THE EXPECTED NUMBER OF ELEMENTS TO GENERATE A FINITE GROUP WITH *d*-GENERATED SYLOW SUBGROUPS

ANDREA LUCCHINI AND MARIAPIA MOSCATIELLO

ABSTRACT. Given a finite group G, let e(G) be the expected number of elements of G which have to be drawn at random, with replacement, before a set of generators is found. If all of the Sylow subgroups of G can be generated by d elements, then $e(G) \leq d + \kappa$, where κ is an absolute constant that is explicitly described in terms of the Riemann zeta function and is the best possible in this context. Approximately, κ equals 2.752394. If G is a permutation group of degree n, then either G = Sym(3) and e(G) = 2.9 or $e(G) \leq \lfloor n/2 \rfloor + \kappa^*$ with $\kappa^* \sim 1.606695$. These results improve weaker bounds recently obtained by Lucchini.

1. Introduction. In 1989, Guralnick [5] and the first author [10] independently proved that, if all of the Sylow subgroups of a finite group G can be generated by d elements, then the group G itself can be generated by d+1 elements. A probabilistic version of this result was obtained in [12]. Let G be a nontrivial finite group, and let $x = (x_n)_{n \in \mathbb{N}}$ be a sequence of independent, uniformly distributed G-valued random variables. We may define a random variable τ_G by

$$\tau_G = \min\{n \ge 1 \mid \langle x_1, \dots, x_n \rangle = G\}.$$

We denote by e(G) the expectation $E(\tau_G)$ of this random variable: e(G) is the expected number of elements of G which have to be drawn at random, with replacement, before a set of generators is found. In [12], it was proven that, if all of the Sylow subgroups of G can be generated by d elements, then $e(G) \leq d + \eta$ with $\eta \sim 2.875065$. This bound is not too distant from being the best possible. Indeed, in [15], Pomerance proved that, if Ω_d is the set of all the d-generated finite abelian groups,

²⁰¹⁰ AMS Mathematics subject classification. Primary 20P05.

Keywords and phrases. Groups generation, waiting time, Sylow subgroups, permutation groups.

Received by the editors on July 22, 2017, and in revised form on February 13, 2018.

DOI:10.1216/RMJ-2018-48-6-1963 Copyright ©2018 Rocky Mountain Mathematics Consortium

then

$$\sup_{G \in \Omega_d} e(G) = d + \sigma, \quad \text{where } \sigma \sim 2.118457.$$

However, the bound $e(G) \leq d + \eta$ is approximative, and it may be interesting to find a best possible estimation for e(G). We give an exhaustive answer to this question, proving the next result.

Theorem 1.1. Let G be a finite group. If all of the Sylow subgroups of G can be generated by d elements, then $e(G) \leq d + \kappa$, where κ is an absolute constant that is explicitly described in terms of the Riemann zeta function and is the best possible in this context. Approximately, κ equals 2.752394.

This bound can further be improved under some additional assumptions on G. For example, we prove that, if all the Sylow subgroups of G can be generated by d elements and G is not soluble, then $e(G) \leq d + 2.750065$ (Proposition 3.1). A stronger result holds if |G| is odd.

Theorem 1.2. Let G be a finite group of odd order. If all the Sylow subgroups of G can be generated by d elements, then $e(G) \leq d + \tilde{\kappa}$, with $\tilde{\kappa} \sim 2.148668.$

In this case, the constant $\tilde{\kappa}$ is probably not the best possible. In particular, as suggested by the proof of Theorem 1.2, a precise estimate would require a complete knowledge of the distribution of the Fermat primes.

If G is a p-subgroup of Sym(n), then G can be generated by |n/p|elements (see [7]); thus, Theorem 1.1 has the following consequence: if G is a permutation group of degree n, then $e(G) \leq |n/2| + \kappa$. However, this bound is not the best possible, and a better result can be obtained:

Corollary 1.3. If G is a permutation group of degree n, then either G = Sym(3) and e(G) = 2.9 or $e(G) \le |n/2| + \kappa^*$ with $\kappa^* \sim 1.606695$.

The number κ^* is the best possible. Let $m = \lfloor n/2 \rfloor$, and set

 $G_n = \operatorname{Sym}(2)^m$

if m is even,

$$G_n = \operatorname{Sym}(2)^{m-1} \times \operatorname{Sym}(3)$$

if m is odd. If $n \geq 8$, then $e(G_n) - m$ increases with n and $\lim_{n\to\infty} e(G) - m = \kappa^*$.

Our proofs implicitly depend on the classification of the finite simple groups. More precisely, the proof of Theorem 1.1 requires a result, proved by Pyber, which states that, for every finite group G and every $n \ge 2$, G has at most n^2 core-free maximal subgroups of index n (this is necessary in the proof of Lemma 2.3), while the proof of Corollary 1.3 uses a bound on the chief length of a permutation group of degree n(see Theorem 5.2).

2. Preliminary results. Let G be a finite group, and use the following notation:

- For a given prime p, $d_p(G)$ is the smallest cardinality of a generating set of a Sylow p-subgroup of G.
- For a given prime p and a positive integer t, $\alpha_{p,t}(G)$ is the number of complemented factors of order p^t in a chief series of G.
- For a given prime p, $\alpha_p(G) = \sum_t \alpha_{p,t}(G)$ is the number of complemented factors of p-power order in a chief series of G.
- $\beta(G)$ is the number of nonabelian factors in a chief series of G.

Lemma 2.1. For every finite group G, we have:

(i) $\alpha_p(G) \le d_p(G)$. (ii) $\alpha_2(G) + \beta(G) \le d_2(G)$. (iii) If $\beta(G) \ne 0$, then $\beta(G) \le d_2(G) - 1$. (iv) If $\alpha_{2,1}(G) = 0$, then $\alpha_2(G) + \beta(G) \le d_2(G) - 1$. (v) If $\alpha_{p,1}(G) = 0$, then $\alpha_p(G) \le d_p(G) - 1$.

