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ON CHOW GROUPS OF SOME
HYPERKÄHLER FOURFOLDS WITH

A NON-SYMPLECTIC INVOLUTION, II

ROBERT LATERVEER

ABSTRACT. This note is about hyperkähler fourfolds
X admitting a non-symplectic involution ι. The Bloch-
Beilinson conjectures predict the way ι should act on certain
pieces of the Chow groups of X. The main result of this
note is a verification of this prediction for Fano varieties of
lines on certain cubic fourfolds. This has some interesting
consequences for the Chow ring of the quotient X/ι.

1. Introduction. For a smooth projective variety X over C, let
Ai(X) := CHi(X)Q denote the Chow groups of X (i.e., the groups
of codimension i algebraic cycles on X with Q-coefficients, modulo
rational equivalence). As explained, for instance, in [13, 19, 30], the
Bloch-Beilinson conjectures form a beautiful crystal ball, allowing for
strikingly concrete predictions about Chow groups. In this note, we
focus on one particular instance of such a prediction, concerning non-
symplectic involutions on hyperkähler varieties.

Let X be a hyperkähler variety (i.e., a projective irreducible holo-
morphic symplectic manifold, cf., [1, 2]), and suppose that X has an
anti-symplectic involution ι. The action of ι on the subring H∗,0(X) is
well understood: we have

ι∗ = − id : H2i,0(X) −→ H2i,0(X) for i odd,

ι∗ = id: H2i,0(X) −→ H2i,0(X) for i even.

The action of ι on the Chow ring A∗(X) is more mysterious. To
state the conjectural behavior, we will now assume the Chow ring of X
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has a bigraded ring structure A∗
(∗)(X), where each Ai(X) splits into

pieces

Ai(X) =
⊕
j

Ai
(j)(X),

and the piece Ai
(j)(X) is isomorphic to the graded GrjFA

i(X) for

the Bloch-Beilinson filtration that conjecturally exists for all smooth
projective varieties. (It is expected that such a bigrading A∗

(∗)(−) exists
for all hyperkähler varieties [3].)

Since the pieces Ai
(i)(X) and AdimX

(i) (X) should only depend upon

the subring H∗,0(X), we arrive at the following conjecture:

Conjecture 1.1. Let X be a hyperkähler variety of dimension 2m, and
let ι ∈ Aut(X) be a non-symplectic involution. Then:

ι∗ = (−1)i id : A2i
(2i)(X) −→ A2i(X),

ι∗ = (−1)i id : A2m
(2i)(X) −→ A2m(X).

This conjecture is studied, and proven in some particular cases, in
[14, 15, 16, 17]. The aim of this note is to provide some more examples
where Conjecture 1.1 is verified, by considering Fano varieties of lines
on cubic fourfolds. The main result is as follows:

Theorem 1.2. Let Y ⊂ P5(C) be a smooth cubic fourfold defined by
an equation

(X0)
2ℓ0(X3, X4, X5) + (X1)

2ℓ1(X3, X4, X5)

+ (X2)
2ℓ2(X3, X4, X5) +X0X1ℓ3(X3, X4, X5)

+X0X2ℓ4(X3, X4, X5) +X1X2ℓ5(X3, X4, X5)

+ g(X3, . . . , X5) = 0,

where the ℓi are linear forms and g is a homogeneous degree 3 polyno-
mial. Let X = F (Y ) be the Fano variety of lines in Y . Let ι ∈ Aut(X)
be the anti-symplectic involution, induced by

P5(C) −→ P5(C),
[X0, X1, . . . , X5] 7−→ [−X0,−X1,−X2, X3, X4, X5].
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Then,

ι∗ = − id : Ai
(2)(X) −→ Ai

(2)(X) for i = 2, 4;

ι∗ = id: A4
(j)(X) −→ A4

(j)(X) for j = 0, 4.

The notation A∗
(∗)(X) in Theorem 3.5 refers to the Fourier decom-

position of the Chow ring of X constructed by Shen and Vial [22]. (We
mention in passing that, for X as in Theorem 3.5, it is unfortunately
not yet known whether A∗

(∗)(X) is a bigraded ring, cf., Remark 2.6

below.)

In order to prove Theorem 3.5, we exploit the fact that the family
of cubics under consideration is sufficiently large for the method of
“spread” developed by Voisin [28, 31] to apply. There is only one
other family of cubic fourfolds with a polarized involution that is anti-
symplectic on the Fano variety; this other family was treated in [16],
using arguments very similar to those here. It is worth mentioning that
the action of polarized symplectic automorphisms on Chow groups of
Fano varieties of cubic fourfolds has already been treated by Fu [8],
similarly using the “spread” method.

Theorem 3.5 has some rather striking consequences for the Chow
ring of the quotient (this quotient is a slightly singular Calabi-Yau
fourfold):

Corollaries 4.1 and 4.3. Let (X, ι) be as in Theorem 3.5. Let
Z := X/ι be the quotient. Then, the images of the intersection product
maps:

A2(Z)⊗A2(Z) −→ A4(Z),

A3(Z)⊗A1(Z) −→ A4(Z)

are of dimension 1.

In particular, this means that, for any two cycles b, c ∈ A2(Z) (or
b ∈ A3(Z) and c ∈ A1(Z)), the 0-cycle b · c is rationally trivial if and
only if it has degree 0. This is similar to results for Calabi-Yau complete
intersections obtained in [7, 27].
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Corollary 4.4. Let (X, ι) be as in Theorem 3.5. Let Z := X/ι be the
quotient. Then, the image of the intersection product map

A2(Z)⊗A1(Z) −→ A3(Z)

is a finite-dimensional Q-vector space.

