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THINNABLE IDEALS AND
INVARIANCE OF CLUSTER POINTS

PAOLO LEONETTI

ABSTRACT. We define a class of so-called thinnable
ideals Z on the positive integers which includes several
well-known examples, e.g., the collection of sets with zero
asymptotic density, sets with zero logarithmic density, and
several summable ideals. Given a sequence (xn) taking
values in a separable metric space and a thinnable ideal Z, it
is shown that the set of Z-cluster points of (z5) is equal to
the set of Z-cluster points of almost all of its subsequences,
in the sense of Lebesgue measure. Lastly, we obtain a
characterization of ideal convergence, which improves the
main result in [15].

1. Introduction. It is well known that the set of ordinary limit
points of “almost every” subsequence of a real sequence (x,,) coincides
with the set of ordinary limit points of the original sequence, in the
sense of Lebesgue measure, see Buck [5]. In the same direction, we
prove its analogue for ideal cluster points.

Towards this aim, let Z be an ideal on the positive integers N, that
is, a family of subsets of N closed under taking finite unions and subsets
of its elements. It is assumed that Z contains the collection Fin of finite
subsets of N, and it is different from the entire power set of N. Note
that the collection of subsets with zero asymptotic

IO::{SQN: lim |Sm[l’”]:o},

n— oo n

is an ideal. Also, let x = (x,) be a sequence taking values in a
topological space X. We denote by T',.(Z) the set of Z-cluster points of
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x, that is, the set of all £ € X such that
{n:z,elU}¢T

for all neighborhoods U of ¢. Statistical cluster points (that is, Zo-
cluster points) of real sequences were introduced by Fridy [8], cf., also
[7, 9, 11]. However, it is worth noting that ideal cluster points have
been studied much before under a different name. Indeed, as it follows
by [11, Theorem 4.2], they correspond to classical “cluster points” of
a filter .# on R (depending upon z), cf., [4, page 69, Definition 2].

As anticipated, the main question addressed here is to find suitable
conditions on X and Z such that the set of Z-cluster points of a
sequence (z,) is equal to the set of Z-cluster points of “almost all”
of its subsequences. Finally, we obtain a characterization of ideal
convergence. Related results were obtained in [1, 6, 15, 16, 17, 18].

2. Thinnability. Given k € N and infinite sets A, B C N with
canonical enumeration {a, : n € N} and {b, : n € N}, respectively,
we write A < B if a,, < b,, for all n € N and define

Ap:={ap:be B} and kA:={ka:a€ A}

Definition 2.1. An ideal 7 is said to be weakly thinnable if Ap ¢ T
whenever A C N admits non-zero asymptotic density and B ¢ Z.

If, in addition, B4 ¢ Z and X ¢ Z whenever X <Y and YV ¢ T,
then 7 is said to be thinnable.

Definition 2.2. An ideal 7 is said to be stretchable if kA ¢ T for all
keNand A¢Z.

The terminology has been suggested from the related properties of
finitely additive measures on N studied in [21]. In this regard, Fin is
thinnable and stretchable.

This is the case of several other ideals:
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Proposition 2.3. Let f: N — (0,00) be a definitively non-increasing
function such that 3, -, f(n) = oco. Define the summable ideal

If::{SQN:Zf(n)<oo}.

nes
Then Iy is thinnable, provided Ly is stretchable.
In addition, suppose that
Zze [1,n] f( )
(2.1) inf —————
n~>oo Z'LE 1,kn] f( )

and define the Erdds-Ulam ideal

#0 forallkeN,

>iesnn /(@) }
Er=<SCN: lim —/———— " = .
s { N S f@

Then, & is thinnable, provided & is stretchable.

Proof. We suppose that A = {a, : n € N} admits asymptotic
density ¢ > 0 and B = {b, : n € N} ¢ Ty, that is, > -, f(bn) = 0.
Define the integer k := |1/c] +1 > 2, and note that Zn;l f(kby) =
by the fact that Z; is stretchable. Then, a, = (1/c)n(1 + 0(1)

n — 0o, which implies

(2.2) > flaw,) = 01) + > f(kby) =

n>1 n>1

ie., Ap ¢ Zy; hence, Z; is weakly thinnable. Moreover, observe that

>oofba) = > flba) =

n=1 mod k n=2 mod k
2.3
(2:3) > S = S fw),
n=0 mod k n=1 mod k

n

and note that the first sum is finite if and only if the last sum is finite.
Since I ¢ Zy, then all of the above sums are infinite, which implies that

Zf(ban)— +Zfbkn = o0,

n>1 n>1
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i.e., By ¢ Z;. Lastly, given infinite sets X, Y C N with X <Y and
X € Iy, we have 3 .y f(y) < > ,cx f(z) < co. Therefore, Iy is
thinnable.

