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FUNDAMENTAL GROUP OF SPACES
OF SIMPLE POLYGONS

AHTZIRI GONZÁLEZ

ABSTRACT. The space of shapes of n-gons with marked
vertices can be identified with CPn−2. The space of shapes
of n-gons without marked vertices is the quotient of CPn−2

by a cyclic group of order n generated by the function
which re-enumerates the vertices. In this paper, we prove
that the subset corresponding to simple polygons, i.e.,
without self-intersections, in each case is open and has two
homeomorphic, simply connected components.

Let n ≥ 3 be an integer. Identifying the point (z1, z2, . . . , zn) ∈
Cn with the n-gon whose consecutive vertices are z1, z2, . . . , zn, we
obtain that Cn is the set of n-gons with marked vertices contained
in C. Consider the equivalence relation given by (z1, z2, . . . , zn) ∼
(w1, w2, . . . , wn), if and only if there exist a, b ∈ C with a ̸= 0 such that
wi = azi + b for i = 1, . . . , n. Note that any two equivalent n-gons in
the (n− 1)-dimensional subspace Vn = {(z1, . . . , zn) : z1 = 0} differ by
a factor of a ̸= 0. Then, there are canonical biholomorphisms between
the complex projectivization of Vn, the complex projective space CPn−2

and the quotient P(n) := (Cn \ {(z, z, . . . , z)})/∼, where the complex
line {(z, z, . . . , z)} corresponds to the zero of Vn. The space P(n) is
called the space of shapes of n-gons with marked vertices.

In order to eliminate the marks on the vertices, we consider the
action of the shift function (z1, z2, . . . , zn) 7→ (z2, . . . , zn, z1) in Cn.
This linear automorphism defines a biholomorphism δ : P(n) → P(n)
(Lemma 4.1). The quotient P(n) = P(n)/⟨δ⟩ is called the space of
shapes of n-gons without marked vertices.
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Topology and geometry of certain subsets of the space of shapes of
n-gons P(n) have been investigated by different authors. Some of this
research includes: the topology of subsets corresponding to n-gons with
fixed side lengths is studied in [6] (achieving a complete description for
the cases n = 4, 5 and 6). The structure of the subsets corresponding
to n-gons whose sides are parallel to fixed directions has been discussed
in [2]. In [7], the subset of P(5) determined by star-shaped pentagons
is studied. Subsets corresponding to n-gons obtained as unfoldings of
polyhedra with fixed conic angles are studied in [10].

In this paper, we use classical techniques in topology to prove that
the subsets of P(n) and P(n) corresponding to simple n-gons are open
and have two simply connected homeomorphic components. We also
provide a description of the local neighborhoods around the regular
polygon in P(n). The topics treated here are divided into four sections:
In Section 1, we mention the necessary definitions and remarks as well
as the example of triangles. In Section 2, the first topological properties
of the space of simple n-gons with marked vertices (Definition 1.1) are
proved. In Section 3, it is proven that each component of such a space
is simply connected. Finally, in Section 4, results regarding the space
of simple n-gons without marked vertices are provided.

1. Preliminaries. Let Z = (z1, . . . , zn) be a point in Cn. We
denote by c(Z) the set

{z1z2 ∪ z2z3 ∪ · · · ∪ zn−1zn ∪ znz1} ⊂ C,

where ab is the line segment between the complex numbers a and b.

Definition 1.1 (Simple polygons). Let Z ∈ Cn.

(1) We say that Z is simple if its vertices are pairwise distinct, and
c(Z) determines a Jordan curve in C. We denote by S(n) ⊂ Cn the set
of simple n-gons.

(2) If Z is simple, then the interior of Z is the bounded component
of C \ c(Z) and is denoted by int(Z). The closure of Z is the set
cl(Z) = c(Z) ∪ int(Z).