A stronger statement would be expected to be true: conjecturally,
for any b in the image of A2(Z) ⊗ A1(Z) → A3(Z), we have that b is
rationally trivial if and only if b is homologically trivial. Our argument
does not allow the proof of this due to the nuisance (mentioned above)
that it is still unknown whether A∗

(∗)(X) is a bigraded ring (cf., Remark

4.5).

Corollaries 4.1 and 4.4 provide some (admittedly meagre) support
in favor of the conjecture that

A2
hom(Z)

??
= 0.

(The Bloch-Beilinson conjectures imply that A2
AJ(M) = 0 for any

Calabi-Yau variety M of dimension > 2. As far as the author is aware,
there is not a single Calabi-Yau variety M for which this is known to
be true.)

Convention 1.2. In this article, the word variety will refer to a
reduced irreducible scheme of finite type over C. A subvariety is a
(possibly reducible) reduced subscheme which is equidimensional.

All Chow groups will be with rational coefficients: we will denote
by Aj(X) the Chow group of j-dimensional cycles on X with Q-
coefficients; for X smooth of dimension n, the notation Aj(X) and
An−j(X) are used interchangeably.

The notation Aj
hom(X), Aj

AJ(X) will be used to indicate the sub-
groups of homologically trivial, respectively, Abel-Jacobi trivial cycles.
For a morphism f : X → Y , we will write Γf ∈ A∗(X × Y ) for the
graph of f . The contravariant category of Chow motives (i.e., pure mo-
tives with respect to rational equivalence as in [19, 21]) will be denoted
Mrat. We will write Hj(X) to indicate singular cohomology Hj(X,Q).
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2. Preliminaries.

2.1. MCK decomposition.

Definition 2.1 ([18]). Let X be a smooth projective variety of
dimension n. We say that X has a CK decomposition if there exists a
decomposition of the diagonal

∆X = π0 + π1 + · · ·+ π2n in An(X ×X) ,

such that the πi are mutually orthogonal idempotents and (πi)∗H
∗(X) =

Hi(X).

“CK decomposition” is shorthand for “Chow-Künneth decomposi-
tion.”

Remark 2.2. The existence of a CK decomposition for any smooth
projective variety is part of Murre’s conjectures [13, 18].

Definition 2.3 ([22]). Let X be a smooth projective variety of
dimension n. Let ∆sm

X ∈ A2n(X × X × X) be the class of the small
diagonal

∆sm
X :=

{
(x, x, x) | x ∈ X

}
⊂ X ×X ×X.

An MCK decomposition is a CK decomposition {πX
i } of X that is

multiplicative, i.e., it satisfies

πX
k ◦∆sm

X ◦ (πX
i × πX

j ) = 0 in A2n(X ×X ×X) for all i+ j ̸= k.

“MCK decomposition” is shorthand for “multiplicative Chow-Künneth
decomposition.”

A weak MCK decomposition is a CK decomposition {πX
i } of X that

satisfies(
πX
k ◦∆sm

X ◦ (πX
i × πX

j )
)
∗(a× b) = 0 for all a, b ∈ A∗(X).

Remark 2.4. The small diagonal (seen as a correspondence from
X ×X to X) induces the multiplication morphism

∆sm
X : h(X)⊗ h(X) −→ h(X) inMrat.
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Suppose that X has a CK decomposition

h(X) =

2n⊕
i=0

hi(X) inMrat.

By definition, this decomposition is multiplicative if, for any i, j, the
composition

hi(X)⊗ hj(X) −→ h(X)⊗ h(X)
∆sm

X−−−→ h(X) inMrat

factors through hi+j(X).

If X has a weak MCK decomposition, then, setting

Ai
(j)(X) := (πX

2i−j)∗A
i(X),

a bigraded ring structure is obtained on the Chow ring, that is, the

intersection product sends Ai
(j)(X)⊗Ai′

(j′)(X) to Ai+i′

(j+j′)(X).

It is expected (but not proven) that, for any X with a weak MCK
decomposition, we have

Ai
(j)(X)

??
= 0 for j < 0, Ai

(0)(X) ∩Ai
hom(X)

??
= 0;

this is related to Murre’s conjectures B and D, that have been formu-
lated for any CK decomposition [18].

The property of having an MCK decomposition is severely restrictive
and is closely related to Beauville’s “(weak) splitting property” [3].
For more ample discussion, and examples of varieties with an MCK
decomposition, the reader is referred to [22, Section 8], as well as
[11, 23, 25].

In what follows, we will make use of the following:

Theorem 2.5 ([22]). Let Y ⊂ P5(C) be a smooth cubic fourfold, and
let X := F (Y ) be the Fano variety of lines in Y . There exists a CK
decomposition {πX

i } for X, and

(πX
2i−j)∗A

i(X) = Ai
(j)(X),

where the right-hand side denotes the splitting of the Chow groups
defined in terms of the Fourier transform, as in [22, Theorem 2].
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Moreover, we have

Ai
(j)(X) = 0 for j < 0 and for j > i.

In the case where Y is very general, the Fourier decomposition
A∗

(∗)(X) forms a bigraded ring, and hence, {πX
i } is a weak MCK

decomposition.

