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THINNABLE IDEALS AND
INVARIANCE OF CLUSTER POINTS

PAOLO LEONETTI

ABSTRACT. We define a class of so-called thinnable
ideals I on the positive integers which includes several
well-known examples, e.g., the collection of sets with zero
asymptotic density, sets with zero logarithmic density, and
several summable ideals. Given a sequence (xn) taking
values in a separable metric space and a thinnable ideal I, it
is shown that the set of I-cluster points of (xn) is equal to
the set of I-cluster points of almost all of its subsequences,
in the sense of Lebesgue measure. Lastly, we obtain a
characterization of ideal convergence, which improves the
main result in [15].

1. Introduction. It is well known that the set of ordinary limit
points of “almost every” subsequence of a real sequence (xn) coincides
with the set of ordinary limit points of the original sequence, in the
sense of Lebesgue measure, see Buck [5]. In the same direction, we
prove its analogue for ideal cluster points.

Towards this aim, let I be an ideal on the positive integers N, that
is, a family of subsets of N closed under taking finite unions and subsets
of its elements. It is assumed that I contains the collection Fin of finite
subsets of N, and it is different from the entire power set of N. Note
that the collection of subsets with zero asymptotic

I0 :=

{
S ⊆ N : lim

n→∞

|S ∩ [1, n]|
n

= 0

}
,

is an ideal. Also, let x = (xn) be a sequence taking values in a
topological space X. We denote by Γx(I) the set of I-cluster points of
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x, that is, the set of all ℓ ∈ X such that

{n : xn ∈ U} /∈ I

for all neighborhoods U of ℓ. Statistical cluster points (that is, I0-
cluster points) of real sequences were introduced by Fridy [8], cf., also
[7, 9, 11]. However, it is worth noting that ideal cluster points have
been studied much before under a different name. Indeed, as it follows
by [11, Theorem 4.2], they correspond to classical “cluster points” of
a filter F on R (depending upon x), cf., [4, page 69, Definition 2].

As anticipated, the main question addressed here is to find suitable
conditions on X and I such that the set of I-cluster points of a
sequence (xn) is equal to the set of I-cluster points of “almost all”
of its subsequences. Finally, we obtain a characterization of ideal
convergence. Related results were obtained in [1, 6, 15, 16, 17, 18].

2. Thinnability. Given k ∈ N and infinite sets A,B ⊆ N with
canonical enumeration {an : n ∈ N} and {bn : n ∈ N}, respectively,
we write A ≤ B if an ≤ bn for all n ∈ N and define

AB := {ab : b ∈ B} and kA := {ka : a ∈ A}.

Definition 2.1. An ideal I is said to be weakly thinnable if AB /∈ I
whenever A ⊆ N admits non-zero asymptotic density and B /∈ I.

If, in addition, BA /∈ I and X /∈ I whenever X ≤ Y and Y /∈ I,
then I is said to be thinnable.

Definition 2.2. An ideal I is said to be stretchable if kA /∈ I for all
k ∈ N and A /∈ I.

The terminology has been suggested from the related properties of
finitely additive measures on N studied in [21]. In this regard, Fin is
thinnable and stretchable.

This is the case of several other ideals:
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Proposition 2.3. Let f : N → (0,∞) be a definitively non-increasing
function such that

∑
n≥1 f(n) = ∞. Define the summable ideal

If :=

{
S ⊆ N :

∑
n∈S

f(n) < ∞
}
.

Then If is thinnable, provided If is stretchable.

In addition, suppose that

(2.1) lim inf
n→∞

∑
i∈[1,n] f(i)∑
i∈[1,kn] f(i)

̸= 0 for all k ∈ N,

and define the Erdős-Ulam ideal

Ef :=

{
S ⊆ N : lim

n→∞

∑
i∈S∩[1,n] f(i)∑
i∈[1,n] f(i)

= 0

}
.

Then, Ef is thinnable, provided Ef is stretchable.