(3) If Z is simple and x ∈ int(Z), then we say that Z is positively
(negatively) oriented if the winding number around x of c(Z) with the
orientation determined by the increasing order in the vertices is 1 (−1).
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Figure 1. A 12-gon where z2 and z8 are the only vertices such that their
diagonals are internal.

Definition 1.2 (Interior and exterior diagonals). Let Z ∈ Cn be a
simple n-gon with n ≥ 4. A diagonal of Z is a segment zizj with
j ̸= i− 1, i, i+ 1. The diagonal zi−1zi+1 is called the diagonal of the
vertex zi.

(1) The diagonal zizj is interior to Z if zizj \ {zi, zj} ⊂ int(Z).

(2) The diagonal zizj is exterior to Z if zizj \ {zi, zj} ⊂ (Cr cl(Z)).

It is well known that, if n ≥ 4, then every simple n-gon has an
interior diagonal. Using this fact and induction over n, it can be proven
that the interior of every simple n-gon can be divided, with internal
diagonals, into n− 2 triangles.

Remark 1.3. Let Z be a simple n-gon with n ≥ 4. If we divide Z with
diagonals into n−2 triangles, then, by a counting argument, there must
be at least two triangles having two edges which also are edges of Z.
Therefore, every simple n-gon has at least two non adjacent vertices
such that their diagonals are internal (Figure 1).

We denote by η : Cn \{(z, z, . . . , z)} → P(n) the quotient projection,
and by [z1, z2, . . . , zn] ∈ P(n) the shape of the n-gon (z1, z2, . . . , zn) ∈
Cn \ {(z, z, . . . , z)}. In addition, C∗ = C \ {0}, and AC denotes the
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complex affine group

{f : C −→ C : f(z) = az + b, a ∈ C∗, b ∈ C}.

Remark 1.4 (Fibration). Note that η−1([z1, . . . , zn]) = {(az1 +
b, . . . , azn + b) ∈ Cn : a ∈ C∗, b ∈ C}. In fact, there is a principal
AC-bundle

AC −→ Cn \ {(z, z, . . . , z)} η−→ P(n).

This fibration is not trivial since π1(P(n)×AC) = π1(P(n)×C×C∗) = Z
(AC is homeomorphic to C×C∗); however, π1(Cn \{(z, . . . , z}) = 0 for
n > 2.

Remark 1.5 (Local chart). The chart {[z1, z2, . . . , zn] ∈ P(n) : z1 ̸=
z2} → Cn−2, given by

[z1, z2, z3, . . . , zn] 7−→
(
z3 − z1
z2 − z1

, . . . ,
zn − z1
z2 − z1

)
,

defines an embedding of η(S(n)) into Cn−2, i.e., η(S(n)) is entirely
contained in the domain of this single chart of P(n).

Example 1.6 (Space of triangles). The space of shapes of triangles
with marked vertices P(3) is homeomorphic to the sphere S2. There
are three options for the shapes [0, 1, x+ iy] ∈ P(3): a) y > 0, b) y < 0,
c) y = 0. Note that a) and b), respectively, correspond to positively
and negatively oriented simple triangles, and c) corresponds to triangles
having collinear vertices. The only shape which is not in the local chart
of Remark 1.5 is [0, 0, 1].

We conclude that the space of shapes of simple triangles η(S(3)) is
the union of two open discs with common boundary. From Remark 1.4,
it follows that S(3) has two components which are homeomorphic to
the product of an open disc of dimension two with C × C∗ (any fiber
bundle over the disc is trivial).

2. First results.

Proposition 2.1. S(n) is an open subset of Cn.