Proof. A remark on notation: what we have denoted Ai
(j)(X) is

denoted CHi(X)j in [22]. The existence of a CK decomposition
{πX

i } is [22, Theorem 3.3], combined with the results in [22, Section
3] to ensure that the hypotheses of [22, Theorem 3.3] are satisfied.
(Alternatively, the existence of a CK decomposition is also established
in [10, Proposition A.6].) According to [22, Theorem 3.3], the given
CK decomposition agrees with the Fourier decomposition of the Chow
groups. The “moreover” part is due to the fact that the {πX

i } are
shown to satisfy Murre’s conjecture B [22, Theorem 3.3].

The statement for very general cubics is [22, Theorem 3]. �

Remark 2.6. Unfortunately, it is not yet known whether the Fourier
decomposition of [22] induces a bigraded ring structure on the Chow
ring for all Fano varieties of smooth cubic fourfolds. For instance, it
has not yet been proven that

A2
(0)(X) ·A2

(0)(X)
??
⊂ A4

(0)(X)

for the Fano variety of a given (not necessarily very general) cubic
fourfold (cf., [22, subsection 22.3] for a discussion).

To prove thatA∗
(∗)() is a bigraded ring for all Fano varieties of smooth

cubic fourfolds, it would suffice to construct an MCK decomposition
for the Fano variety of the very general cubic fourfold.

2.2. A multiplicative result. LetX be the Fano variety of lines on a
smooth cubic fourfold. As we have seen (Theorem 2.5), the Chow ring
of X splits into pieces Ai

(j)(X). The work [22] contains a thorough

analysis of the multiplicative behavior of these pieces. Here are the
relevant results which will be necessary:
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Theorem 2.7 ([22]). Let Y ⊂ P5(C) be a smooth cubic fourfold, and
let X := F (Y ) be the Fano variety of lines in Y .

(i) There exists an ℓ ∈ A2
(0)(X) such that intersecting with ℓ induces

an isomorphism

·ℓ : A2
(2)(X)

∼=−→ A4
(2)(X).

(ii) Intersection product induces a surjection

A2
(2)(X)⊗A2

(2)(X) � A4
(4)(X).

Proof. Statement (i) is [22, Theorem 4]. Statement (ii) is [22,
Proposition 20.3]. �

2.3. The involution.

Lemma 2.8. Let ιP ∈ Aut(P5(C)) be the involution, defined as

[X0, X1, . . . , X5] 7−→ [−X0,−X1,−X2, X3, X4, X5].

The cubic fourfolds, invariant under ιP, are exactly those defined by an
equation

(X0)
2ℓ0(X3, X4, X5) + (X1)

2ℓ1(X3, X4, X5) + (X2)
2ℓ2(X3, X4, X5)

+X0X1ℓ3(X3, X4, X5) +X0X2ℓ4(X3, X4, X5)

+X1X2ℓ5(X3, X4, X5) + g(X3, . . . , X5) = 0,

where the ℓi are linear forms, and g is a homogeneous degree 3 polyno-
mial.

Let Y ⊂ P5(C) be a smooth cubic invariant under ιP, and let
ιY ∈ Aut(Y ) be the involution induced by ιP. Let X = F (Y ) be the
Fano variety of lines in Y , and let ι ∈ Aut(X) be the involution induced
by ιY . The involution ι is anti-symplectic.

Proof. The only necessary explanation is the last phrase; this is
proven in [5, Section 7]. The idea is that there is an isomorphism
of Hodge structures, compatible with the involution

H2(X) ∼= H4(Y ).
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The action of ιY on H3,1(Y ) is minus the identity since H3,1(Y ) is
generated by the meromorphic form

5∑
i=0

(−1)iXi
dX0 ∧ · · · ∧ dX̂i ∧ · · · ∧ dX5

f2
,

where f is an equation for Y . �

2.4. Spread.

Lemma 2.9 ([28, 31]). Let M be a smooth projective variety of
dimension n+ 1 and L a very ample line bundle on M . Let

π : X −→ B

denote a family of hypersurfaces, where B ⊂ |L| is a Zariski open. Let

p : ˜X ×B X −→ X ×B X

denote the blow-up of the relative diagonal. Then, ˜X ×B X is Zariski

open in V , where V is a projective bundle over M̃ ×M , the blow-up of
M ×M along the diagonal.

Proof. This is [28, Proof of Proposition 3.13], [31, Lemma 1.3].
The idea is to define V as

V := {((x, y, z), σ)|σ|z = 0} ⊂ M̃ ×M × |L|.

The very ampleness assumption ensures that V → M̃ ×M is a projec-
tive bundle. �

This is used in the following key proposition:

Proposition 2.10 ([31]). Assumptions hold as in Lemma 2.9. As-
sume, moreover, that M has trivial Chow groups. Let R ∈ An(V ).
Suppose that, for all b ∈ B, we have

Hn(Xb)prim ̸= 0 and R|
X̃b×Xb

= 0 ∈ H2n(X̃b ×Xb).

Then, there exists a γ ∈ An(M ×M) such that

(pb)∗
(
R|

X̃b×Xb

)
= γ|Xb×Xb

∈ An(Xb ×Xb)



1934 ROBERT LATERVEER

for all b ∈ B. (Here pb denotes the restriction of p to X̃b ×Xb, which
is the blow-up of Xb ×Xb along the diagonal.)

Proof. This is [31, Proposition 1.6]. �

Next is an equivariant version of Proposition 2.10:

Proposition 2.11 ([31]). Let M and L be as in Proposition 2.10. Let
G ⊂ Aut(M) be a finite group. Assume the following :

(i) The linear system |L|G := P(H0(M,L)G
)
has no base-points,

and the locus of points in M̃ ×M parametrizing triples (x, y, z) such
that the length 2 subscheme z imposes only one condition on |L|G is
contained in the union of (proper transforms of ) graphs of non-trivial
elements of G, plus some loci of codimension > n+ 1.