Proof. We suppose that A = {an : n ∈ N} admits asymptotic
density c > 0 and B = {bn : n ∈ N} /∈ If , that is,

∑
n≥1 f(bn) = ∞.

Define the integer k := ⌊1/c⌋+ 1 ≥ 2, and note that
∑

n≥1 f(kbn) = ∞
by the fact that If is stretchable. Then, an = (1/c)n(1 + o(1)) as
n → ∞, which implies

(2.2)
∑
n≥1

f(abn) ≥ O(1) +
∑
n≥1

f(kbn) = ∞,

i.e., AB /∈ If ; hence, If is weakly thinnable. Moreover, observe that

(2.3)

∑
n≡1 mod k

f(bn) ≥
∑

n≡2 mod k

f(bn) ≥ · · ·

≥
∑

n≡0 mod k

f(bn) ≥
∑

n≡1 mod k
n̸=1

f(bn),

and note that the first sum is finite if and only if the last sum is finite.
Since I /∈ If , then all of the above sums are infinite, which implies that∑

n≥1

f(ban) ≥ O(1) +
∑
n≥1

f(bkn) = ∞,
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i.e., BA /∈ If . Lastly, given infinite sets X,Y ⊆ N with X ≤ Y and
X ∈ If , we have

∑
y∈Y f(y) ≤

∑
x∈X f(x) < ∞. Therefore, If is

thinnable.

The proof of the second part is similar, where (2.2) is replaced by∑
abn≤x

f(abn) ≥ O(1) +
∑

bn≤x/k

f(kbn).

Moreover, B /∈ Ef implies that kB /∈ Ef by the hypothesis of strecha-
bility, i.e., ∑

bn≤x/k

f(kbn) ̸= o

( ∑
i≤x/k

f(i)

)
;

due to (2.1), we conclude that∑
bn≤x/k

f(kbn) ̸= o

(∑
i≤x

f(i)

)
;

hence, AB /∈ Ef , which shows that Ef is weakly thinnable. In addition,
we obtain

f(ba1) + · · · + f(ban)

f(1) + · · · + f(ban)
≥ O(1) + f(bk) + · · · + f(bkn)

f(1) + · · · + f(bkn)
̸−→ 0,

so that BA /∈ Ef , where the last ̸→ comes from reasoning similar
to (2.3). Finally, given infinite subsets X,Y ⊆ N with canonical
enumeration {xn : n ∈ N} and {yn : n ∈ N}, respectively, such that
X ≤ Y and X ∈ Ef , the following holds:

f(x1) + · · · + f(xn)

f(1) + · · · + f(xn)
≥ f(y1) + · · · + f(yn)

f(1) + · · · + f(yn)

for all n ∈ N; therefore, Y ∈ Ef . �

Given a real α ≥ −1, let Iα be the collection of subsets with zero
α-density, that is,

Iα := {S ⊆ N : d⋆
α(S) = 0} ,(2.4)

where d⋆
α(S) = lim sup

n→∞

∑
i∈S∩[1,n] i

α∑
i∈[1,n] i

α
.

Proposition 2.4. All ideals Iα are thinnable.
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Proof. If α ∈ [−1, 0], the claim follows from Proposition 2.3 (we omit
the details). Hence, we suppose hereafter that α > 0. Fix infinite sets
X,Y ⊆ N with canonical enumerations {xn : n ∈ N} and {yn : n ∈ N},
respectively, such that Y /∈ Iα. Then, there exists an infinite set S such
that |Y ∩ [1, yn]| ≥ λyn for all n ∈ S, where

λ := 1 −
(

1 − 1

2
d⋆
α(Y )

)1/(α+1)

> 0.