Proof. Let Z = (z1, z2, . . . , zn) ∈ S(n). For k ∈ {1, 2, . . . , n}, we
define

Lk = {zk+1zk+2 ∪ zk+2zk+3 ∪ · · · ∪ zk−2zk−1}.
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Lk is compact and does not contain the vertex zk; therefore, rk =
d(zk,Lk) is positive, where d(A,B) is the Euclidean distance between
the sets A,B ⊂ C. The number rZ = min{r1, r2, . . . , rn} is also
positive. Let BrZ/3(zk) be the disc of radio rZ/3, centered at zk. Then,
the polydisc,

UZ =

n∏
k=1

BrZ/3(zk),

is an open neighborhood of Z contained in S(n). �

Lemma 2.2. Let n ≥ 4. If J ⊂ {1, 2, . . . , n} is such that |J | ≤ n− 3,
then the set

SJ(n− |J |) :=
{
Z ∈ S(n) : zk =

zk−1 + zk+1

2
, k ∈ J

}
is an embedded copy of S(n− |J |) in S(n).

Proof. SJ(n− |J |) is contained in the linear subspace

W (n− |J |) = {Z ∈ Cn : zk = (zk−1 + zk+1)/2, k ∈ J}.

If L : W (n − |J |) → Cn−|J| is the restriction of the projection to
the coordinates {1, 2, . . . , n} \ J , then L is a linear isomorphism and
L(SJ (n − |J |)) = S(n − |J |). The restriction of L−1 to S(n − |J |)
provides an embedding into S(n). �

From now on, we denoteRn = (1, e2πi/n, (e2πi/n)2, . . . , (e2πi/n)n−1) ∈
Cn, i.e., the regular n-gon with vertices at the nth-roots of the unity.

Theorem 2.3. S(n) has two homeomorphic path-connected compo-
nents.

Proof. The components correspond to the subsets of positively and
negatively oriented n-gons, denoted by S+(n) and S−(n), respectively.
It is clear that S+(n) ∩ S−(n) = ∅, and the function

(z1, z2, . . . , zn−1, zn) 7−→ (z1, zn, zn−1, . . . , z2)

is a homeomorphism between S+(n) and S−(n).
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We will use induction to prove that, for every positively oriented
simple n-gon Z, there is a curve γZ : [0, 1] → S+(n) which joins Z with
Rn. For n = 3, the result follows from Example 1.6.

If Z ∈ S+(n), and zk ∈ Z is a vertex whose diagonal is interior to Z
(Remark 1.3), then the curve

γ1 : [0, 1] −→ Cn,

γ1(t) = (z1, . . . , (1− t)zk + t (zk−1 + zk+1) /2, . . . , zn),

is contained in S+(n), γ1(0) = Z and γ1(1) ∈ S{k}(n − 1). From the
induction hypothesis and Lemma 2.2, there is a curve

γ2 : [0, 1] −→ S{k}(n− 1)

such that γ2(0) = γ1(1), and γ2(1) is the n-gon(
1, . . . , (e2πi/n)k−2,

(e2πi/n)k−2+ (e2πi/n)k

2
, (e2πi/n)k, . . . , (e2πi/n)n−1

)
,

i.e., γ2(1) is Rn with its kth vertex deformed to the middle point of its
diagonal. The curve γ3 : [0, 1] → Cn, which linearly joins γ2(1) with Rn,
is also contained in S+(n). The desired curve is γZ = γ1 ∗ γ2 ∗ γ3. �

The next result easily follows from Proposition 2.1 and Theorem 2.3.

Corollary 2.4. The set η(S(n)) = η(S+(n)) ∪ η(S−(n)) ⊂ P(n) is
open, and η(S+(n)) and η(S−(n)) are disjoint and path-connected,
and the function [z1, z2, . . . , zn] 7→ [z1, zn, . . . , z2] is a homeomorphism
between them.

2.1. Deformable vertices.

Definition 2.5 (Deformable vertex). Let Z ∈ Cn be a simple n-gon.
We say that the vertex zk ∈ Z is deformable if cl(zk−1, zk, zk+1) ∩
c(Z) = zk−1zk ∪ zkzk+1. If zk ∈ Z is deformable, then we denote
z̃k = (zk−1 + zk+1)/2. We denote by Dk(n) ⊂ Cn the set of simple
n-gons whose kth vertex is deformable.