The proof of the second part is similar, where (2.2) is replaced by
> flan,) 20+ Y f(kb).
ay,, <z bp<z/k

Moreover, B ¢ &% implies that kB ¢ & by the hypothesis of strecha-

bility, i.e.,
S st 2o X 10));

bn<z/k i<z/k

due to (2.1), we conclude that

S 1tk £ o X 10

bn<z/k i<z

hence, Ap ¢ &, which shows that & is weakly thinnable. In addition,
we obtain
f(ba1)+"'+f(ban) 0(1)+f(bk)+"'+f(bkn)
JA) + -+ f(ba,) )+ -+ f(brn)
so that By ¢ &, where the last /4 comes from reasoning similar
to (2.3). Finally, given infinite subsets X,Y C N with canonical

enumeration {z, : n € N} and {y, : n € N}, respectively, such that
X <Y and X € &%, the following holds:

Pl b4 Fwn) o fn) 4o+ ()
fO+-+ fl@a) = fA)+-+ fyn)
for all n € N; therefore, Y € &%. O

>

7= 0,

Given a real a > —1, let Z, be the collection of subsets with zero
a-density, that is,

(2.4) To :={SCN:dy(S) =0},
. 7%
where d,(S) = limsup M
n—00 Zie[l,n] ¢

Proposition 2.4. All ideals Z,, are thinnable.
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Proof. If e € [—1, 0], the claim follows from Proposition 2.3 (we omit
the details). Hence, we suppose hereafter that a > 0. Fix infinite sets
X,Y C N with canonical enumerations {z,, : n € N} and {y,, : n € N},
respectively, such that Y ¢ Z,,. Then, there exists an infinite set S such
that |Y N [1,y,]| > Ayy for all n € S, where

1 1/(a+1)
A::1—(1—2d;(y)> > 0.

Indeed, in the opposite case, we would have that

a+1 a+1 ;
a+1 y? < a+1 Z “
n i< Y e (=2 ymn]

<(1-1-N"1+0(1) < ;dZ(Y)

for all sufficiently large n. Since |Y N[1,n]| < |X N[1,n]| for all n, we
conclude that

a+1§:x1*a+1::1*a+1::z

i<n Tn i<AYn Tn 1<ATp

)\a-i—l

for all large n € S, so that X ¢ Z,,.

At this point, fix sets A,B C N with canonical enumerations
{an, : n € N} and {b, : n € N}, respectively, such that A admits
asymptotic densities ¢ > 0 and B ¢ Z,. Also, fix ¢ > 0 sufficiently
small, and note that there exists an ng = ng(e) € N such that

1 1
(—5)n§an§ (—f—e)n
c c

for all n > ng. In particular, it follows that

a+1 > (o) 1/c+5)1’+1b atl <0(1)+ > (i —6>abka).

b'n. k<n

Therefore, setting

o{(t) ()
K:=minq [ —+¢ |- —c >0,
c c



1956 P. LEONETTI

we obtain

dx (A . 1 o
o(4p) = limsup Y Z(abk)

a+1 n—o0o abn k<n

Zlimsupbl;_l(()(l)—l— Z Hb;f‘)

n—oo n

1

— 27 § «

—" hfffolip b, o1 b
d* (B

:KJQ a( )

> 0.
a—+1

This proves that Ag ¢ Z,. Finally, let k£ be an integer greater than
1/c, and note that By < Bgn \ S, for some finite set S. By the
previous observation, it is sufficient to show that Byn ¢ Z,, and this is
straightforward by an analogous argument of (2.3). |

To mention another example, let Z, be the Pélya ideal, i.e., Z, :=
{S C N :p*(S) =0}, where

. SN ins,n|

*(S) = lim lims |7’

Pi(S) s s (1—-s)n

Among other things, the upper Pdlya density p* has been used in a
number of remarkable applications in analysis and economic theory,
see e.g., [13, 14, 19].