Indeed, in the opposite case, we would have that

α + 1

yα+1
n

∑
i≤n

yαi ≤ α + 1

yα+1
n

∑
i∈((1−λ)yn,yn]

iα

≤
(
1 − (1 − λ)α+1

)
(1 + o(1)) <

2

3
d⋆
α(Y )

for all sufficiently large n. Since |Y ∩ [1, n]| ≤ |X ∩ [1, n]| for all n, we
conclude that

1

xα+1
n

∑
i≤n

xα
i ≥ 1

xα+1
n

∑
i≤λyn

iα ≥ 1

xα+1
n

∑
i≤λxn

iα ≥ λα+1

2

for all large n ∈ S, so that X /∈ Iα.

At this point, fix sets A,B ⊆ N with canonical enumerations
{an : n ∈ N} and {bn : n ∈ N}, respectively, such that A admits
asymptotic densities c > 0 and B /∈ Iα. Also, fix ε > 0 sufficiently
small, and note that there exists an n0 = n0(ε) ∈ N such that(

1

c
− ε

)
n ≤ an ≤

(
1

c
+ ε

)
n

for all n ≥ n0. In particular, it follows that

1

aα+1
bn

∑
k≤n

(abk)α ≥ 1

(1/c + ε)α+1bn
α+1

(
O(1) +

∑
n0≤k≤n

(
1

c
− ε

)α

bk
α

)
.

Therefore, setting

κ := min

{(
1

c
+ ε

)−α−1

,

(
1

c
− ε

)α}
> 0,
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we obtain

d⋆
α(AB)

α + 1
= lim sup

n→∞

1

aα+1
bn

∑
k≤n

(abk)α

≥ lim sup
n→∞

κ

bn
α+1

(
O(1) +

∑
n0≤k≤n

κbk
α

)
= κ2 lim sup

n→∞

1

bn
α+1

∑
n0≤k≤n

bk
α

= κ2 d⋆
α(B)

α + 1
> 0.

This proves that AB /∈ Iα. Finally, let k be an integer greater than
1/c, and note that BA ≤ BkN \ S, for some finite set S. By the
previous observation, it is sufficient to show that BkN /∈ Iα and this is
straightforward by an analogous argument of (2.3). �

To mention another example, let Ip be the Pólya ideal, i.e., Ip :=
{S ⊆ N : p⋆(S) = 0}, where

p⋆(S) = lim
s→1−

lim sup
n→∞

|S ∩ [ns, n]|
(1 − s)n

.

Among other things, the upper Pólya density p∗ has been used in a
number of remarkable applications in analysis and economic theory,
see e.g., [13, 14, 19].

Corollary 2.5. The Pólya ideal Ip is thinnable.

Proof. The upper Pólya density p∗ is the pointwise limit of the real
net of the upper α-densities d⋆

α defined in (2.4), see [12, Theorem 4.3].

Fix infinite sets X,Y ⊆ N with canonical enumerations {xn : n ∈ N}
and {yn : n ∈ N}, respectively, such that Y /∈ Ip. Then, there exists
an α > 0 such that d⋆

α(Y ) > 0 and, due to Proposition 2.4, we obtain
d⋆
α(X) > 0 as well. This implies that X /∈ Ip. Other properties can be

similarly shown. �

Lastly, it is worth noting that there exist summable ideals which
are not weakly thinnable; for instance, let If be the ideal defined by
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f(2n) = 1 and f(2n− 1) = 0 for all n ∈ N, so that

If = {I ⊆ N : I ∩ 2N ∈ Fin} .

Set A := N \ {1} and B := 2N. Then, A has asymptotic density 1,
B /∈ If and AB = 2N+ 1 ∈ If . Therefore, If is not weakly thinnable.

3. Main results. Consider the natural bijection between the col-
lection of all subsequences (xnk

) of (xn) and real numbers ω ∈ (0, 1]
with non-terminating dyadic expansion∑

i≥1

di(ω)2−i,

where di(ω) = 1 if i = nk, for some integer k, and di(ω) = 0 otherwise,
cf., [3, Appendix A31], [15]. Accordingly, for each ω ∈ (0, 1], denote
by x � ω the subsequence of (xn) obtained by omitting xi if and only
if di(ω) = 0.

