)=e(H)
$$

Since H is supersoluble, if A is H-isomorphic to a chief factor of H, then $|A|=p$ for some $p \in \pi$ and $H / C_{H}(A)$ is a cyclic group of order dividing $p-1$. If p is a Fermat prime, then $H / C_{H}(A)$ is a 2-group and, since $|H|$ is odd, we must have $H=C_{H}(A)$. This implies that, if $p \in \pi$ is a Fermat prime, then $P_{H, p}(k)=C_{p, d_{p}(H)}(k) \geq C_{p, d}(k)$. For all of the other primes in π, by Lemma 2.6 (i), we have $P_{H, p}(k) \geq D_{p, d}(k)$. Therefore, denoting the set of Fermat primes by Λ and the set of the remaining odd primes by Δ, we obtain

$$
P_{H}(k)=\prod_{p \in \pi} P_{H, p}(k) \geq \prod_{p \in \Lambda} C_{p, d}(k) \prod_{p \in \Delta} D_{p, d}(k) .
$$

It follows that

$$
\begin{aligned}
e(H) & =\sum_{k \geq 0}\left(1-P_{H}(k)\right) \\
& \leq \sum_{k \geq 0}\left(1-\prod_{p \in \Lambda} \prod_{1 \leq i \leq d}\left(1-\frac{p^{i-1}}{p^{k}}\right) \prod_{\substack{p \in \Delta \\
p \neq 2}} \prod_{1 \leq i \leq d}\left(1-\frac{p^{i}}{p^{k}}\right)\right) \\
& =d+1+\sum_{k \geq d+1}\left(1-\prod_{p \in \Lambda} \prod_{1 \leq i \leq d}\left(1-\frac{p^{i-1}}{p^{k}}\right) \prod_{p \in \Delta} \prod_{1 \leq i \leq d}\left(1-\frac{p^{i}}{p^{k}}\right)\right) \\
& =d+1+\sum_{t \geq 0}\left(1-\prod_{p \in \Lambda} \prod_{1 \leq i \leq d}\left(1-\frac{p^{i-1}}{p^{t+(d+1)}}\right) \prod_{p \in \Delta} \prod_{1 \leq i \leq d}\left(1-\frac{p^{i}}{p^{t+(d+1)}}\right)\right) .
\end{aligned}
$$

Let

$$
\widetilde{\kappa}_{d}=\sum_{t \geq 0}\left(1-\prod_{p \in \Lambda} \prod_{1 \leq i \leq d}\left(1-\frac{p^{i-1}}{p^{t+(d+1)}}\right) \prod_{p \in \Delta} \prod_{1 \leq i \leq d}\left(1-\frac{p^{i}}{p^{t+(d+1)}}\right)\right)+1
$$

It can easily be verified that $\widetilde{\kappa}_{d}$ increases as d increases. Let

$$
b=\prod_{1 \leq n \leq \infty}\left(1-\frac{1}{2^{n}}\right)^{-1}, \quad c=\prod_{2 \leq n \leq \infty} \zeta(n)^{-1}
$$

and let $\Lambda^{*}=\{3,5,17,257,65537\}$ be the set of the known Fermat primes. Similar computations to those in the final part of Section 3 lead to the conclusion:

$$
\begin{aligned}
\widetilde{\kappa}_{d} \leq & 3-\frac{b \cdot c}{2} \prod_{p \in \Lambda} \frac{p^{2}}{p^{2}-1} \\
& +\sum_{j \geq 2}\left(1-b \prod_{1 \leq n \leq j}\left(1-\frac{1}{2^{n}}\right) \prod_{p \in \Lambda}\left(1+\frac{1}{p^{j+1}-1}\right) c \prod_{2 \leq n \leq j} \zeta(n)\right) \\
\leq & 3-\frac{b \cdot c}{2} \prod_{p \in \Lambda^{*}} \frac{p^{2}}{p^{2}-1} \\
& +\sum_{j \geq 2}\left(1-b \prod_{1 \leq n \leq j}\left(1-\frac{1}{2^{n}}\right) \prod_{p \in \Lambda^{*}}\left(1+\frac{1}{p^{j+1}-1}\right) c \prod_{2 \leq n \leq j} \zeta(n)\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
\widetilde{\kappa}= & 3-\frac{b \cdot c}{2} \prod_{p \in \Lambda^{*}} \frac{p^{2}}{p^{2}-1} \\
& +\sum_{j \geq 2}\left(1-b \prod_{1 \leq n \leq j}\left(1-\frac{1}{2^{n}}\right) \prod_{p \in \Lambda^{*}}\left(1+\frac{1}{p^{j+1}-1}\right) c \prod_{2 \leq n \leq j} \zeta(n)\right) .
\end{aligned}
$$

With the aid of PARI/GP, we get that $\widetilde{\kappa} \sim 2.148668$.

5. Permutation groups.

Theorem 5.1 ([7]). If G is a p-subgroup of $\operatorname{Sym}(n)$, then G can be generated by $\lfloor n / p\rfloor$ elements.

Theorem 5.2 ([13, Theorem 10.0.5]). The chief length of a permutation group of degree n is at most $n-1$.

Lemma 5.3. If $G \leq \operatorname{Sym}(n)$ and $n \geq 8$, then $\beta(G) \leq\lfloor n / 2\rfloor-3$.
Proof. Let $R(G)$ be the soluble radical of G. From [6, Theorem 2], $G / R(G)$ has a faithful permutation representation of degree at most n, so we may assume that $R(G)=1$. In particular,

$$
\operatorname{soc}(G)=S_{1} \times \cdots \times S_{r}
$$

where S_{1}, \ldots, S_{r} are nonabelian simple groups and, by [2, Theorem 3.1], $n \geq 5 r$. Let

$$
K=N_{G}\left(S_{1}\right) \cap \cdots \cap N_{G}\left(S_{r}\right)
$$

We have that $K / \operatorname{soc}(G)$ is soluble and that $G / K \leq \operatorname{Sym}(r)$; thus, by Theorem 5.2, $\beta(G / K) \leq r-1$ (and, indeed, $\beta(G / K)=0$ if $r \leq 4$). However, then, $\beta(G) \leq 2 r-1 \leq 2\lfloor n / 5\rfloor-1$ if $r \geq 5, \beta(G) \leq r \leq\lfloor n / 5\rfloor$ otherwise.

Lemma 5.4. Suppose that $G \leq \operatorname{Sym}(n)$ with $n \geq 8$. If G is not soluble, then

$$
e(G) \leq\lfloor n / 2\rfloor+1.533823
$$

Proof. Let $m=\lfloor n / 2\rfloor$. From Theorem 5.1, $d_{2}(G) \leq m$. Since G is not soluble, we must have $\beta(G) \geq 1$. By Lemma $5.3, \beta(G) \leq m-3$;
hence, by Lemma 2.3, $\mu^{*}(G, m) \leq 1 / 4$. From Lemma 2.1 (ii), (iv), $\alpha_{2}(G) \leq m-1$ and $\alpha_{2, u}(G) \leq m-2$ for every $u>1$; hence, by Lemma 2.4, $\mu_{2}(G, m) \leq 1$. If $p \geq 5$, then, by Theorem 5.1,

$$
m-\alpha_{p}(G) \geq m-d_{p}(G) \geq m-\lfloor n / 5\rfloor \geq 3
$$

thus, by Lemma 2.4, $\mu_{p}(G, m) \leq\left(p(p-1)^{2}\right)^{-1}$. Since $n \geq 8$, we have $m-\alpha_{3}(G) \geq m-\lfloor n / 3\rfloor \geq 2$ if $n \neq 9$. On the other hand, it can be easily verified that $\alpha_{3}(G) \leq 2$ for every non-soluble subgroup G of $\operatorname{Sym}(9)$; hence, $m-\alpha_{3}(G) \geq 2$ also when $n=9$. But, then, again by Lemma 2.4, $\mu_{3}(G, m) \leq 1 / 4$. It follows that