Proof. (i), (ii) and (iii) are proven in [12, Lemma 4]. Now, assume that no complemented chief factor of G has order 2, and let $r = \alpha_2(G) + \beta(G)$. There exists a sequence

$$X_r \le Y_r \le \dots \le X_1 \le Y_1$$

of normal subgroups of G such that, for every $1 \leq i \leq r$, Y_i/X_i is a complemented chief factor of G of even order. Note that $\beta(G/Y_1) =$

 $\alpha_2(G/Y_1) = 0$; hence, G/Y_1 is a finite soluble group, all of whose complemented chief factors have odd order, but, then, G/Y_1 has odd order, and consequently, $d_2(G) = d_2(Y_1)$. Moreover, as in the proof of [12, Lemma 4],

$$d_2(Y_1) \ge d_2(Y_1/X_1) + r - 1.$$

Since $|Y_1/X_1| \neq 2$ and the Sylow 2-subgroups of a finite nonabelian simple group cannot be cyclic [16, 10.1.9], we deduce $d_2(Y_1/X_1) \geq 2$, and consequently, $d_2(G) = d_2(Y_1) \geq r+1$. This proves (iv). The proof of (v) is similar.

Recall (see [12, (1.1)] for more details) that

(2.1)
$$e(G) = \sum_{n \ge 0} (1 - P_G(n)),$$

where

$$P_G(n) = \frac{|\{(g_1, \dots, g_n) \in G^n \mid \langle g_1, \dots, g_n \rangle = G\}|}{|G|^n}$$

is the probability that n randomly chosen elements of G generate G. Denote by $m_n(G)$ the number of index n maximal subgroups of G. We have (see [9, 11.6]):

(2.2)
$$1 - P_G(k) \le \sum_{n \ge 2} \frac{m_n(G)}{n^k}$$

Using the notation introduced in [8, Section 2], we say that a maximal subgroup M of G is of type A if $\operatorname{soc}(G/\operatorname{Core}_G(M))$ is abelian, of type B otherwise, and we denote by $m_n^A(G)$ (respectively, $m_n^B(G)$) the number of maximal subgroups of G of type A (respectively, B) of index n. Denote the set of the prime divisors of |G| by $\pi(G)$. Given $t \in \mathbb{N}$ and $p \in \pi(G)$, define

$$\mu^*(G,t) = \sum_{k \ge t} \bigg(\sum_{n \ge 5} \frac{m_n^B(G)}{n^k} \bigg),$$
$$\mu_p(G,t) = \sum_{k \ge t} \bigg(\sum_{n \ge 1} \frac{m_p^A(G)}{p^{nk}} \bigg).$$

Lemma 2.2. Let $t \in \mathbb{N}$. Then,

$$e(G) \le t + \mu^*(G, t) + \sum_{p \in \pi(G)} \mu_p(G, t).$$

Proof. By (2.1) and (2.2),

$$e(G) \le t + \sum_{n \ge t} (1 - P_G(n)) \le t + \sum_{k \ge t} \left(\sum_{n \ge 2} \frac{m_n(G)}{n^k}\right). \qquad \Box$$

Lemma 2.3. Let $t \in \mathbb{N}$. If $\beta(G) = 0$, then $\mu^*(G, t) = 0$. If $t \ge \beta(G) + 3$, then

$$\mu^*(G,t) \le \frac{\beta(G)(\beta(G)+1)}{2 \cdot 5^{t-4}} \cdot \frac{1}{4}.$$

Proof. The result follows from [12, Lemma 8] and its proof. \Box

Lemma 2.4. Let $t \in \mathbb{N}$ and $p \in \pi(G)$. If $\alpha_p(G) = 0$, then $\mu_p(G, t) = 0$.

- (i) If $\alpha_2(G) \le t 1$ and $\alpha_{2,u}(G) \le t 2$ for every u > 1, then $\mu_2(G, t) \le \frac{1}{2^{t - \alpha_2(G) - 1}}.$
- (ii) Let p be an odd prime. If $\alpha_p(G) \le t-2$, then $\mu_p(G,t) \le \frac{1}{p^{t-\alpha_p(G)-2}} \frac{1}{(p-1)^2}.$

Proof. The result follows from [12, Lemma 7] and its proof. \Box

Let G be a finite soluble group, and let \mathcal{A} be a set of representatives for the irreducible G-modules that are G-isomorphic to some complemented chief factor of G. For every $A \in \mathcal{A}$, let δ_A be the number of complemented factors G-isomorphic to A in a chief series of G,

$$q_A = |\operatorname{End}_G(A)|, \ r_A = \dim_{\operatorname{End}_G(A)}(A),$$

 $\zeta_A = 0$, if A is a trivial G-module, $\zeta_A = 1$, otherwise. Moreover, for every $l \in \mathbb{N}$, let $Q_{A,l}(s)$ be the Dirichlet polynomial, defined by

$$Q_{A,l}(s) = 1 - \frac{q_A^{l+r_A \cdot \zeta_A}}{q_A^{r_A \cdot s}}$$

By [4, Satz 1], for every positive integer k, we have

(2.3)
$$P_G(k) = \prod_{A \in \mathcal{A}} \left(\prod_{0 \le l \le \delta_A - 1} Q_{A,l}(k) \right).$$

For every prime p dividing |G|, let \mathcal{A}_p be the subset of \mathcal{A} consisting of the irreducible G-modules having order a power of p, and let

(2.4)
$$P_{G,p}(k) = \prod_{A \in \mathcal{A}_p} \left(\prod_{0 \le l \le \delta_A - 1} Q_{A,l}(k) \right).$$

Definition 2.5. For every prime p and every positive integer α , let

$$C_{p,\alpha}(s) = \prod_{0 \le i \le \alpha - 1} \left(1 - \frac{p^i}{p^s} \right),$$
$$D_{p,\alpha}(s) = \prod_{1 \le i \le \alpha} \left(1 - \frac{p^i}{p^s} \right).$$

Lemma 2.6. Let G be a finite soluble group and let k be a positive integer.

- (i) If $d_p(G) \leq d$, then $P_{G,p}(k) \geq D_{p,d}(k)$.
- (ii) If p divides |G/G'|, then $P_{G,p}(k) \ge C_{p,d}(k)$.
- (iii) If $\alpha_{p,1}(G) = 0$, then $P_{G,p}(k) \ge C_{p,d}(k)$.
- (iv) If $d_2(G) \le d$, then $P_{G,2}(k) \ge C_{2,d}(k)$.