Moreover, let λ : M → R denote the Lebesgue measure, where M
stands for the completion of the Borel σ-algebra on (0, 1]. Our main
result follows:

Theorem 3.1. Let I be a thinnable ideal and (xn) a sequence taking
values in a first countable space X where all closed sets are separable.
Then:

λ ({ω ∈ (0, 1] : Γx(I) = Γx�ω(I)}) = 1.

Proof. Let Ω be the set of normal numbers, that is,

(3.1) Ω :=

{
ω ∈ (0, 1] : lim

n→∞

1

n

n∑
i=1

di(ω) =
1

2

}
.

It follows from Borel’s normal number theorem [3, Theorem 1.2] that
Ω ∈ M and λ(Ω) = 1. Then, it is claimed that

(3.2) Γx�ω(I) ⊆ Γx(I) for all ω ∈ Ω.

Towards this aim, fix ω ∈ Ω, and denote by (xnk
) the subsequence x � ω.

Let us suppose, for the sake of contradiction, that Γx�ω(I) \ Γx(I) ̸= ∅
and fix a point ℓ therein. Then, the set of indices {nk : k ∈ N} has
asymptotic density 1/2 and, for each neighborhood U of ℓ, it holds that
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{k : xnk
∈ U} /∈ I. This implies that

{n : xn ∈ U} ⊇ {nk : xnk
∈ U} /∈ I,

by the hypothesis that I is, in particular, weakly thinnable. Therefore,
{n : xn ∈ U} /∈ I, which is a contradiction since ℓ would also be a
I-cluster point of x. This proves (3.2).

To complete the proof, it is sufficient to show that

(3.3) λ ({ω ∈ (0, 1] : Γx(I) ⊆ Γx�ω(I)}) = 1.

This is clear if Γx(I) is empty. Otherwise, note that Γx(I) is closed
by [11, Lemma 3.1(iv)]; hence, there exists a non-empty countable
dense subset L. Fix ℓ ∈ L, and let (Um) be a decreasing local base of
neighborhoods at ℓ. Also fix m ∈ N, and define I := {n : xn ∈ Um},
which does not belong to I; in particular, I is infinite, and we let
{in : n ∈ N} be its enumeration. Again, by Borel’s normal number
theorem,

Θ(ℓ, Um) :=

{
ω ∈ (0, 1] : lim

n→∞

1

n

n∑
j=1

dij (ω) =
1

2

}
belongs to M and has Lebesgue measure 1. Fix ω in the above
set, and denote by (xnk

) the subsequence x � ω. Hence, the set
J := {n : in ∈ {nk : k ∈ N}} admits asymptotic density 1/2 and,
by the thinnability of I, we obtain IJ /∈ I. Lastly, note that

{k : xnk
∈ Um} = {k : nk ∈ I} ≤ {nk : nk ∈ I} = IJ .

Therefore, {k : xnk
∈ Um} /∈ I. In addition, Θ(ℓ) :=

∩
m≥1 Θ(ℓ, Um)

belongs to M and has Lebesgue measure 1. This implies that

λ ({ω ∈ (0, 1] : ℓ ∈ Γx�ω(I)}) = 1.

(Also, see [20, Theorem 1] for the case I = Fin.) At this point, since
L is countable, we get λ({ω ∈ (0, 1] : L ⊆ Γx�ω(I)}) = 1. Claim (3.3)
follows from the fact that Γx�ω(I) is also closed by [11, Lemma 3.1(iv)],
so that each of these Γx�ω(I) contains the closure of L, i.e., Γx(I). �

Note added in proof. It turns out that the topological analogue
of Theorem 3.1 is quite different, providing a non-analogue between
measure and category. Indeed, it has been shown [10] that, if x is
a sequence in a separable metric space, then {ω ∈ (0, 1] : Γx(I0) =
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Γx�ω(I0)} is not a first Baire category set if and only if every ordinary
limit point of x is also a statistical cluster point of x, that is, Γx(Fin) =
Γx(I0).