(ii) Let B ⊂ |L|G be the open parametrizing smooth hypersurface,
and let Xb ⊂ M be a hypersurface for b ∈ B general. There is no
non-trivial relation∑

g∈G

cgΓg + γ = 0 in H2n(Xb ×Xb),

where cg ∈ Q and γ is a cycle in Im(An(M ×M)→ An(Xb ×Xb)).

Let R ∈ An(X ×B X ) be such that

R|Xb×Xb
= 0 ∈ H2n(Xb ×Xb) for all b ∈ B.

Then, there exists a γ ∈ An(M ×M) such that

R|Xb×Xb
= γ|Xb×Xb

∈ An(Xb ×Xb) for all b ∈ B.

Proof. This is not stated verbatim in [31]; however, it is contained
in the proof of [31, Proposition 3.1, Theorem 3.3]. We briefly review
the argument. We consider

V := {((x, y, z), σ)|σ|z = 0} ⊂ M̃ ×M × |L|G.

The problem is that this is no longer a projective bundle over M̃ ×M .
However, as explained in the proof of [31, Theorem 3.3], hypothesis
(i) ensures that we can obtain a projective bundle after blowing up
the graphs Γg, g ∈ G, plus some loci of codimension > n + 1. Let
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M ′ → M̃ ×M denote the result of these blow-ups, and let V ′ → M ′

denote the projective bundle obtained by base-changing.

Analyzing the situation as in [31, Proof of Theorem 3.3], we obtain

R|Xb×Xb
= R0|Xb×Xb

+
∑
g∈G

λgΓg in An(Xb ×Xb),

where R0 ∈ An(M ×M) and λg ∈ Q (this is [31, equation (15)]). By
assumption, R|Xb×Xb

is homologically trivial. Using hypothesis (ii),
this implies that all λg must be 0. �

3. Main result. This section contains the proof of the main result
of this note, Theorem 3.5. The proof is split into two parts. In the
first part, we prove a statement (Theorem 3.1) about the action of the
involution on 1-cycles on the cubic Y . The proof is an application of
the technique of “spread” of cycles in a family, as developed by Voisin
[28, 29, 30, 31] (more precisely, the results recalled in subsection 2.4).

In the second part, we deduce from this our main result, Theo-
rem 3.5. This second part builds on the structural results of Shen and
Vial [22] (notably the results recalled in subsections 2.1 and 2.2).

3.1. First part.

Theorem 3.1. Let Y ⊂ P5(C) be a smooth cubic fourfold defined by
an equation

(X0)
2ℓ0(X3, X4, X5) + (X1)

2ℓ1(X3, X4, X5) + (X2)
2ℓ2(X3, X4, X5)

+X0X1ℓ3(X3, X4, X5) +X0X2ℓ4(X3, X4, X5)

+X1X2ℓ5(X3, X4, X5) + g(X3, . . . , X5) = 0,

where the ℓi are linear forms, and g is a homogeneous degree 3 polyno-
mial.

Let ιY ∈ Aut(Y ) be the involution of Lemma 2.8. Then,

(ιY )
∗ = − id : A3

hom(Y ) −→ A3(Y ).

Proof. We have seen (Proof of Lemma 2.8) that

(ιY )
∗ = − id : H3,1(Y ) −→ H3,1(Y ).
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Let H4
tr(Y ) denote the orthogonal complement (under the cup-product

pairing) of N2H4(Y ) (which coincides with H2,2(Y,Q) since the Hodge
conjecture is true for Y ). Since H4

tr(Y ) ⊂ H4(Y ) is the smallest Hodge
substructure containing H3,1(Y ), we must also have

(3.1) (ιY )
∗ = − id : H4

tr(Y ) −→ H4
tr(Y ).

This implies that there is a decomposition

(3.2) tΓιY = −∆Y + γ in H8(Y × Y ),

where γ ∈ A4(Y × Y ) is a “completely decomposed” cycle, i.e.,

γ = γ0 + γ2 + γ4 + γ6 + γ8,

and γ2i has support on Vi × Wi ⊂ Y × Y with dimVi = i and
dimWi = 4− i. (Indeed, the cycle γ is obtained by considering

γ2i := (tΓιY +∆Y ) ◦ π2i ∈ H8(Y × Y ),

where πi denotes the Künneth component. For i ̸= 4, the claimed
support condition is obviously satisfied since it is satisfied by πi. For i =
4, we use (3.1) to see that γ4 is supported on N2H4(Y )⊗N2H4(Y ) ⊂
H8(Y × Y ).) �

Now, we consider things family-wise. Let

Y −→ B

denote the universal family of all smooth cubic fourfolds, defined by
an equation as in Theorem 3.1. Let Yb ⊂ P5(C) denote the fibre over
b ∈ B.

The involution ιP defines, by restriction, an involution ιY ∈ Aut(Y).
Let ∆Y ∈ A4(Y ×B Y) denote the relative diagonal. Obviously, the
argument leading to decomposition (3.2) applies to each fibre Yb. This
means that, for each b ∈ B, there exists a completely decomposed cycle
γb ∈ A4(Yb × Yb) such that(

tΓιY +∆Y
)
|Yb×Yb

= γb in H8(Yb × Yb).