$$
\begin{aligned}
e(G) & \leq m+\mu^{*}(G, m)+\mu_{2}(G, m)+\mu_{3}(G, m)+\sum_{p>3} \mu_{p}(G, m) \\
& \leq m+\frac{1}{4}+1+\frac{1}{4}+\sum_{p \geq 5} \frac{1}{p(p-1)^{2}} \leq m+\frac{3}{2}+\sum_{n \geq 5} \frac{1}{n(n-1)^{2}} \\
& \leq m+1.533823
\end{aligned}
$$

Lemma 5.5. Suppose that $G \leq \operatorname{Sym}(n)$ with $n \geq 8$. If G is soluble and $\alpha_{2,1}(G)<\lfloor n / 2\rfloor$, then

$$
e(G) \leq\lfloor n / 2\rfloor+1.533823
$$

Proof. Let $\alpha=\alpha_{2,1}(G), \alpha^{*}=\sum_{i>1} \alpha_{2, i}(G)$ and $m=\lfloor n / 2\rfloor$. Note that $\alpha^{*} \leq m-1$ by Lemma 2.1 (iv). Set

$$
\mu_{2,1}(G, t)=\sum_{k \geq t} \frac{m_{2}^{A}(G)}{2^{k}}, \quad \mu_{2,2}(G, t)=\sum_{k \geq t}\left(\sum_{n \geq 2} \frac{m_{2^{n}}^{A}(G)}{2^{n k}}\right)
$$

We distinguish two cases:
Case (1). $\alpha_{2, u}(G)<m-1$ for every $u \geq 2$. Since $m_{2}^{A}(G)=2^{\alpha}-1$, we have

$$
\mu_{2,1}(G, m) \leq \sum_{k \geq m} \frac{2^{\alpha}}{2^{k}}=\frac{1}{2^{m-\alpha-1}} \leq 1
$$

Moreover, arguing as in the proof of [12, Lemma 7], we deduce that

$$
\mu_{2,2}(G, m) \leq \frac{1}{2^{m-\alpha^{*}-1}} \leq 1
$$

Note that, if $\alpha=m-1$, then $\alpha^{*} \leq 1$, and consequently, $\mu_{2,2}(G, m) \leq$ $2^{2-m} \leq 1 / 4$. Similarly, if $\alpha^{*}=m-1$, then $\alpha \leq 1$ and $\mu_{2,1}(G, m) \leq$
$2^{2-m} \leq 1 / 4$. If follows that

$$
\mu_{2}(G, m)=\mu_{2,1}(G, m)+\mu_{2,2}(G, m) \leq 5 / 4
$$

Except for the case when $n=9$ and $\alpha_{3}(G)=3$, arguing as near the end of the proof of Lemma 5.4, we conclude that

$$
\begin{aligned}
e(G) & \leq m+\mu_{2}(G, m)+\mu_{3}(G, m)+\sum_{p>3} \mu_{p}(G, m) \\
& \leq m+\frac{5}{4}+\frac{1}{4}+\sum_{p \geq 5} \frac{1}{p(p-1)^{2}} \leq m+1.533823 .
\end{aligned}
$$

It remains to deal with the case when G is a soluble subgroup of $\operatorname{Sym}(9)$ with $\alpha_{3}(G)=3$. This occurs only if G is contained in the wreath product $\operatorname{Sym}(3) 2 \operatorname{Sym}(3)$. In particular, $\alpha_{2}(G) \leq 3$. If $\alpha_{2}(G) \leq 2$, then, by Lemma 2.4,