Proof. Suppose that $\mathcal{A}_p = \{A_1, \ldots, A_t\}$, and let $q_i = q_{A_i}$, $r_i = r_{A_i}$, $\zeta_i = \zeta_{A_i}$ and $\delta_i = \delta_{A_i}$. Recall that

(2.5)
$$P_{G,p}(k) = \prod_{\substack{1 \le i \le t \\ 0 \le l \le \delta_i - 1}} Q_{A_i,l}(k).$$

By Lemma 2.1,

$$\delta_1 + \delta_2 + \dots + \delta_t = \alpha_p(G) \le d_p(G);$$

hence, the number of factors $Q_{A_i,l}(k)$ in (2.5) is at most $d_p(G)$. We order these factors in such a way that $Q_{A_i,u}(k)$ precedes $Q_{A_j,v}(k)$ if either i < j or i = j and u < v. Moreover, we order the elements of \mathcal{A}_p in such a way that A_1 is the trivial *G*-module if *p* divides |G/G'|.

(i) Since $D_{p,d}(k) = 0$, if $k \leq d$, we may take k > d. To show that $P_{G,p}(k) \geq D_{p,d}(k)$, it is sufficient to show that the *j*th factor $Q_j(k) = Q_{A_{i,l}}(k)$ of $P_{G,p}(k)$ is greater than the *j*th factor $D_j(k) = 1 - p^j/p^k$ of $D_{p,d}(k)$. If $j \leq \delta_1$, then $Q_j(k) = Q_{A_{i,l}}(k)$ with l = j - 1. If $j > \delta_1$, then $Q_j(k) = Q_{A_{i,l}}(k)$ for some $i \in \{2, \ldots, t\}$ and $l \in \{0, \ldots, \delta_i - 1\}$; thus,

$$j = \delta_1 + \delta_2 + \dots + \delta_{i-1} + l + 1 \ge l + 2$$

In any case,

$$q_i^{r_i\zeta_i}q_i^l \le q_i^{r_i(l+1)} \le q_i^{r_ij}.$$

We have $q_i = p^{n_i}$ for some $n_i \in \mathbb{N}$. Since $j \leq d < k$, we deduce that

$$\frac{q_i^{r_i\zeta_i}q_i^l}{q_i^{r_ik}} \le \frac{q_i^{r_ij}}{q_i^{r_ik}} = \left(\frac{p^j}{p^k}\right)^{r_in_i} \le \frac{p^j}{p^k}$$

Then,

$$Q_j(k) = 1 - \frac{q_i^{r_i \zeta_i} q_i^l}{q_i^{r_i k}} \ge 1 - \frac{p^j}{p^k} = D_j(k).$$

(ii) Since $C_{p,d}(k) = 0$ if k < d, we may take $k \ge d$. To show that $P_{G,p}(k) \ge C_{p,d}(k)$, it is sufficient to show that the *j*th factor $Q_j(k) = Q_{A_i,l}(k)$ of $P_{G,p}(k)$ is greater than the *j*th factor $C_j(k) = 1 - p^{j-1}/p^k$ of $C_{p,d}(k)$. If i = 1, then, by the way in which we ordered the elements of \mathcal{A}_p , we have $Q_j(k) = C_j(k)$. Otherwise, as we see in the proof of (i), $l+2 \le j$; thus, $r_i\zeta_i + l \le r_i + j - 2 \le r_i(j-1)$. Since $j \le d \le k$, we deduce that

$$\frac{q_i^{r_i\zeta_i}q_i^l}{q_i^{r_ik}} \le \frac{q_i^{r_i(j-1)}}{q_i^{r_ik}} \le \frac{p^{j-1}}{p^k}$$

and

$$Q_j(k) = 1 - \frac{q_i^{r_i \zeta_i} q_i^l}{q_i^{r_i k}} \ge 1 - \frac{p^{j-1}}{p^k} = C_j(k).$$

(iii) Assume that no complemented chief factor of G has order p. By Lemma 2.1 (v), $\alpha_p(G) \leq d_p(G) - 1 \leq d - 1$. But, then, in the factorization of $P_{G,p}(k)$ described in (2.5), the number of factors is at most d-1, and, arguing as in the proof of (i), we conclude that

$$P_{G,p}(k) \ge D_{p,d-1}(k) \ge C_{p,d}(k)$$

(iv) We may assume that $\alpha_2(G) \neq 0$ (otherwise, $P_{G,2}(k) = 1$). Since $\alpha_{2,1}(G) \neq 0$ if and only if 2 divides |G/G'|, the conclusion follows from (ii) and (iii).

3. The main result.

Proposition 3.1. Let G be a finite group. If all of the Sylow subgroups of G can be generated by d elements and G is not soluble, then

$$e(G) \le d + \kappa^*$$
 with $\kappa^* \le 2.750065$.

Proof. Let $\beta = \beta(G)$. Since G is not soluble, $\beta > 0$; hence, by Lemma 2.1 (ii), (iii), we have

$$1 \le \beta \le d_2(G) - 1 \le d - 1$$

and

$$\alpha_2(G) \le d_2(G) - \beta \le d - 1.$$

We distinguish two cases:

Case (a) $\beta < d - 1$. From Lemmas 2.2, 2.3 and 2.4 and, using a rather precise approximation of $\sum_{p} (p-1)^{-2}$ given in [1], we conclude:

$$e(G) \le d + 2 + \mu^*(G, d + 2) + \mu_2(G, d + 2) + \sum_{p>2} \mu_p(G, d + 2)$$
$$\le d + 2 + \frac{1}{20} + \frac{1}{4} + \sum_{p>2} \frac{1}{(p-1)^2} \le d + 2.675065.$$

Case (b) $\beta = d - 1$. By Lemma 2.1 (ii), (iv), either $\alpha_2(G) = 0$ or $\alpha_2(G) = \alpha_{2,1}(G) = 1$. In the first case, $\mu_2(G, d+2) = 0$; in the second case, $m_2^A(G) = 1$, and consequently,

$$\mu_2(G, d+2) = \sum_{k \ge d+2} \frac{m_2^A(G)}{2^k} \le \sum_{k \ge d+2} \frac{1}{2^k} \le \sum_{k \ge 4} \frac{1}{2^k} \le \frac{1}{8}$$

From Lemmas 2.2, 2.3 and 2.4, we conclude:

$$e(G) \le d + 2 + \mu^*(G, d + 2) + \mu_2(G, d + 2) + \sum_{p>2} \mu_p(G, d + 2)$$
$$\le d + 2 + \frac{1}{4} + \frac{1}{8} + \sum_{p>2} \frac{1}{(p-1)^2} \le d + 2.750065.$$

The previous proposition reduces the proof of Theorem 1.1 to the particular case when G is soluble. In order to deal with this case, we shall introduce, for every positive integer d and every set of primes π , a supersoluble group $H_{\pi,d}$, all of whose Sylow subgroups are d-generated and with the property that $e(G) \leq e(H_{\pi,d})$, whenever G is soluble, $\pi(G) \subseteq \pi$ and the Sylow subgroups of G are d-generated.