Corollary 2.5. The Pélya ideal I, is thinnable.

Proof. The upper Polya density p* is the pointwise limit of the real
net of the upper a-densities d¥ defined in (2.4), see [12, Theorem 4.3].

Fix infinite sets X, Y C N with canonical enumerations {z,, : n € N}
and {y, : n € N}, respectively, such that Y ¢ Z,. Then, there exists
an a > 0 such that d%(Y) > 0 and, due to Proposition 2.4, we obtain
d}(X) > 0 as well. This implies that X ¢ Z,. Other properties can be
similarly shown. O

Lastly, it is worth noting that there exist summable ideals which
are not weakly thinnable; for instance, let Z; be the ideal defined by
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f(2n) =1and f(2n — 1) =0 for all n € N, so that
T;={I CN:IN2N € Fin} .

Set A := N\ {1} and B := 2N. Then, A has asymptotic density 1,
B ¢ I; and Ap = 2N + 1 € Zy. Therefore, Iy is not weakly thinnable.

3. Main results. Consider the natural bijection between the col-
lection of all subsequences (z,,) of (z,) and real numbers w € (0,1]
with non-terminating dyadic expansion

> di(w)2,

i>1

where d;(w) = 1 if ¢ = ny, for some integer k, and d;(w) = 0 otherwise,
cf., [3, Appendix A31], [15]. Accordingly, for each w € (0, 1], denote
by z | w the subsequence of (z,) obtained by omitting x; if and only

Moreover, let A : .# — R denote the Lebesgue measure, where .#
stands for the completion of the Borel o-algebra on (0,1]. Our main
result follows:

Theorem 3.1. Let T be a thinnable ideal and (xz,) a sequence taking
values in a first countable space X where all closed sets are separable.
Then:

A{w € (0,1]: T, (Z) =Ty (@)}) = 1.

Proof. Let Q be the set of normal numbers, that is,
(3.1) Q= € (0,1] : lim lid( )*1

. =w , .nimni:1zw72.
It follows from Borel’s normal number theorem [3, Theorem 1.2] that
Qe A and A\(Q) = 1. Then, it is claimed that
(3.2) Ip1w(Z) CTR(Z) for allw e Q.

Towards this aim, fix w € €2, and denote by (x,, ) the subsequence x | w.
Let us suppose, for the sake of contradiction, that I'y,(Z) \ Tx(Z) # 0
and fix a point ¢ therein. Then, the set of indices {ny : k¥ € N} has
asymptotic density 1/2 and, for each neighborhood U of ¢, it holds that
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{k : xn, € U} ¢ Z. This implies that
{n:z, €U} {np:ap, €U} ¢TI,

by the hypothesis that Z is, in particular, weakly thinnable. Therefore,
{n :x, € U} ¢ I, which is a contradiction since ¢ would also be a
Z-cluster point of x. This proves (3.2).

To complete the proof, it is sufficient to show that
(3.3) A{w € (0,1]:T,(Z) CTy(@)}) = 1.

This is clear if I',(Z) is empty. Otherwise, note that I';(Z) is closed
by [11, Lemma 3.1(iv)]; hence, there exists a non-empty countable
dense subset L. Fix £ € L, and let (U,,) be a decreasing local base of
neighborhoods at £. Also fix m € N, and define I := {n : =, € Uy},
which does not belong to Z; in particular, I is infinite, and we let
{in : n € N} be its enumeration. Again, by Borel’s normal number
theorem,

e 1
o, U,,) = {w €(0,1]: lim ﬁ;dij (w) = 2}

belongs to .# and has Lebesgue measure 1. Fix w in the above
set, and denote by (x,,) the subsequence x | w. Hence, the set
J = {n i, € {nk : k € N}} admits asymptotic density 1/2 and,
by the thinnability of Z, we obtain I; ¢ Z. Lastly, note that

{kian, €Unf=_{k:ing €I} <{ng:np€l} =1,

Therefore, {k : z,, € Up} ¢ Z. In addition, ©(¢) := (1,,~, ©(4, Uy,)
belongs to .# and has Lebesgue measure 1. This implies that

A{w e (0,1]: £ € Ty (D)}) = 1.