$$
e(G) \leq 5+\mu_{2}(G, 5)+\mu_{3}(G, 5) \leq 5+1 / 4+1 / 4=5.5
$$

We have $\alpha_{2}(G)=\alpha_{3}(G)=3$ only in two cases: $\operatorname{Sym}(3) \times \operatorname{Sym}(3) \times$ Sym 3 and $\langle(1,2,3),(4,5,6),(1,4)(2,5)(3,6),(1,2)(4,5)\rangle \times \operatorname{Sym}(3)$. In these two cases, G contains exactly 16 maximal subgroups, 7 of index 2 and 9 of index 3 . But, then,

$$
\begin{aligned}
e(G) & \leq 4+\sum_{k \geq 4} \frac{m_{2}(G)}{2^{k}}+\sum_{k \geq 4} \frac{m_{3}(G)}{3^{k}} \\
& =4+\sum_{k \geq 4} \frac{7}{2^{k}}+\sum_{k \geq 4} \frac{9}{3^{k}} \\
& =4+\frac{7}{8}+\frac{1}{6} \sim 5.041667
\end{aligned}
$$

Case (2). $\alpha_{2, u}(G)=m-1$ for some $u \geq 2$. In this case, $m_{2}^{A}(G) \leq 1$; so,

$$
\mu_{2,1}(G, m+1) \leq \sum_{k \geq m+1} \frac{1}{2^{k}}=\frac{1}{2^{m}} \leq \frac{1}{16}
$$

Moreover, by [12, Lemma 5], $m_{2^{u}}^{A}(G) \leq 2^{u \alpha_{2, t}(G)+u}$, which yields:

$$
\mu_{2,2}(G, m+1)=\sum_{k \geq m+1}\left(\sum_{n \geq 2} \frac{m_{2^{n}}^{A}(G)}{2^{n k}}\right)
$$

$$
\begin{aligned}
& =\sum_{k \geq m+1} \frac{m_{2^{u}}^{A}(G)}{2^{u k}} \leq \sum_{k \geq m+1} \frac{2^{u \alpha_{2, t}(G)+u}}{2^{u k}} \\
& \leq \sum_{k \geq m+1} \frac{2^{u m}}{2^{u k}}=\frac{1}{2^{u}-1} \leq \frac{1}{3}
\end{aligned}
$$

If $p \geq 5$, then $m-\alpha_{p}(G) \geq 3$; thus, by Lemma 2.4, $\mu_{p}(G, m+1) \leq$ $(p(p-1))^{-2}$. Moreover, $m-\alpha_{3}(G) \geq 2$ (note that there is no subgroup of $\operatorname{Sym}(9)$ with $\alpha_{3}(G)=3$ and $\alpha_{2, u}(G)=3$ for some $\left.u \geq 2\right)$. Therefore, again by Lemma $2.4, \mu_{3}(G, m+1) \leq 1 / 12$. It follows that

$$
\begin{aligned}
e(G) \leq & m+1+\mu_{2,1}(G, m+1)+\mu_{2,2}(G, m+1) \\
& +\mu_{3}(G, m+1)+\sum_{p>3} \mu_{p}(G, m+1) \\
\leq & m+1+\frac{1}{16}+\frac{1}{3}+\frac{1}{12}+\sum_{p \geq 5} \frac{1}{p^{2}(p-1)^{2}} \\
\leq & m+71 / 48+\sum_{n \geq 5} \frac{1}{n^{2}(n-1)^{2}} \leq m+1.484316 .
\end{aligned}
$$

When $G \leq \operatorname{Sym}(n)$ and $n \leq 7$, the precise value of $e(G)$ can be computed by GAP [3] using the formula

$$
e(G)=-\sum_{H<G} \frac{\mu_{G}(H)|G|}{|G|-|H|},
$$

where μ_{G} is the Möbius function defined on the subgroup lattice of G (see [11, Theorem 1]). The crucial information is contained in the next lemma.