Remark 2.6. The vertex zk in the simple n-gon Z = (z1, z2, . . . , zn)
is deformable if and only if one of the following conditions holds:
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(a) zk−1zk+1 is interior to Z;

(b) zk belongs to zk−1zk+1;

(c) zk−1zk+1 is exterior to Z, and the polygonal

Lk = {zk+1zk+2 ∪ zk+2zk+3 ∪ · · · ∪ zk−2zk−1}

does not intersect int(zk−1, zk, zk+1).

Note that the triangles do not have deformable vertices. In the 12-
gon of Figure 1, z2, z8 and z9 are the only deformable vertices. In this
case, z3z5 is an exterior diagonal, but z4 is not deformable.

Proposition 2.7. If Z is a simple n-gon with n ≥ 4, then Z has at
least three deformable vertices.

Proof. If Z is convex, then each diagonal zk−1zk+1 satisfies condi-
tion (a) or (b) from Remark 2.6. If Z is not convex, then, by Re-
mark 1.3, it is sufficient to prove that there exists a vertex whose diag-
onal satisfies condition (c) from Remark 2.6.

Let E(Z) be the polygon which is the convex hull of Z. Suppose that
zizj , with i < j − 1, is a diagonal of Z which is an edge of E(Z). Let

Ẑ be the polygon such that zi and zj are vertices of Ẑ and int(Ẑ) ⊂
(cl(E(Z)) \ cl(Z)) (the possibilities are Ẑ = (zi, zi+1, . . . , zj−1, zj) or

Ẑ = (zj , zj+1, . . . , zn, z1, . . . , zi−1, zi)). Then, there are the cases:

Case I. Ẑ is a triangle. In this case, j = i + 2 or j = i − 2, and in
both cases, zizj is the desired diagonal.

Case II. Ẑ is a simple k-gon with 4 ≤ k < n. By Remark 1.3, Ẑ has
at least one vertex zl different from zi and zj and such that zl−1zl+1 is

interior to Ẑ. The desired diagonal is zl−1zl+1. �

Lemma 2.8 (Properties of the Dk(n)). Let n ≥ 4 and 1 ≤ k ≤ n.

(i) S{k}(n− 1) is a strong deformation retract of Dk(n).
(ii) D1(n) is homeomorphic to Dk(n).
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(iii) S(n) =
∪n

k=3 Dk(n).
(iv) Dk(n) ⊂ Cn is open.

Proof. The function (t, (z1, . . . , zk, . . . , zn)) 7→ (z1, . . . , (1 − t)zk +
tz̃k, . . . , zn) defines a strong deformation retraction from Dk(n) to
S{k}(n). A homeomorphism between D1(n) and Dk(n) is given by
(z1, . . . , zk, . . . , zn) 7→ (zk, . . . , zn, z1, . . .) (function which re-enumerates
the vertices). Property (iii) follows easily from Proposition 2.7.

In order to prove property (iv), using property (ii), it is sufficient
to show that D2(n) is open. Let Z = (z1, . . . , zn) ∈ D2(n). Since
cl(z1, z2, z3) is compact and disjoint from {zl} for l ∈ {4, 5, . . . , n}, then
rl = min{rZ , d(zl, cl(z1, z2, z3))} is a positive number (rZ was defined in
the Proof of Proposition 2.1). If r = min{r4, . . . , rn}, then the polydisc∏n

k=1 Br/3(zk) is an open neighborhood of Z which is contained in
D2(n). �

3. S(n) is simply connected. From now on, we shall work in the
component S(n) = η(S+(n)) of η(S(n)). By Corollary 2.4, the results
obtained will also be valid in the component η(S−(n)).

In the proof of the main theorem we shall use the next easy corollary
of Van Kampen’s theorem [5, p.43].

Lemma 3.1. Let U1, U2, . . . , Um be open and simply connected subsets
of X such that

∩m
k=1 Uk ̸= ∅,

∪m
k=1 Uk = X and, for all 1 ≤ j < k ≤ m,

Uj ∩ Uk is path-connected. Then, X is simply connected.