Definition 3.2. Let π be a finite set of prime numbers with $2 \in \pi$, and let d be a positive integer. We define $H_{\pi,d}$ as the semidirect product of A with $\langle y, z_1, \ldots, z_{d-1} \rangle$, where A is isomorphic to

$$\prod_{p\in\pi\backslash\{2\}}C_p^a$$

and $\langle y, z_1, \ldots, z_{d-1} \rangle$ is isomorphic to C_2^d and acts on A via $x^y = x^{-1}$, $x^{z_i} = x$ for all $x \in A$ and $1 \le i \le d-1$. Thus,

$$H_{\pi,d} \cong \left(\left(\prod_{p \in \pi \setminus \{2\}} C_p^d \right) \rtimes C_2 \right) \times C_2^{d-1}.$$

Theorem 3.3. Let G be a finite soluble group. If all of the Sylow subgroups of G can be generated by d elements, then $e(G) \leq e(H_{\pi,d})$, where $\pi = \pi(G) \cup \{2\}$.

Proof. Let $H = H_{\pi,d}$, $p \in \pi$, $k \in \mathbb{N}$. Let \mathcal{A} be a set of representatives for the irreducible H-modules that are H-isomorphic to some complemented chief factor of H, and let \mathcal{A}_p be the subset of \mathcal{A} consisting of the irreducible H-modules having as order a power of p. For every $p \in \pi$, \mathcal{A}_p contains a unique element \mathcal{A}_p . Moreover, $|\mathcal{A}_p| = p$, $\delta_{\mathcal{A}_p} = d$ and $\zeta_{\mathcal{A}_p} = 1$ if $p \neq 2$, while $\zeta_{\mathcal{A}_2} = 0$. Hence, by (2.4), $P_{H,p}(k) = D_{p,d}(k)$ if $p \neq 2$, while $P_{H,2}(k) = C_{2,d}(k)$. From Lemma 2.6, $P_{G,p}(k) \geq P_{H,p}(k)$ for every $p \in \pi(G)$. This implies

$$P_G(k) = \prod_{p \in \pi(G)} P_{G,p}(k) \ge \prod_{p \in \pi} P_{H,p}(k) = P_H(G),$$

and consequently,

$$e(G) = \sum_{k \ge 0} (1 - P_G(k)) \le \sum_{k \ge 0} (1 - P_H(k)) = e(H).$$

Definition 3.4. Let π be a finite set of prime numbers with $2 \in \pi$, and let d be a positive integer. We set $e_d = \sup_{\pi} e(H_{\pi,d})$ and $\kappa = \sup_d (e_d - d)$.

Let
$$\pi^* = \pi \setminus \{2\}$$
. Since $P_{H_{\pi,d}}(k) = 0$, for all $k \le d$, we have
 $e(H_{\pi,d}) = \sum_{k\ge 0} (1 - P_{H_{\pi,d}}(k)) = d + 1 + \sum_{k\ge d+1} \left(1 - C_{2,d}(k) \prod_{p\in\pi^*} D_{p,d}(k)\right)$
 $= d + 1 + \sum_{k\ge d+1} \left(1 - \prod_{1\le i\le d} \left(1 - \frac{2^{i-1}}{2^k}\right) \prod_{p\in\pi^*} \prod_{1\le i\le d} \left(1 - \frac{p^i}{p^k}\right)\right)$
 $= d + 1 + \sum_{t\ge 0} \left(1 - \prod_{1\le i\le d} \left(1 - \frac{2^{i-1}}{2^{t+(d+1)}}\right) \prod_{p\in\pi^*} \prod_{1\le i\le d} \left(1 - \frac{p^i}{p^{t+(d+1)}}\right)\right).$

We immediately deduce that $e(H_{\pi,d}) - d$ increases as d increases. Moreover, we have

$$e_d - d = \sup_{\pi} (e(H_{\pi,d}) - d)$$

= $1 + \sum_{k \ge d+1} \left(1 - \frac{(1 - 1/2^k)}{(1 - 2^d/2^k)} \prod_p \prod_{1 \le i \le d} \left(1 - \frac{p^i}{p^k} \right) \right).$

For k = d+1, the double product tends to 0, while, for $k \ge d+2$, it tends to $\prod_{1 \le i \le d} \zeta (k-i)^{-1}$, where ζ denotes the Riemann zeta function. Hence, we obtain

$$e_d - d = 2 + \sum_{k \ge d+2} \left(1 - \frac{(1 - 1/2^k)}{(1 - 2^d/2^k)} \prod_{1 \le i \le d} \zeta(k - i)^{-1} \right)$$

= $2 + \sum_{j \ge 1} \left(1 - \frac{(1 - 1/2^{j + (d+1)})}{(1 - 1/2^{j+1})} \prod_{1 \le l \le d} \zeta(j + l)^{-1} \right)$
= $2 + \sum_{j \ge 1} \left(1 - \left(\frac{2^{j+1} - 2^{-d}}{2^{j+1} - 1} \right) \prod_{1 + j \le n \le d+j} \zeta(n)^{-1} \right).$

Let $c = \prod_{2 \le n \le \infty} \zeta(n)^{-1}$. Since $e_d - d$ increases as d grows, we get

$$\kappa = \lim_{d \to \infty} e_d - d$$

= $2 + \left(1 - \left(\frac{2^2}{2^2 - 1}\right)c\right) + \sum_{j \ge 2} \left(1 - \left(\frac{2^{j+1}}{2^{j+1} - 1}\right)c\prod_{2 \le n \le j} \zeta(n)\right)$
= $2 + \left(1 - \frac{4}{3} \cdot c\right) + \sum_{j \ge 2} \left(1 - \left(1 + \frac{1}{2^{j+1} - 1}\right)c\prod_{2 \le n \le j} \zeta(n)\right).$

Using the computer algebra system PARI/GP [14], we obtain

$$\kappa = 2 + \left(1 - \frac{4}{3} \cdot c\right) + \sum_{j \ge 2} \left(1 - \left(1 + \frac{1}{2^{j+1} - 1}\right)c \prod_{2 \le n \le j} \zeta(n)\right) \sim 2.752395.$$

Combining this result with Proposition 3.1 and Theorem 3.3, we obtain the proof of Theorem 1.1.