Applying the “spread” result [28, Proposition 3.7], we can find a
“completely decomposed” relative correspondence γ ∈ A4(Y ×B Y)
such that(

tΓιY +∆Y − γ
)
|Yb×Yb

= 0 in H8(Yb × Yb) for all b ∈ B.
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(By this, we mean the following: there exist subvarieties Vi,Wi ⊂ Y
for i = 0, 2, 4, 6, 8, with

codimVi + codimWi = 4,

and such that the cycle γ is supported on

∪iVi ×B Wi ⊂ Y ×B Y.

Actually, for i ̸= 4, this is obvious since the πi, i ̸= 4, obviously exist
relatively. The recourse to [28, Proposition 3.7] can thus be limited to
i = 4.)

The relative correspondence

Γ := tΓιY +∆Y − γ ∈ A4(Y ×B Y)

is fibrewise homologically trivial:

Γ|Yb×Yb
= 0 in H8(Yb × Yb) for all b ∈ B.

At this point, we note that the family Y → B is large enough to ver-
ify the hypotheses of Proposition 2.11; this will be proven in Lemma 3.2
below. Applying Proposition 2.11 to the relative correspondence Γ, we
find that there exists a δ ∈ A4(P5 × P5) such that

Γ|Yb×Yb
+ δ|Yb×Yb

= 0 in A4(Yb × Yb) for all b ∈ B.

However,

(δ|Yb×Yb
)∗ = 0: A3

hom(Yb) −→ A3(Yb) for all b ∈ B

(indeed, the action factors over A4
hom(P5) which is 0). In addition, we

have

(γ|Yb×Yb
)∗ = 0: A3

hom(Yb) −→ A3(Yb) for general b ∈ B

(indeed, for general b ∈ B, the restriction γ|Yb×Yb
is a completely

decomposed cycle; such cycles do not act on A3
hom for dimension

reasons).

By definition of Γ, this means that(
tΓιYb

+∆Yb

)
∗ = 0: A3

hom(Yb) −→ A3(Yb) for general b ∈ B.

This proves Theorem 3.1 for general b ∈ B. In order to extend to all
b ∈ B, it can be argued as in [8, Lemma 3.1].
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It only remains to check that the hypotheses of Voisin’s result are
satisfied:

Lemma 3.2. Let Y → B be the family of smooth cubic fourfolds as in
Theorem 3.1, i.e.,

B ⊂
(
PH0(P5,OP5(3))

)G
is the open subset parametrizing smooth G-invariant cubics, where
G = {id, ιP} ⊂ Aut(P5) is as above. This set-up verifies the hypotheses
of Proposition 2.11.

Proof. We first prove hypothesis (i) of Proposition 2.11 is satisfied.
Toward this end, we consider the quotient morphisms

p : P5 −→ P := P5/G −→ P ′ := P(23, 13) = P5/(Z/2Z×Z/2Z×Z/2Z),

where P ′ := P(23, 13) denotes a weighted projective space.

We write ι0, ι1, ι2 for the involutions of P5

ι0[X0 : . . . : X5] := [−X0 : X1 : . . . : X5],

ι1[X0 : . . . : X5] := [X0 : −X1 : X2 : . . . : X5],

ι2[X0 : . . . : X5] := [X0 : X1 : −X2 : X3 : X4 : X5].

(We note that ιP = ι0 ◦ ι1 ◦ ι2, and the weighted projective space P ′ is
P5/⟨ι0, ι1, ι2⟩.)

The sections in (PH0(P5,OP5(3)))G are in bijection with sections
coming from P and contain the sections coming from P ′:(

PH0(P5,OP5(3))
)G ⊃ PH0

(
P ′,OP ′(3)

)
.

Let us now assume that x, y ∈ P5 are two points such that

(x, y) /∈ ∆P5 ∪
∪

0≤r0,r1,r2≤1

Γ(ι0)r0◦(ι1)r1◦(ι2)r2 .

Then,
p(x) ̸= p(y) in P ′,

and thus (using Lemma 3.3 below), there exists a σ ∈ PH0(P ′,OP ′(3))
containing p(x) but not p(y). The pullback p∗(σ) contains x but not
y, and so, these points (x, y) impose two independent conditions on
(PH0(P5,OP5(3)))G.
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It remains to check that a generic element

(x, y) ∈
∪

0≤r0,r1,r2≤1

Γ(ι0)r0◦(ι1)r1◦(ι2)r2 \ ΓιP

also imposes two independent conditions. We first assume that (x, y)
is generic on Γι0 . Let us write x = [a0 : a1 : . . . : a5]. By genericity, we
may assume that all ai are ̸= 0 (intersections of Γι0 with a coordinate
hyperplane have codimension > n+1 and thus need not be considered
for hypothesis (i) of Proposition 2.11). We can, thus, write

x = [a0 : a1 : a2 : a3 : a4 : a5],

y = [−a0 : a1 : a2 : a3 : a4 : a5], ai ̸= 0.

The cubic
(a1)

3(X0)
3 − (a0)

3(X1)
3 = 0

is G-invariant and contains x while avoiding y, and thus, the element
(x, y) again imposes two independent conditions.

The argument for the other ri is similar: consider, for instance, a
generic element (x, y) in Γι0◦ι1 . By genericity, we can write

x = [a0 : a1 : a2 : a3 : a4 : a5],

y = [−a0 : −a1 : a2 : a3 : a4 : a5], ai ̸= 0.

The cubic
(a2)

3(X0)
3 − (a0)

3(X2)
3 = 0

is G-invariant and contains x while avoiding y, and thus, the element
(x, y) again imposes two independent conditions. This proves hypoth-
esis (i) of Proposition 2.11 is satisfied.