Lemma 5.6. Suppose that $G \leq \operatorname{Sym}(n)$ with $n \leq 7$. Either $e(G) \leq$ $\lfloor n / 2\rfloor+1$, or one of the following cases occurs:
(1) $G \cong \operatorname{Sym}(3), n=3, e(G)=29 / 10$;
(2) $G \cong C_{2} \times C_{2}, n=4, e(G)=10 / 3$;
(3) $G \cong D_{8}, n=4, e(G)=10 / 3$;
(4) $G \cong C_{2} \times \operatorname{Sym}(3), n=5, e(G)=1181 / 330$;
(5) $G \cong C_{2} \times C_{2} \times C_{2}, n=6, e(G)=94 / 21$;
(6) $G \cong C_{2} \times D_{8}, n=6, e(G)=94 / 21$;
(7) $G \cong C_{2} \times C_{2} \times \operatorname{Sym}(3), n=7, e(G)=241789 / 53130$;
(8) $G \cong D_{8} \times \operatorname{Sym}(3), n=7, e(G)=241789 / 53130$.

Theorem 5.7. Let G be a permutation group of degree $n \neq 3$. If $\alpha_{2,1}(G)=\lfloor n / 2\rfloor$, then $e(G) \leq\lfloor n / 2\rfloor+\nu$, with $\nu \sim 1.606695$.

Proof. Let $m=\lfloor n / 2\rfloor$. We have that $\alpha_{2,1}(G)=m$ if and only if C_{2}^{m} is an epimorphic image of G. If C_{2}^{m} is an epimorphic image of G, then, by [$\mathbf{7}$, main theorem], the group G is the direct product of its transitive constituents, and each constituent is one of the following: $\operatorname{Sym}(2)$ of degree 2, $\operatorname{Sym}(3)$ of degree $3, C_{2} \times C_{2}$ and D_{8} of degree 4, and the central product $D_{8} \circ D_{8}$ of degree 8 . Consequently:

$$
G / \operatorname{Frat}(G) \simeq \begin{cases}C_{2}^{m} & \text { if } n=2 m \\ C_{2}^{m-1} \times \operatorname{Sym}(3) & \text { if } n=2 m+1\end{cases}
$$

Therefore, by (2.3),

$$
P_{G}(k)=P_{G / \operatorname{Frat}(G)}(k)=\prod_{0 \leq i \leq m-1}\left(1-\frac{2^{i}}{2^{k}}\right)\left(1-\frac{3}{3^{k}}\right)^{n-2 m} .
$$

Setting $\eta=0$ if n is even, and $\eta=1$ otherwise, we have

$$
\begin{aligned}
e(G) & =\sum_{k \geq 0}\left(1-P_{G}(k)\right) \leq \sum_{k \geq 0}\left(1-\prod_{0 \leq i \leq m-1}\left(1-\frac{2^{i}}{2^{k}}\right)\left(1-\frac{3}{3^{k}}\right)^{\eta}\right) \\
& =m+\sum_{k \geq m}\left(1-\prod_{0 \leq i \leq m-1}\left(1-\frac{2^{i}}{2^{k}}\right)\left(1-\frac{3}{3^{k}}\right)^{\eta}\right) \\
& =m+\sum_{j \geq 0}\left(1-\prod_{1 \leq l \leq m}\left(1-\frac{1}{2^{j+l}}\right)\left(1-\frac{3}{3^{j+m}}\right)^{\eta}\right) .
\end{aligned}
$$

Set

$$
\omega_{m, \eta}=\sum_{j \geq 0}\left(1-\prod_{1 \leq l \leq m}\left(1-\frac{1}{2^{j+l}}\right)\left(1-\frac{3}{3^{j+m}}\right)^{\eta}\right)
$$

Clearly, $\omega_{m, 0}$ increase with m. On the other hand, if $m \geq 4$ and $j \geq 0$, then

$$
\left(1-\frac{1}{2^{j+m+1}}\right)\left(1-\frac{3}{3^{j+m+1}}\right) \leq\left(1-\frac{3}{3^{j+m}}\right)
$$

and thus, $\omega_{m, 1} \leq \omega_{m+1,1}$ if $m \geq 4$. Moreover,

$$
\lim _{m \rightarrow \infty} \omega_{m, 1}=\lim _{m \rightarrow \infty} \omega_{m, 0} \sim 1.606695
$$

Then, $e(G) \leq m+1.606695$ whenever $m \geq 4$. The values of $e(G)$ when n is small are given in the following table (which also indicates how fast $e(G)-m$ tends to 1.606695).