(Also, see [20, Theorem 1] for the case Z = Fin.) At this point, since
L is countable, we get AM({w € (0,1] : L C I'y1(Z)}) = 1. Claim (3.3)
follows from the fact that 'y}, (Z) is also closed by [11, Lemma 3.1(iv)],
so that each of these I'; 1, (Z) contains the closure of L, i.e.,, I'x(Z). O

Note added in proof. It turns out that the topological analogue
of Theorem 3.1 is quite different, providing a non-analogue between
measure and category. Indeed, it has been shown [10] that, if x is
a sequence in a separable metric space, then {w € (0,1] : T'y(Zp) =
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T1w(Zo)} is not a first Baire category set if and only if every ordinary
limit point of z is also a statistical cluster point of z, that is, I, (Fin) =
ry (IO)

Remark 3.2. Separable metric spaces X satisfy the hypotheses of
Theorem 3.1. Indeed, X is first countable, and every closed subset F'
of X is separable. In order to prove the latter, let A be a countable
dense subset of X, and note that

F :={B(a,r)NF:ac A0<recQ}\ {0}

is a base for F', where B(a,r) is the open ball with center a and radius 7.
Then, a set where one point is chosen for every set in .% is a countable
dense subset of F.

As a consequence of Proposition 2.4, Theorem 3.1 and Remark 3.2,
we obtain:

Corollary 3.3. Let x be a sequence taking values in a separable metric
space. Then, the set of statistical cluster points of x is equal to the set
of statistical cluster points of almost all its subsequences (in the sense
of Lebesgue measure).

Similarly, setting Z = Fin, we recover Buck’s result [5]:

Corollary 3.4. Let x be a sequence taking values in a separable metric
space. Then, the set of ordinary limit points of x is equal to the set of
ordinary limit points of almost all of its subsequences (in the sense of
Lebesgue measure).

Lastly, we recall that a sequence z = (z,,) taking values in topologi-
cal space X converges (with respect to an ideal 7) to £ € X, shortened
as x —7 0, if

{n:z,¢U}eT

for all neighborhoods U of ¢. In this regard, Miller [15, Theorem 3]
proved that a real sequence x statistically converges to ¢, i.e., x —1, ¢,
if and only if almost all of its sequences statistically converge to £.
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This is extended in the following result. Here, we say that an ideal Z
is invariant if, for each A C N with positive asymptotic density, Ap ¢ 7
holds if and only if B ¢ Z (in particular, Z is weakly thinnable). This
condition is strictly related with the so-called “property (G)” defined
in [2].
Theorem 3.5. Let Z be an invariant ideal and x a sequence taking
values in a topological space. Then, x — 7 £ if and only if

A{we (0,1] iz [w =7 £}) = 1.

Proof. First, we suppose that x —7 ¢, and let U be a neighborhood
of £. Let Q be set of normal numbers defined in (3.1), fix w € Q, and
denote by (z,, ) the subsequence x | w. Then, I :={n:z, ¢ U} € Z,
and A := {ny : k € N} has asymptotic density 1/2. Define B := {k :
T, ¢ U} = {k:np € I}. Since T is, in particular, weakly thinnable
and Agp = {ng : &, ¢ U} € Z, it follows that B € Z, i.e., | w =1 L.

Conversely, note that A(Q2 N (1 — 2)) = 1. Hence, there exists an
w € Qsuch that z [ w —7z fand z | (1 —w) —7 £. It easily follows that
x —7 £. Indeed, denoting by (z,,) and (z,,,.) the subsequences z | w
and z [ (1 —w), respectively, we have that, for each neighborhood U of
¢, the following hold: {k:z,, ¢ U} € Z and {r: x,,, ¢ U} € Z. Since
{nk : k € N} and {m, : r € N} form a partition of N, then

{n:az, ¢Uy={np:axn, ¢U}U{m, 2, ¢U}.
The claim follows from the hypothesis that Z is invariant. (]

It is impossible to extend Theorem 3.5 on the class of all ideals:
indeed, it has been shown [2, Example 2] that there exist an ideal
Z and a real sequence x such that x —7 ¢ and, on the other hand,
A{we (0,1]: 2 | w—zL£}) =0.
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