In order to establish hypothesis (ii) of Proposition 2.11, let Y = Yb

be a cubic as in Theorem 3.1, and let us suppose that there is a relation

c∆Y + dΓι + δ = 0 in H8(Y × Y ),

where c, d ∈ Q and δ ∈ Im(A4(P5 × P5) → A4(Yb × Yb)). Looking at
the action on H3,1(Y ), we find that, necessarily, c = d (indeed, δ does
not act on H3,1(Y ), and ι acts as minus the identity on H3,1(Y )).

On the other hand, looking at the action on (H4(Y )prim)
ι (which is

non-zero due to Lemma 3.4), we find that c = −d. We conclude that
c = d = 0, and thus, hypothesis (ii) is satisfied.
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Lemma 3.3. Let P ′ = P(23, 13). Let r, s ∈ P ′ and r ̸= s. Then, there
exists a σ ∈ PH0(P ′,OP ′(3)) containing r but avoiding s.

Proof. It follows from Delorme’s work [6, Proposition 2.3(3)] that
the locally free sheaf OP ′(2) is very ample. This means that there exists
a σ′ ∈ PH0(P,OP (2)) containing r but avoiding s. Taking the union
of σ′ with a hyperplane avoiding s, we obtain σ, as required. �

Lemma 3.4. Let Y ⊂ P5(C) be a smooth cubic as in Theorem 3.1.
Then

dim H4(Y )ιY > 1.

Proof. Griffiths’ description of the cohomology of a hypersurface
[26, Section 18] implies that there is an isomorphism, given by the
residue map

H5(P5 \ Y ) ⊃ H≤3

∼=−→ H2,2(Y )prim,

where H≤3 is, by definition, the subspace of meromorphic forms with
poles of order ≤ 3 along Y . In order to prove the lemma, it thus suffices
to exhibit an ιP-invariant meromorphic five-form with a pole of order 3.
Let f = f(X0, . . . , X5) be an equation defining Y . The meromorphic
form

(X0)
3

f3

5∑
j=0

Xj dX0 ∧ · · · ∧ d̂Xj ∧ · · · ∧ dX5 ∈ H≤3

does the job.

Another proof of Lemma 3.41 is as follows: the cubic Y contains
the plane P := {x3 = x4 = x5 = 0}. The plane P is not proportional
to the class h2, where h ∈ A1(Y ) is a hyperplane class. Indeed, if P
were equal to mh2 in H4(Y ) for some integer m, the intersection P ·h2

would be a multiple of 3, whereas P · h2 = 1. Since both P and h2 are
ιY -invariant, this proves the lemma. �

This finishes the proof of Lemma 3.2, and hence, of Theorem 3.1. �



ON CHOW GROUPS 1941

3.2. Second part.

Theorem 3.5. Let Y ⊂ P5(C) be a smooth cubic fourfold, defined by
an equation

(X0)
2ℓ0(X3, X4, X5) + (X1)

2ℓ1(X3, X4, X5) + (X2)
2ℓ2(X3, X4, X5)

+X0X1ℓ3(X3, X4, X5) +X0X2ℓ4(X3, X4, X5)

+X1X2ℓ5(X3, X4, X5) + g(X3, . . . , X5) = 0,

where the ℓi are linear forms, and g is a homogeneous degree 3 polyno-
mial.

Let X = F (Y ) be the Fano variety of lines in Y , and let ι ∈ Aut(X)
be the anti-symplectic involution of Lemma 2.8. Then,

ι∗ = − id : Ai
(2)(X) −→ Ai

(2)(X) for i = 2, 4;

ι∗ = id: A4
(j)(X) −→ A4

(j)(X) for j = 0, 4.

Proof. First, note that

A2
(2)(X) = I∗A

4
hom(X),

where I ⊂ X × X is the incidence correspondence [22, Proof of
Proposition 21.10]. On the other hand,

I = tP ◦ P in A2(X ×X),

where X ← P → Y denotes the universal family of lines on Y [22,
Lemma 17.2]. Hence,

A2
(2)(X) = (tP )∗P∗A

4
hom(X).

However, P∗ : A
4
hom(X)→ A3

hom(Y ) is surjective [20], and thus,

A2
(2)(X) = (tP )∗A

3
hom(Y ).

It is readily verified that the diagram

A3
hom(Y )

(tP )∗−−−→ A2(X)
(ιY )∗ ↓ ↓ ι∗

A3
hom(Y )

(tP )∗−−−→ A2(X)
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is commutative (this is since the involution extends to an involution on
P ). Using this diagram, Theorem 3.1 implies that ι acts as minus the
identity on (tP )∗A

3
hom(Y ) = A2

(2)(X).

Since intersection product induces a surjection

A2
(2)(X)⊗A2

(2)(X) −→ A4
(4)(X)

(Theorem 2.7 (ii)), it follows that ι acts as the identity on A4
(4)(X).

Next, we want to exploit the fact that there is an isomorphism

·ℓ : A2
(2)(X)

∼=−→ A4
(2)(X)

(Theorem 2.7 (i)). Since ι∗(ℓ) = ℓ (Proposition 3.6 below), this implies
that ι acts as minus the identity on A4

(2)(X).

Proposition 3.6. Let X be the variety of lines on a smooth cubic
fourfold Y ⊂ P5(C), and let ι ∈ Aut(X) be an involution induced by an
involution ιY ∈ Aut(Y ). Let ℓ ∈ A2(X) be the class of Theorem 2.7 (i).
Then:

ι∗(ℓ) = ℓ in A2(X).