TABLE 1.

n	$e(G)$	n	$e(G)$
2	2	9	$\frac{4633553}{832370} \sim 5.566699$
3	$\frac{29}{10}=2.900000$	10	$\frac{7134}{1085} \sim 6.575115$
4	$\frac{10}{3} \sim 3.333334$	11	$\frac{3227369181}{490265930} \sim 6.582895$
5	$\frac{1181}{330} \sim 3.578788$	12	$\frac{74126}{9765} \sim 7.590988$
6	$\frac{94}{21} \sim 4.476191$	13	$\frac{6399598043131}{842767133670} \sim 7.593554$
7	$\frac{241789}{53130} \sim 4.550894$	14	$\frac{10663922}{1240155} \sim 8.598862$
8	$\frac{194}{35} \sim 5.542857$	15	$\frac{70505670417749503}{8198607229768494} \sim 8.599713$

From the information contained in Table 1, we deduce that $e(G) \leq$ $m+1.606695$, except when $G=\operatorname{Sym}(3)$.

REFERENCES

1. H. Cohen, High precision computation of Hardy-Littlewood constants, preprint, https://www.math.u-bordeaux.fr/ $\sim_{\text {hecohen/. }}$
2. D. Easdown and C. Praeger, On minimal faithful permutation representations of finite groups, Bull. Australian Math. Soc. 38 (1988), 207-220.
3. The GAP Group, GAP-Groups, algorithms, and programming, version 4.7.7, http://www.gap-system.org (2015).
4. W. Gaschütz, Die Eulersche Funktion endlicher auflösbarer Gruppen, Illinois J. Math. 3 (1959), 469-476.
5. R. Guralnick, On the number of generators of a finite group, Arch. Math. 53 (1989), 521-523.
6. D. Holt, Representing quotients of permutation groups, Quart. J. Math. Oxford 48 (1997), 347-350.
7. L.G. Kovács and C.E. Praeger, Finite permutation groups with large abelian quotients, Pacific J. Math. 136 (1989), 283-292.
8. A. Lubotzky, The expected number of random elements to generate a finite group, J. Algebra 257 (2002), 452-495.
9. A. Lubotzky and D. Segal, Subgroup growth, Progr. Math. 212 (2003).
10. A. Lucchini, A bound on the number of generators of a finite group, Arch. Math. 53 (1989), 313-317.
11. \qquad The expected number of random elements to generate a finite group, Monatsh. Math. 181 (2016), 123-142.
12. \qquad , A bound on the expected number of random elements to generate a finite group all of whose Sylow subgroups are d-generated, Arch. Math. 107 (2016), 1-8.
13. N.E. Menezes, Random generation and chief length of finite groups, Ph.D. dissertation, http://hdl.handle.net/10023/3578.
14. The PARI Group, PARI/GP version 2.9.0, University of Bordeaux, 2016, http://pari.math.u-bordeaux.fr/.
15. C. Pomerance, The expected number of random elements to generate a finite abelian group, Period. Math. Hungar. 43 (2001), 191-198.
16. D. Robinson, A course in the theory of groups, Grad. Texts Math. 80 (1993).

Università degli Studi di Padova, Dipartimento di Matematica, "Tullio Levi-Civita," Italy
Email address: lucchini@math.unipd.it
Università degli Studi di Padova, Dipartimento di Matematica, "Tullio Levi-Civita," Italy
Email address: moscatie@math.unipd.it, mariapia.moscatiello@gmail.com

[^0]: 2010 AMS Mathematics subject classification. Primary 20 P 05.
 Keywords and phrases. Groups generation, waiting time, Sylow subgroups, permutation groups.

 Received by the editors on July 22, 2017, and in revised form on February 13, 2018.