During the proof of the next result, we will use the notation:
SJ (n− |J |) = η(SJ (n− |J |) ∩ S+(n)) and Dk(n) = η(Dk(n) ∩ S+(n)).

Theorem 3.2. S(n) ⊂ P(n) is simply connected.

Proof. We proceed by induction over n. Example 1.6 shows the case
n = 3.

We will prove that the sets Dk(n) with k = 3, 4, . . . , n, satisfy the
hypothesss of Lemma 3.1. From Lemma 2.8 (iii) and (iv), we know
that the sets Dk(n) are open and S(n) =

∪n
k=3 Dk(n). The intersection∩n

k=3 Dk(n) is not empty since it contains the convex n-gons.
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The strong deformation retraction in the Proof of Lemma 2.8 re-
spects the action of the complex affine group, and hence, descends to a
well-defined strong deformation retraction from Dk(n) to S{k}(n). Us-
ing the induction hypothesis and Lemma 2.2, we conclude that Dk(n)
is simply connected for all k.

It only remains to show that Dj(n) ∩ Dk(n) is path-connected for
3 ≤ j < k ≤ n. There are two cases.

Case j < k − 1. Let Z,W ∈ Dj(n) ∩ Dk(n). Deforming their jth
and kth vertices to the points z̃j , z̃k and w̃k, w̃j , we obtain two simple
n-gons Z ′ and W ′ which belong to S{j,k}(n−2). Using Lemma 2.2 and
Theorem 2.3, the result is proven.

Case j = k − 1. We will suppose that j = 3 and k = 4; the other
cases are similar. During the proof, we will work with representatives
of simple n-gons with their first and second vertices fixed at 0 and 1,
respectively.

Let Z = [0, 1, z3, . . . , zn] ∈ D3(n) ∩ D4(n). If n > 4, then, for each
vertex zk, with k = 6, 7, . . . , n, 1, we denote by Rk ⊂ C the infinite
ray which begins at z5 and contains the segment z5zk. Since z3 is
deformable and Z is simple, the ray Rk \ z5zk intersects z41 at a single
point or does not intersect z41. We denote µk(Z) ∈ C as the point
(Rk \ z5zk) ∩ z41, if it exists; if such an intersection is empty, set
µk(Z) = 1 (note that always µk(Z) ̸= z4). Let µ(Z) ∈ z41 be the
closest µk(Z) to z4 (Figure 2). For the case n = 4, µ(Z) = 1 for all
Z ∈ S(4). The functions

µk : D3(n) ∩ D4(n) → C,

Z 7−→ µk(Z),

with k = 6, 7, . . . , n, 1, vary continuously with the vertices of Z, and
therefore, the function µ : D3(n)∩D4(n) → C, Z 7→ µ(Z), is continuous.

We define z′3 := (µ(Z) + z4)/2 for all Z ∈ D3(n) ∩ D4(n), and

G : [0, 1]× (D3(n) ∩ D4(n)) → P(n),

the function given by

(t, Z) = (t, [0, 1, z3, z4, . . . , zn]) 7−→ [0, 1, (1− t)z3 + tz′3, z4, . . . , zn].
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Figure 2. The points µ = µ(Z) and z′3 for two 12-gons. a) The diagonals
1z4 and z3z5 are interior. b) 1z4 is exterior and z3z5 is interior.