Proof. We give two proofs of this fact. The first proof has the benefit
of brevity; the second proof will be useful in proving another result
(Lemma 3.7 below).

First proof. It is known that

ℓ =
5

6
c2(X) in A2(X)

(where the right-hand side denotes the second Chern class of the
tangent bundle TX of X) [22, equation (108)]. Since

ι∗c2(X) = c2(ι
∗TX) = c2(X) in A2(X),

this proves the proposition. �
Second proof. Shen and Vial define the class L ∈ A2(X×X) (lifting

the Beauville-Bogomolov class B ∈ H4(X ×X)) as

L :=
1

3

(
(g1)

2 +
3

2
g1g2 + (g2)

2 − c1 − c2

)
− I ∈ A2(X ×X)
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[22, equation (107)]. Here, I is the incidence correspondence, and

g := −c1(E2) ∈ A1(X),

c := c2(E2) ∈ A2(X),

gi := (pi)
∗(g) ∈ A1(X ×X) (i = 1, 2),

ci := (pi)
∗(c) ∈ A2(X ×X) (i = 1, 2),

where E2 is the rank 2 vector bundle coming from the tautological
bundle on the Grassmannian, and pi : X × X → X denotes the two
projections.

Clearly, we have

(ι× ι)∗(I) = I, (ι× ι)∗(ci) = ci, (ι× ι)∗(gi) = gi.

In view of the definition of L, it follows that

(ι× ι)∗(L) = L in A2(X ×X).

Using Lieberman’s lemma [24, Lemma 3.3], plus the fact that tΓι = Γι,
this means that there is a commutativity relation

(3.3) L ◦ Γι = Γι ◦ L in A2(X ×X).

The class ℓ is defined as ℓ := (i∆)
∗(L) ∈ A2(X). We now find that

ι∗(ℓ) = ι∗(i∆)
∗(L)

= (i∆)
∗(ι× ι)∗(L)

= (i∆)
∗(Γι ◦ L ◦ Γι)

= (i∆)
∗(L) = ℓ in A2(X).

Here, the second equality is, by virtue of the commutative diagram,

X
i∆−→ X ×X

ι ↓ ↓ ι×ι

X
i∆−→ X ×X.

The third equality is, again, Lieberman’s lemma, plus the fact that
tΓι = Γι. The last equality is (3.3). �
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It only remains to prove Theorem 3.5 for (i, j) = (4, 0). This follows
from the fact that A4

(0)(X) is generated by ℓ2 [22], plus the fact that ℓ

is ι-invariant (Proposition 3.6). Theorem 3.5 is now proven. �

For later use, we remark that the argument of Proposition 3.6 also
proves the following compatibility statement:

Lemma 3.7. Let X be the variety of lines on a smooth cubic fourfold
Y ⊂ P5(C), and let ι ∈ Aut(X) be an involution induced by an
involution ιY ∈ Aut(Y ). Then,

ι∗Ai
(j)(X) ⊂ Ai

(j)(X) for all i, j.

Proof. Let L ∈ A2(X × X) be the Shen-Vial class as above. We
observe that equality (3.3) also implies

(ι× ι)∗(Lr) =
(
(ι× ι)∗(L)

)r
= Lr in A4(X ×X) for all r ∈ N.

Using Lieberman’s lemma, this is equivalent to the commutativity
relation

Γι ◦ Lr = Lr ◦ Γι in A2r(X ×X).

Since the Shen-Vial Fourier transform

F : A∗(X) −→ A∗(X)

is defined by a polynomial in L [22, Section C.1], we find that

F(ι∗(a)) = ι∗F(a) for all a ∈ Ai(X).

This proves the lemma, for the decomposition of [22] is defined as

Ai
(j)(X) :=

{
a ∈ Ai(X) | F(a) ∈ A4−i+j(X)

}
. �

4. Corollaries. In this last section, we consider the quotient Z :=
X/ι, for (X, ι) as in Theorem 3.5. The variety Z is a slightly singular
Calabi-Yau variety. As is well known, Chow groups with Q-coefficients
of quotient varieties such as Z still have a ring structure [12, Examples
8.3.12, 17.4.10]. For this reason, we will write Ai(Z) for the Chow group
of codimension i cycles on Z (just as in the smooth case).
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Corollary 4.1. Let (X, ι) be as in Theorem 3.5. Let Z := X/ι be the
quotient. Then, the image of the intersection product map

A2(Z)⊗A2(Z) −→ A4(Z)

has dimension 1.

Proof. We first establish a lemma:

Lemma 4.2. Let (X, ι) be as in Theorem 3.5. Then,

A2(X)ι ⊂ A2
(0)(X).

Proof. Let c ∈ A2(X)ι, and suppose that

c = c0 + c2 in A2
(0)(X)⊕A2

(2)(X),

where cj ∈ A2
(j)(X). Since c is ι-invariant, we also have

c = ι∗(c) = ι∗(c0) + ι∗(c2) = ι∗(c0)− c2 A2(X)

(where we have used Theorem 3.5 to conclude that ι∗(c2) = −c2.
However, ι∗(c0) ∈ A2

(0)(X) (Lemma 3.7), and so (by unicity of the

decomposition c = c0 + c2), we must have

ι∗(c0) = c0, −c2 = c2. �

Let p : X → Z be the quotient morphism. Lemma 4.2 states that

p∗A2(Z) ⊂ A2
(0)(X).