4. Finite groups of odd order.

Theorem 4.1. Let G be a finite soluble group. There exists a finite supersoluble group H, such that

(i) $\pi(H) = \pi(G)$, (ii) $P_G(k) \ge P_H(k)$ for all $k \in \mathbb{N}$, (iii) $d_p(G) \ge d_p(H)$ for all $p \in \pi(G)$, (iv) $\pi(G/G') \subseteq \pi(H/H')$.

Proof. Let $\pi(G) = \{p_1, \ldots, p_n\}$ with $p_1 \leq \cdots \leq p_n$. For $i \in \{1, \ldots, n\}$, set $\pi_i = \{p_1, \ldots, p_i\}$. We will prove, by induction on i, that, for every $i \in \{1, \ldots, n\}$, there exists a supersoluble group H_i such that $\pi(H_i) = \pi_i$ and, for every $j \leq i$,

- (i) $P_{H_i,p_i}(k) \leq P_{G,p_i}(k)$ for all $k \in \mathbb{N}$;
- (ii) $d_{p_i}(H_i) \leq d_{p_i}(G);$
- (iii) if C_{p_j} is an epimorphic image of G, then C_{p_j} is an epimorphic image of H_i ;
- (iv) $\pi_i \cap \pi(G/G') \subseteq \pi(H_i/H'_i).$

Assume that H_i has been constructed, and set $p = p_{i+1}$ and $d_p = d_p(G)$. We distinguish two different cases: Case (i). Either p divides |G/G'| or G contains no complemented chief factor of order p. We consider the direct product $H_{i+1} = H_i \times C_p^{d_p}$. Clearly,

$$P_{H_{i+1},p_j}(k) = P_{H_i,p_j}(k) \le P_{G,p_j}(k)$$
 if $j \le i$.

Moreover, by Lemma 2.6 (ii), (iii),

$$P_{H_{i+1},p}(k) = C_{p,d_p}(k) \le P_{G,p}(k).$$

Case (ii). p does not divide |G/G'|, but G contains a complemented chief factor which is isomorphic to a nontrivial G-module, say A, of order p. In this case, $G/C_G(A)$ is a nontrivial cyclic group whose order divides p-1. Let q be a prime divisor of $|G/C_G(A)|$ (it must be $q = p_j$ for some $j \leq i$). Since q divides |G/G'|, we have that qdivides also $|H_i/H'_i|$; hence, there exists a normal subgroup N of H_i with $H_i/N \cong C_q$ and a nontrivial action of H_i on C_p with kernel N. We use this action to construct the supersoluble group $H_{i+1} = C_p^{d_p} \rtimes H_i$. Clearly, $P_{H_{i+1},p_j}(k) = P_{H_i,p_j}(k) \leq P_{G,p_j}(k)$ if $j \leq i$. Moreover, by Lemma 2.6 (i), $P_{H_{i+1},p}(k) = D_{p,d_p}(k) \leq P_{G,p}(k)$.

The proof is complete, noting that $H = H_n$ satisfies the requests in the statement.

Proof of Theorem 1.2. Let $\pi = \pi(G)$. From Theorem 4.1, there exists a supersoluble group H such that $\pi(H) = \pi$, $d_p(H) \leq d$ for every $p \in \pi$ and $P_G(k) \geq P_H(k)$ for every $k \in \mathbb{N}$. In particular,

$$e(G) = \sum_{k \ge 0} (1 - P_G(k)) \le \sum_{k \ge 0} (1 - P_H(k)) = e(H).$$

Since H is supersoluble, if A is H-isomorphic to a chief factor of H, then |A| = p for some $p \in \pi$ and $H/C_H(A)$ is a cyclic group of order dividing p-1. If p is a Fermat prime, then $H/C_H(A)$ is a 2-group and, since |H| is odd, we must have $H = C_H(A)$. This implies that, if $p \in \pi$ is a Fermat prime, then $P_{H,p}(k) = C_{p,d_p(H)}(k) \ge C_{p,d}(k)$. For all of the other primes in π , by Lemma 2.6 (i), we have $P_{H,p}(k) \ge D_{p,d}(k)$. Therefore, denoting the set of Fermat primes by Λ and the set of the remaining odd primes by Δ , we obtain

$$P_H(k) = \prod_{p \in \pi} P_{H,p}(k) \ge \prod_{p \in \Lambda} C_{p,d}(k) \prod_{p \in \Delta} D_{p,d}(k).$$

It follows that

$$\begin{split} e(H) &= \sum_{k \ge 0} (1 - P_H(k)) \\ &\leq \sum_{k \ge 0} \left(1 - \prod_{p \in \Lambda} \prod_{1 \le i \le d} \left(1 - \frac{p^{i-1}}{p^k} \right) \prod_{\substack{p \in \Delta \\ p \ne 2}} \prod_{1 \le i \le d} \left(1 - \frac{p^i}{p^k} \right) \right) \\ &= d + 1 + \sum_{k \ge d+1} \left(1 - \prod_{p \in \Lambda} \prod_{1 \le i \le d} \left(1 - \frac{p^{i-1}}{p^k} \right) \prod_{p \in \Delta} \prod_{1 \le i \le d} \left(1 - \frac{p^i}{p^k} \right) \right) \\ &= d + 1 + \sum_{k \ge 0} \left(1 - \prod_{p \in \Lambda} \prod_{1 \le i \le d} \left(1 - \frac{p^{i-1}}{p^{t+(d+1)}} \right) \prod_{p \in \Delta} \prod_{1 \le i \le d} \left(1 - \frac{p^i}{p^{t+(d+1)}} \right) \right). \end{split}$$

Let

$$\widetilde{\kappa}_d = \sum_{t \ge 0} \left(1 - \prod_{p \in \Lambda} \prod_{1 \le i \le d} \left(1 - \frac{p^{i-1}}{p^{t+(d+1)}} \right) \prod_{p \in \Delta} \prod_{1 \le i \le d} \left(1 - \frac{p^i}{p^{t+(d+1)}} \right) \right) + 1.$$