We proceed to prove that G is a strong deformation retraction from
D3(n) ∩ D4(n) to G(1,D3(n) ∩ D4(n)). Continuity of G follows from
continuity of µ. G(0,−) is the identity map, and, for all t ∈ [0, 1]
and Z ∈ G(1,D3(n) ∩ D4(n)), G(t, Z) = Z is satisfied. Let Z ∈
D3(n) ∩ D4(n). It only remains to prove that G(t, Z) ∈ D3(n) ∩ D4(n)
for all t ∈ [0, 1]. Note that G(−, Z) does not move the diagonal 1z4,
and therefore, the third vertex z3(t) = (1 − t)z3 + tz′3 of G(t, Z) is
deformable for all t ∈ [0, 1]. We claim that z4 is deformable in G(t, Z)
for all t ∈ [0, 1]. The proof is broken into three cases:

Case I. 1z4 ∪ z3z5 ⊂ cl(Z) or 1z4 ∪ z3z5 ⊂ C \ int(Z). In these cases,
the quadrilateral (z3, µ(Z), z5, z4) is convex and int(z3, µ(Z), z5, z4)
contains no vertices of Z, Figure 2 a). Since z′3 is the middle point

of µ(Z)z4, the segment z3z′3 is contained in cl(z3, µ(Z), z5, z4). By
definition of µ(Z) and the assumption that z3 is deformable in Z, it

is implied that, for all t, the open segment z5z3(t) \ {z5, z3(t)} does

not intersect c(Z). We conclude that z5z3(t) is an interior diagonal

of G(t, Z) if z5z3 is interior to Z, and z5z3(t) is an exterior diagonal
of G(t, Z) if z5z3 is exterior to Z. Then, z4 is a deformable vertex of
G(t, Z) for all t ∈ [0, 1].
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Case II. 1z4 ⊂ cl(Z) and z3z5 ⊂ C \ int(Z). There are three sub-
cases:

(i) If the quadrilateral (1, z3, z5, z4) is convex, then int(1, z3, z5, z4)
does not contain any vertex of Z, and hence, µ(Z) = 1. We conclude

that z′3 = z̃3 and z3z′3 ⊂ cl(1, z3, z5, z4), and therefore, z4 ∈ G(t, Z) is
deformable.

(ii) If z3 ∈ int(1, z5, z4), then z3 is the only vertex of Z in the
convex region int(µ(Z), z5, z4) (it may occur that µ(Z) = 1). Since

z3z′3 ⊂ cl(µ(Z), z5, z4), z4 ∈ G(t, Z) is deformable.

(iii) If z4 ∈ int(1, z3, z5), then z4 is the only vertex of Z in the

convex region int(µ(Z), z3, z5). By construction, z3z′3 ⊂ cl(µ(Z), z3, z5)

and z3z′3 ∩ z5z4 = ∅; thus, z4 ∈ G(t, Z) is deformable.

Case III. 1z4 ⊂ C \ int(Z) and z3z5 ⊂ cl(Z). There are three
analogous sub-cases as in Case II (Figure 3 b) shows an example
analogous to Case II (iii)). The proof of each is also similar.

The fact that Cases I–III cover all possibilities can be deduced from
the fact that, since z3 and z4 are deformable vertices, the diagonals
z3z5 and 1z4 must each lie either in cl(Z) or in C \ int(Z) (see Remark
2.6). We conclude that G(1,D3(n) ∩ D4(n)) is a strong deformation
retract of D3(n) ∩ D4(n).

Consider the function f : S{3}(n−1) → G(1,D3(n)∩D4(n)), defined
by [0, 1, z̃3, z4, . . . , zn] 7→ [0, 1, z′3, z4, . . . , zn]. Note that f is well
defined, and, in fact, is a bijection since, for all Z ∈ D3(n) ∩ D4(n),
the value of z′3 is determined by the vertices 0, 1, z4, . . . , zn. Continuity
of f is immediate from continuity of µ, and continuity of f−1 follows
from continuity of (1, z′3, z4) 7→ (1, (1 + z4)/2, z4). Then, f is a
homeomorphism between S{3}(n − 1) and G1(D3(n) ∩ D4(n)). From
Theorem 2.3, it follows that D3(n) ∩ D4(n) is path-connected. �

Theorem 3.3. π1(S
+(n)) is a cyclic group, and, if k ≥ 3, then

πk(S
+(n)) is isomorphic to πk(S(n)).