Remark 3.2. Separable metric spaces X satisfy the hypotheses of
Theorem 3.1. Indeed, X is first countable, and every closed subset F
of X is separable. In order to prove the latter, let A be a countable
dense subset of X, and note that

F := {B(a, r) ∩ F : a ∈ A, 0 < r ∈ Q} \ {∅}

is a base for F , where B(a, r) is the open ball with center a and radius r.
Then, a set where one point is chosen for every set in F is a countable
dense subset of F .

As a consequence of Proposition 2.4, Theorem 3.1 and Remark 3.2,
we obtain:

Corollary 3.3. Let x be a sequence taking values in a separable metric
space. Then, the set of statistical cluster points of x is equal to the set
of statistical cluster points of almost all its subsequences (in the sense
of Lebesgue measure).

Similarly, setting I = Fin, we recover Buck’s result [5]:

Corollary 3.4. Let x be a sequence taking values in a separable metric
space. Then, the set of ordinary limit points of x is equal to the set of
ordinary limit points of almost all of its subsequences (in the sense of
Lebesgue measure).

Lastly, we recall that a sequence x = (xn) taking values in topologi-
cal space X converges (with respect to an ideal I) to ℓ ∈ X, shortened
as x →I ℓ, if

{n : xn /∈ U} ∈ I

for all neighborhoods U of ℓ. In this regard, Miller [15, Theorem 3]
proved that a real sequence x statistically converges to ℓ, i.e., x →I0 ℓ,
if and only if almost all of its sequences statistically converge to ℓ.
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This is extended in the following result. Here, we say that an ideal I
is invariant if, for each A ⊆ N with positive asymptotic density, AB /∈ I
holds if and only if B /∈ I (in particular, I is weakly thinnable). This
condition is strictly related with the so-called “property (G)” defined
in [2].

Theorem 3.5. Let I be an invariant ideal and x a sequence taking
values in a topological space. Then, x →I ℓ if and only if

λ ({ω ∈ (0, 1] : x � ω →I ℓ}) = 1.

Proof. First, we suppose that x →I ℓ, and let U be a neighborhood
of ℓ. Let Ω be set of normal numbers defined in (3.1), fix ω ∈ Ω, and
denote by (xnk

) the subsequence x � ω. Then, I := {n : xn /∈ U} ∈ I,
and A := {nk : k ∈ N} has asymptotic density 1/2. Define B := {k :
xnk

/∈ U} = {k : nk ∈ I}. Since I is, in particular, weakly thinnable
and AB = {nk : xnk

/∈ U} ∈ I, it follows that B ∈ I, i.e., x � ω →I ℓ.

Conversely, note that λ(Ω ∩ (1 − Ω)) = 1. Hence, there exists an
ω ∈ Ω such that x � ω →I ℓ and x � (1−ω) →I ℓ. It easily follows that
x →I ℓ. Indeed, denoting by (xnk

) and (xmr ) the subsequences x � ω
and x � (1−ω), respectively, we have that, for each neighborhood U of
ℓ, the following hold: {k : xnk

/∈ U} ∈ I and {r : xmr /∈ U} ∈ I. Since
{nk : k ∈ N} and {mr : r ∈ N} form a partition of N, then

{n : xn /∈ U} = {nk : xnk
/∈ U} ∪ {mr : xmr /∈ U}.

The claim follows from the hypothesis that I is invariant. �
It is impossible to extend Theorem 3.5 on the class of all ideals:

indeed, it has been shown [2, Example 2] that there exist an ideal
I and a real sequence x such that x →I ℓ and, on the other hand,
λ({ω ∈ (0, 1] : x � ω →I ℓ}) = 0.
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Università “Luigi Bocconi,” Department of Statistics, Milan, Via Roberto

Sarfatti 25, 20100, Milano, Italy
Email address: leonetti.paolo@gmail.com