It can easily be verified that $\widetilde{\kappa}_d$ increases as d increases. Let

$$b = \prod_{1 \le n \le \infty} \left(1 - \frac{1}{2^n} \right)^{-1}, \qquad c = \prod_{2 \le n \le \infty} \zeta(n)^{-1},$$

and let $\Lambda^* = \{3, 5, 17, 257, 65537\}$ be the set of the known Fermat primes. Similar computations to those in the final part of Section 3 lead to the conclusion:

$$\begin{aligned} \widetilde{\kappa}_{d} &\leq 3 - \frac{b \cdot c}{2} \prod_{p \in \Lambda} \frac{p^{2}}{p^{2} - 1} \\ &+ \sum_{j \geq 2} \left(1 - b \prod_{1 \leq n \leq j} \left(1 - \frac{1}{2^{n}} \right) \prod_{p \in \Lambda} \left(1 + \frac{1}{p^{j+1} - 1} \right) c \prod_{2 \leq n \leq j} \zeta(n) \right) \\ &\leq 3 - \frac{b \cdot c}{2} \prod_{p \in \Lambda^{*}} \frac{p^{2}}{p^{2} - 1} \\ &+ \sum_{j \geq 2} \left(1 - b \prod_{1 \leq n \leq j} \left(1 - \frac{1}{2^{n}} \right) \prod_{p \in \Lambda^{*}} \left(1 + \frac{1}{p^{j+1} - 1} \right) c \prod_{2 \leq n \leq j} \zeta(n) \right). \end{aligned}$$

Let

$$\begin{split} \widetilde{\kappa} &= 3 - \frac{b \cdot c}{2} \prod_{p \in \Lambda^*} \frac{p^2}{p^2 - 1} \\ &+ \sum_{j \ge 2} \left(1 - b \prod_{1 \le n \le j} \left(1 - \frac{1}{2^n} \right) \prod_{p \in \Lambda^*} \left(1 + \frac{1}{p^{j+1} - 1} \right) c \prod_{2 \le n \le j} \zeta(n) \right). \end{split}$$

With the aid of PARI/GP, we get that $\tilde{\kappa} \sim 2.148668$.

5. Permutation groups.

Theorem 5.1 ([7]). If G is a p-subgroup of Sym(n), then G can be generated by |n/p| elements.

Theorem 5.2 ([13, Theorem 10.0.5]). The chief length of a permutation group of degree n is at most n-1.

Lemma 5.3. If $G \leq \text{Sym}(n)$ and $n \geq 8$, then $\beta(G) \leq \lfloor n/2 \rfloor - 3$.

Proof. Let R(G) be the soluble radical of G. From [6, Theorem 2], G/R(G) has a faithful permutation representation of degree at most n, so we may assume that R(G) = 1. In particular,

$$\operatorname{soc}(G) = S_1 \times \cdots \times S_r,$$

where S_1, \ldots, S_r are nonabelian simple groups and, by [2, Theorem 3.1], $n \ge 5r$. Let

$$K = N_G(S_1) \cap \dots \cap N_G(S_r).$$

We have that $K/\operatorname{soc}(G)$ is soluble and that $G/K \leq \operatorname{Sym}(r)$; thus, by Theorem 5.2, $\beta(G/K) \leq r-1$ (and, indeed, $\beta(G/K) = 0$ if $r \leq 4$). However, then, $\beta(G) \leq 2r - 1 \leq 2\lfloor n/5 \rfloor - 1$ if $r \geq 5$, $\beta(G) \leq r \leq \lfloor n/5 \rfloor$ otherwise. \square

Lemma 5.4. Suppose that $G \leq \text{Sym}(n)$ with $n \geq 8$. If G is not soluble, then

$$e(G) \le \lfloor n/2 \rfloor + 1.533823.$$

Proof. Let $m = \lfloor n/2 \rfloor$. From Theorem 5.1, $d_2(G) \leq m$. Since G is not soluble, we must have $\beta(G) \geq 1$. By Lemma 5.3, $\beta(G) \leq m-3$;

1976

hence, by Lemma 2.3, $\mu^*(G,m) \leq 1/4$. From Lemma 2.1 (ii), (iv), $\alpha_2(G) \leq m-1$ and $\alpha_{2,u}(G) \leq m-2$ for every u > 1; hence, by Lemma 2.4, $\mu_2(G,m) \leq 1$. If $p \geq 5$, then, by Theorem 5.1,

$$m - \alpha_p(G) \ge m - d_p(G) \ge m - \lfloor n/5 \rfloor \ge 3;$$

thus, by Lemma 2.4, $\mu_p(G,m) \leq (p(p-1)^2)^{-1}$. Since $n \geq 8$, we have $m - \alpha_3(G) \geq m - \lfloor n/3 \rfloor \geq 2$ if $n \neq 9$. On the other hand, it can be easily verified that $\alpha_3(G) \leq 2$ for every non-soluble subgroup G of Sym(9); hence, $m - \alpha_3(G) \geq 2$ also when n = 9. But, then, again by Lemma 2.4, $\mu_3(G,m) \leq 1/4$. It follows that

$$\begin{split} e(G) &\leq m + \mu^*(G,m) + \mu_2(G,m) + \mu_3(G,m) + \sum_{p>3} \mu_p(G,m) \\ &\leq m + \frac{1}{4} + 1 + \frac{1}{4} + \sum_{p\geq 5} \frac{1}{p(p-1)^2} \leq m + \frac{3}{2} + \sum_{n\geq 5} \frac{1}{n(n-1)^2} \\ &\leq m + 1.533823. \end{split}$$

Lemma 5.5. Suppose that $G \leq \text{Sym}(n)$ with $n \geq 8$. If G is soluble and $\alpha_{2,1}(G) < \lfloor n/2 \rfloor$, then

$$e(G) \le \lfloor n/2 \rfloor + 1.533823.$$

Proof. Let $\alpha = \alpha_{2,1}(G)$, $\alpha^* = \sum_{i>1} \alpha_{2,i}(G)$ and $m = \lfloor n/2 \rfloor$. Note that $\alpha^* \leq m-1$ by Lemma 2.1 (iv). Set

$$\mu_{2,1}(G,t) = \sum_{k \ge t} \frac{m_2^A(G)}{2^k}, \qquad \mu_{2,2}(G,t) = \sum_{k \ge t} \left(\sum_{n \ge 2} \frac{m_{2^n}^A(G)}{2^{nk}}\right).$$

We distinguish two cases:

Case (1). $\alpha_{2,u}(G) < m-1$ for every $u \ge 2$. Since $m_2^A(G) = 2^{\alpha} - 1$, we have

$$\mu_{2,1}(G,m) \le \sum_{k \ge m} \frac{2^{\alpha}}{2^k} = \frac{1}{2^{m-\alpha-1}} \le 1.$$

Moreover, arguing as in the proof of [12, Lemma 7], we deduce that

$$\mu_{2,2}(G,m) \le \frac{1}{2^{m-\alpha^*-1}} \le 1.$$

Note that, if $\alpha = m - 1$, then $\alpha^* \leq 1$, and consequently, $\mu_{2,2}(G,m) \leq 2^{2-m} \leq 1/4$. Similarly, if $\alpha^* = m - 1$, then $\alpha \leq 1$ and $\mu_{2,1}(G,m) \leq 1$

 $2^{2-m} \leq 1/4$. If follows that

$$\mu_2(G,m) = \mu_{2,1}(G,m) + \mu_{2,2}(G,m) \le 5/4.$$

Except for the case when n = 9 and $\alpha_3(G) = 3$, arguing as near the end of the proof of Lemma 5.4, we conclude that

$$e(G) \le m + \mu_2(G, m) + \mu_3(G, m) + \sum_{p>3} \mu_p(G, m)$$
$$\le m + \frac{5}{4} + \frac{1}{4} + \sum_{p\ge 5} \frac{1}{p(p-1)^2} \le m + 1.533823$$

It remains to deal with the case when G is a soluble subgroup of Sym(9) with $\alpha_3(G) = 3$. This occurs only if G is contained in the wreath product Sym(3) \wr Sym(3). In particular, $\alpha_2(G) \leq 3$. If $\alpha_2(G) \leq 2$, then, by Lemma 2.4,

$$e(G) \le 5 + \mu_2(G,5) + \mu_3(G,5) \le 5 + 1/4 + 1/4 = 5.5.$$

We have $\alpha_2(G) = \alpha_3(G) = 3$ only in two cases: Sym(3) × Sym(3) × Sym 3 and $\langle (1,2,3), (4,5,6), (1,4)(2,5)(3,6), (1,2)(4,5) \rangle \times$ Sym(3). In these two cases, G contains exactly 16 maximal subgroups, 7 of index 2 and 9 of index 3. But, then,

$$e(G) \le 4 + \sum_{k \ge 4} \frac{m_2(G)}{2^k} + \sum_{k \ge 4} \frac{m_3(G)}{3^k}$$
$$= 4 + \sum_{k \ge 4} \frac{7}{2^k} + \sum_{k \ge 4} \frac{9}{3^k}$$
$$= 4 + \frac{7}{8} + \frac{1}{6} \sim 5.041667.$$

Case (2). $\alpha_{2,u}(G) = m-1$ for some $u \ge 2$. In this case, $m_2^A(G) \le 1$; so,

$$\mu_{2,1}(G, m+1) \le \sum_{k \ge m+1} \frac{1}{2^k} = \frac{1}{2^m} \le \frac{1}{16}.$$

Moreover, by [12, Lemma 5], $m_{2^u}^A(G) \leq 2^{u\alpha_{2,t}(G)+u}$, which yields:

$$\mu_{2,2}(G, m+1) = \sum_{k \ge m+1} \left(\sum_{n \ge 2} \frac{m_{2^n}^A(G)}{2^{nk}} \right)$$

$$= \sum_{k \ge m+1} \frac{m_{2^u}^A(G)}{2^{uk}} \le \sum_{k \ge m+1} \frac{2^{u\alpha_{2,t}(G)+u}}{2^{uk}}$$
$$\le \sum_{k \ge m+1} \frac{2^{um}}{2^{uk}} = \frac{1}{2^u - 1} \le \frac{1}{3}.$$

If $p \geq 5$, then $m - \alpha_p(G) \geq 3$; thus, by Lemma 2.4, $\mu_p(G, m+1) \leq (p(p-1))^{-2}$. Moreover, $m - \alpha_3(G) \geq 2$ (note that there is no subgroup of Sym(9) with $\alpha_3(G) = 3$ and $\alpha_{2,u}(G) = 3$ for some $u \geq 2$). Therefore, again by Lemma 2.4, $\mu_3(G, m+1) \leq 1/12$. It follows that

$$\begin{split} e(G) &\leq m+1+\mu_{2,1}(G,m+1)+\mu_{2,2}(G,m+1) \\ &+\mu_3(G,m+1)+\sum_{p>3}\mu_p(G,m+1) \\ &\leq m+1+\frac{1}{16}+\frac{1}{3}+\frac{1}{12}+\sum_{p\geq 5}\frac{1}{p^2(p-1)^2} \\ &\leq m+71/48+\sum_{n\geq 5}\frac{1}{n^2(n-1)^2}\leq m+1.484316. \end{split}$$

When $G \leq \text{Sym}(n)$ and $n \leq 7$, the precise value of e(G) can be computed by GAP [3] using the formula

$$e(G) = -\sum_{H < G} \frac{\mu_G(H)|G|}{|G| - |H|},$$

where μ_G is the Möbius function defined on the subgroup lattice of G (see [11, Theorem 1]). The crucial information is contained in the next lemma.

Lemma 5.6. Suppose that $G \leq \text{Sym}(n)$ with $n \leq 7$. Either $e(G) \leq \lfloor n/2 \rfloor + 1$, or one of the following cases occurs:

- (1) $G \cong \text{Sym}(3), n = 3, e(G) = 29/10;$
- (2) $G \cong C_2 \times C_2, n = 4, e(G) = 10/3;$
- (3) $G \cong D_8, n = 4, e(G) = 10/3;$
- (4) $G \cong C_2 \times \text{Sym}(3), n = 5, e(G) = 1181/330;$
- (5) $G \cong C_2 \times C_2 \times C_2, n = 6, e(G) = 94/21;$
- (6) $G \cong C_2 \times D_8$, n = 6, e(G) = 94/21;
- (7) $G \cong C_2 \times C_2 \times \text{Sym}(3), n = 7, e(G) = 241789/53130;$
- (8) $G \cong D_8 \times \text{Sym}(3), n = 7, e(G) = 241789/53130.$

Theorem 5.7. Let G be a permutation group of degree $n \neq 3$. If $\alpha_{2,1}(G) = \lfloor n/2 \rfloor$, then $e(G) \leq \lfloor n/2 \rfloor + \nu$, with $\nu \sim 1.606695$.