Proof. The long exact sequence in homotopy for the fibration from
Remark 1.4 [5, page 376] looks like:

· · · −→ πk(C×C∗) −→ πk(S
+(n)) −→ πk(S(n)) −→ πk−1(C×C∗) −→ · · · .
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If k ≥ 3, then πk(C × C∗) = πk−1(C × C∗) = 0, and therefore,
πk(S

+(n)) ∼= πk(S(n)). For k = 1, consider the next part of the
sequence:

· · · −→ π2(S
+(n)) −→ π2(S(n)) −→ Z f−→ π1(S

+(n)) −→ 0 −→ · · · ,

here, using that π1(C× C∗) = Z and Theorem 3.2. By exactness, f is
onto, and therefore, π1(S

+(n)) is cyclic. �

4. Unlabelled polygons. We denote by δ̂ : Cn → Cn the linear

isomorphism (z1, z2, . . . , zn−1, zn) 7→ (z2, . . . , zn−1, zn, z1). Clearly, δ̂n

is the identity map in Cn.

Lemma 4.1. δ̂ defines a biholomorphism δ : P(n) → P(n).

Proof. Note that Z,W ∈ Cn have the same shape if and only if δ̂(Z)

and δ̂(W ) have the same shape. Then, there exists a δ : P(n) → P(n)

such that δ ◦ η = η ◦ δ̂. The expression of δ in the chart of Remark 1.5
is:

(z3, z4, . . . , zn) 7→
(
z4 − 1

z3 − 1
, . . . ,

zn − 1

z3 − 1
,

1

1− z3

)
.

By taking different charts, it can be proven that this expression defines
a biholomorphism in P(n). �

It is clear that δn is the identity map in P(n). We will denote by δ
the restriction of δ to the open set S(n), and by Rn the projection of
the regular n-gon η(Rn).

Lemma 4.2. If n = mk, then there exists a Z ∈ S(n) such that
δl(Z) ̸= Z when 1 ≤ l < m and δm(Z) = Z. In addition, for Z ∈ S(n),
δ(Z) = Z if and only if Z = Rn.

Proof. If n = mk, then the shape of the n-gon obtained by marking
m − 1 equidistant points on the edges of Rk (Figure 3) satisfies the
desired conditions. If δ(Z) = Z, then Z must have equal angles and
edge lengths, and therefore Z = Rn. �

Theorem 4.3. Let DRnδ be the differential of δ at Rn. Then, it is con-
jugate to the diagonal matrix with entries e4iπ/n, e6iπ/n, . . . , e2(n−1)iπ/n.
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Proof. Let ⟨Z,W ⟩ =
∑

i ziwi be the standard Hermitian product.
The set

β = {Pk = (1, e2πik/n, (e2πik/n)2, . . . , (e2πik/n)n−1}

with k = 0, 1, . . . , n − 1, is a basis of Cn [9, Proposition 3]. The
products between these vectors are

⟨Pk, Pl⟩ =
n−1∑
m=0

(e2πi(k−l)/n)m =

{
n if k = l,

0 if k ̸= l,

and therefore, β is orthogonal. In addition, β is a basis of eigenvectors

for δ̂ since δ̂(Pk) = e2ikπ/nPk for all k.

The space of shapes of n-gons can be obtained as the complex
projectivization of the subspace

V = {(z1, z2, . . . , zn) ∈ Cn : z1 + z2 + · · ·+ zn = 0}.

It is clear that β \ {P0} is basis of V , and therefore, δ̂(V ) = V .
A presentation of the tangent space TRnP(n) is given by the linear
subspace ⟨P2, P3, . . . , Pn−1⟩ since the direction determined by P1 = Rn

is nullified by the projectivization. The action of δ̂ in this subspace
corresponds to the action of DRnδ in TRnP(n). We conclude that DRnδ
is conjugated to the matrix:

∆n =


e4πi/n 0 · · · 0

0 e6πi/n · · · 0
...

...
. . .