It follows that

p∗ Im
(
A2(Z)⊗A2(Z) −→ A4(Z)

)
⊂ Im

(
p∗A2(Z)⊗ p∗A2(Z) −→ A4(X)

)
⊂ Im

(
A2

(0)(X)⊗A2
(0)(X) −→ A4(X)

)
⊂ A4

(0)(X)⊕A4
(2)(X).

Here, for the last inclusion, we have used [22, Proposition 22.8].

On the other hand, we have

p∗ Im
(
A2(Z)⊗A2(Z) −→ A4(Z)

)
⊂ A4(X)ι,
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and thus (by combining with the above inclusion), we find that

p∗ Im
(
A2(Z)⊗A2(Z) −→ A4(Z)

)
⊂

(
A4

(0)(X)⊕A4
(2)(X)

)
∩A4(X)ι.

However, we have seen (Lemma 3.7) that ι respects the Fourier decom-
position, and thus,(

A4
(0)(X)⊕A4

(2)(X)
)
∩A4(X)ι = A4

(0)(X)ι ⊕A4
(2)(X)ι.

But, A4
(2)(X)ι = 0 (Theorem 3.5), and so,

A4(X)ι = A4
(0)(X)ι.

Since ℓ2 generates A4
(0)(X) and is ι-invariant (Proposition 3.6), we

conclude that

A4(X)ι = A4
(0)(X)ι = A4

(0))X) ∼= Q. �

Corollary 4.3. Let (X, ι) be as in Theorem 3.5. Let Z := X/ι be the
quotient. Then, the image of the intersection product map

Im
(
A3(Z)⊗A1(Z) −→ A4(Z)

)
has dimension 1.

Proof. As above, let p : X → Z denote the quotient morphism. It
will suffice to show that

Im
(
A3(X)ι ⊗A1(X)ι −→ A4(X)ι

)
is of dimension 1.

There is a decomposition

A3(X)ι = A3
(0)(X)ι ⊕A3

(2)(X)ι

(this follows from Lemma 3.7). Moreover, it is known that

A3
(2)(X) ·A1(X) ⊂ A4

(2)(X)

[22, Proposition 22.6]. However, we know from Theorem 3.5 that
A4

(2)(X)ι = 0, and so,

A3
(2)(X)ι ⊗A1(X)ι −→ A4(X)ι
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is the zero map. It follows that

Im
(
A3(X)ι ⊗A1(X)ι −→ A4(X)ι

)
= Im

(
A3

(0)(X)ι ⊗A1(X)ι −→ A4(X)ι
)
.

In order to analyze the right-hand side, we observe that

A3
(0)(X) = A1(X)prim ·A2

(0)(X)

(the inclusion “⊃” is proven in [22, Proposition 22.7]; the inclusion
“⊂” follows from [22, Remark 4.7]). It follows that

Im
(
A3

(0)(X)ι ⊗A1(X)ι −→ A4(X)ι
)

⊂
(
A1(X)prim ·A2

(0)(X) ·A1(X)
)
∩A4(X)ι

⊂
(
A4

(0)(X)⊕A4
(2)(X)

)
∩A4(X)ι

= A4
(0)(X).

Here, the second equality is [22, equation (118)], and the third equality
is Theorem 3.5 combined with Lemma 3.7. �

We can also say something about 1-cycles on the quotient:

Corollary 4.4. Let (X, ι) be as in Theorem 3.5. Let Z := X/ι be the
quotient. Then, the image of the intersection product map

Im
(
A2(Z)⊗A1(Z) −→ A3(Z)

)
is a finite-dimensional Q-vector space.

Proof. As above, let p : X → Z denote the quotient morphism. We
have seen (Lemma 4.2) that

p∗A2(Z) ⊂ A2
(0)(X),

and thus,

p∗ Im
(
A2(Z)⊗A1(Z) −→ A3(Z)

)
⊂ Im

(
A2

(0)(X)⊗A1(X) −→ A3(X)
)
.
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Let N2H4(X) ⊂ H4(X) denote the Q-vector space of cycle classes.
There is an exact sequence

0 −→ A2
(0),hom(X) −→ A2

(0)(X) −→ N2H4(X) −→ 0.

Let b1, . . . , br be (non-canonical) lifts of a basis of the finite-dimensional
Q-vector space N2H4(X) to A2

(0)(X), and let B ⊂ A2
(0)(X) be the

finite-dimensional sub-vector space spanned by the bi.

It is known that the intersection product map

A2
(0),hom(X)⊗A1(X) −→ A3(X)

is the zero-map [22, Proposition 22.4]. It follows that

Im
(
A2

(0)(X)⊗A1(X) −→ A3(X)
)
= Im

(
B ⊗A1(X) −→ A3(X)

)
,

which is finite-dimensional. Since p∗ is injective, this proves the
corollary. �

Remark 4.5. Let X and Z be as in Corollary 4.4. The statement
obtained in Corollary 4.4 is presumably less than optimal, in the
following sense. It should be the case that the cycle class map induces
an injection

(4.1) Im
(
A2(Z)⊗A1(Z) −→ A3(Z)

) ??
↩→ H6(Z).

Indeed, as we have seen, p∗A2(Z) ⊂ A2
(0)(X). Now, if we knew that

(4.2) Im
(
A2

(0)(X)⊗A1(X) −→ A3(X)
)
⊂ A3

(0)(X),

then one could conclude that (4.1) is true.

Unfortunately, the inclusion (4.2) is known only for Fano varieties
of very general cubic fourfolds. The problem is thus the absence of
an MCK decomposition for Fano varieties of arbitrary smooth cubic
fourfolds.
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