Proof. Let $m = \lfloor n/2 \rfloor$. We have that $\alpha_{2,1}(G) = m$ if and only if C_2^m is an epimorphic image of G. If C_2^m is an epimorphic image of G, then, by [7, main theorem], the group G is the direct product of its transitive constituents, and each constituent is one of the following: Sym(2) of degree 2, Sym(3) of degree 3, $C_2 \times C_2$ and D_8 of degree 4, and the central product $D_8 \circ D_8$ of degree 8. Consequently:

$$G/\operatorname{Frat}(G) \simeq \begin{cases} C_2^m & \text{if } n = 2m, \\ C_2^{m-1} \times \operatorname{Sym}(3) & \text{if } n = 2m+1. \end{cases}$$

Therefore, by (2.3),

$$P_G(k) = P_{G/\operatorname{Frat}(G)}(k) = \prod_{0 \le i \le m-1} \left(1 - \frac{2^i}{2^k}\right) \left(1 - \frac{3}{3^k}\right)^{n-2m}$$

Setting $\eta = 0$ if n is even, and $\eta = 1$ otherwise, we have

$$e(G) = \sum_{k \ge 0} (1 - P_G(k)) \le \sum_{k \ge 0} \left(1 - \prod_{0 \le i \le m-1} \left(1 - \frac{2^i}{2^k} \right) \left(1 - \frac{3}{3^k} \right)^\eta \right)$$

= $m + \sum_{k \ge m} \left(1 - \prod_{0 \le i \le m-1} \left(1 - \frac{2^i}{2^k} \right) \left(1 - \frac{3}{3^k} \right)^\eta \right)$
= $m + \sum_{j \ge 0} \left(1 - \prod_{1 \le l \le m} \left(1 - \frac{1}{2^{j+l}} \right) \left(1 - \frac{3}{3^{j+m}} \right)^\eta \right).$

Set

$$\omega_{m,\eta} = \sum_{j \ge 0} \left(1 - \prod_{1 \le l \le m} \left(1 - \frac{1}{2^{j+l}} \right) \left(1 - \frac{3}{3^{j+m}} \right)^{\eta} \right).$$

Clearly, $\omega_{m,0}$ increase with m. On the other hand, if $m \ge 4$ and $j \ge 0$, then

$$\left(1 - \frac{1}{2^{j+m+1}}\right) \left(1 - \frac{3}{3^{j+m+1}}\right) \le \left(1 - \frac{3}{3^{j+m}}\right)$$

and thus, $\omega_{m,1} \leq \omega_{m+1,1}$ if $m \geq 4$. Moreover,

$$\lim_{m \to \infty} \omega_{m,1} = \lim_{m \to \infty} \omega_{m,0} \sim 1.606695.$$

Then, $e(G) \leq m + 1.606695$ whenever $m \geq 4$. The values of e(G) when n is small are given in the following table (which also indicates how fast e(G) - m tends to 1.606695).

n	e(G)	n	e(G)
2	2	9	$\frac{4633553}{832370} \sim 5.566699$
3	$\frac{29}{10} = 2.900000$	10	$\frac{7134}{1085} \sim 6.575115$
4	$\frac{10}{3} \sim 3.333334$	11	$\frac{3227369181}{490265930} \sim 6.582895$
5	$\frac{1181}{330} \sim 3.578788$	12	$\frac{74126}{9765} \sim 7.590988$
6	$\frac{94}{21} \sim 4.476191$	13	$\frac{6399598043131}{842767133670} \sim 7.593554$
7	$\frac{241789}{53130} \sim 4.550894$	14	$\frac{10663922}{1240155} \sim 8.598862$
8	$\frac{194}{35} \sim 5.542857$	15	$\frac{70505670417749503}{8198607229768494} \sim 8.599713$

TABLE 1.

From the information contained in Table 1, we deduce that $e(G) \leq m + 1.606695$, except when G = Sym(3).

REFERENCES

1. H. Cohen, *High precision computation of Hardy-Littlewood constants*, preprint, https://www.math.u-bordeaux.fr/~hecohen/.

2. D. Easdown and C. Praeger, On minimal faithful permutation representations of finite groups, Bull. Australian Math. Soc. 38 (1988), 207–220.

3. The GAP Group, GAP-*Groups, algorithms, and programming*, version 4.7.7, http://www.gap-system.org (2015).

 W. Gaschütz, Die Eulersche Funktion endlicher auflösbarer Gruppen, Illinois J. Math. 3 (1959), 469–476.

5. R. Guralnick, On the number of generators of a finite group, Arch. Math. 53 (1989), 521–523.

6. D. Holt, Representing quotients of permutation groups, Quart. J. Math. Oxford 48 (1997), 347–350.

7. L.G. Kovács and C.E. Praeger, *Finite permutation groups with large abelian quotients*, Pacific J. Math. **136** (1989), 283-292.

8. A. Lubotzky, The expected number of random elements to generate a finite group, J. Algebra 257 (2002), 452–495.

9. A. Lubotzky and D. Segal, Subgroup growth, Progr. Math. 212 (2003).

10. A. Lucchini, A bound on the number of generators of a finite group, Arch. Math. 53 (1989), 313–317.

11. _____, The expected number of random elements to generate a finite group, Monatsh. Math. **181** (2016), 123-142.

12. _____, A bound on the expected number of random elements to generate a finite group all of whose Sylow subgroups are d-generated, Arch. Math. **107** (2016), 1-8.

13. N.E. Menezes, Random generation and chief length of finite groups, Ph.D. dissertation, http://hdl.handle.net/10023/3578.

14. The PARI Group, *PARI/GP* version 2.9.0, University of Bordeaux, 2016, http://pari.math.u-bordeaux.fr/.

15. C. Pomerance, The expected number of random elements to generate a finite abelian group, Period. Math. Hungar. 43 (2001), 191–198.

16. D. Robinson, A course in the theory of groups, Grad. Texts Math. 80 (1993).

UNIVERSITÀ DEGLI STUDI DI PADOVA, DIPARTIMENTO DI MATEMATICA, "TULLIO LEVI-CIVITA," ITALY

Email address: lucchini@math.unipd.it

Università degli Studi di Padova, Dipartimento di Matematica, "Tullio Levi-Civita," Italy

Email address: moscatie@math.unipd.it, mariapia.moscatiello@gmail.com