...
0 0 · · · e2(n−1)πi/n

 . �

Definition 4.4 (Polygons without marked vertices). We call the quo-
tients P(n) = P(n)/⟨δ⟩ and S(n) = S(n)/⟨δ⟩ the spaces of shapes of
n-gons and simple n-gons without marked vertices, respectively. We
denote by σ the quotient projection S(n) → S(n).

Remark 4.5. Let gFS be the Fubini-Study metric on P(n) (remember

that P(n) is biholomorphic to CPn−2). Since δ̂ is an isometry of
(Cn, ⟨ , ⟩), then gFS defines a metric in the orbifold P(n).
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Figure 3. Two 12-gons where a power of δ is the identity map.

Example 4.6 (Triangles without marked vertices). The action of δ
in P(3) is topologically conjugate (through the chart in Remark 1.5)
with the action of the Möbius map 1/(1 − z) in the Riemann sphere

Ĉ. Therefore, P(3) is a sphere with spherical metric (gFS in CP1 is
the spherical metric), and two conic singularities of conic angle equal
to 2π/3. In this case, S(3) is topologically an open disc corresponding
to the superior hemisphere in P(3).

4.1. Topological properties of S(n).

Theorem 4.7. S(n) is simply connected.

Proof. The group ⟨δ⟩ acts discontinuously in S(n) and fixes Rn. From
Theorem 3.2 and Armstrong’s theorem [1], it follows that π1(S(n)) ∼=
π1(S(n)) = 1. �

Theorem 4.8. The local neighborhoods of σ(Rn) in P(n) are homeo-
morphic to the cone ((S2n−5/∆n)× [0, 1))/{(x, 0)}.

Proof. Since gFS
Rn

(v, v) = gFS
Rn

(DRnδv,DRnδv) for all v ∈ TRnS(n),
then DRnδ preserves the level spheres

Es = {v ∈ TRn
S(n) : gFS

Rn
(v, v) = s}.

From Theorem 4.3, it follows that TRnS(n)/⟨DRnδ⟩ is homeomorphic
to ((S2n−5/⟨∆n⟩)× [0, 1))/{(x, 0)}. Note that, if n is a prime number,
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then this quotient is the cone over a generalized lens space [5, page
144].

Let dFS : S(n) × S(n) → R be the distance in P(n) associated to
gFS . It can be proven that δ is an isometry of (P(n), dFS). Then, for
all Z ∈ S(n) and 1 ≤ k ≤ n, we have

dFS(Rn, Z) = dFS(δ
k(Rn), δ

k(Z)) = dFS(Rn, δ
k(Z)).

Let expRn
: TRnS(n) → S(n) be the exponential map of gFS . Then,

there exists a number r > 0 such that expRn
is an isometry in the

neighborhood

U = {v ∈ TRnS(n) : g
FS
Rn

(v, v) < r}

[3, page 65]. We conclude that, for s < r, the images Es = expRn
(Es)

are the level spheres {Z ∈ S(n) : dFS(Rn, Z) = s} of dFS around Rn. In
addition, the spheres Es remain invariant under the action of the cyclic
group ⟨δ⟩.

Since δ takes the geodesic with initial condition v0 ∈ TRnS(n)
to the geodesic with initial condition DRn

δ(v0), then it follows that
δ ◦ expRn

= expRn
◦DRnδ (i.e., expRn

conjugates the actions of δ and
DRn

δ). Therefore, for all s < r, the following holds:

Es/⟨δ⟩ ∼= Es/⟨DRn
δ⟩ ∼= Es/⟨∆n⟩ ∼= S2n−5/⟨∆n⟩.

We conclude that the neighborhood σ(exp(U)) ⊂ P(n) is homeomor-
phic to the cone mentioned. �

In Example 4.6, the level spheres Es and the quotients Es/⟨δ⟩ are
circles, and therefore, P(3) is a manifold. The next result shows what
occurs when n is the power of a prime number.

Corollary 4.9. If n > 3 and n = pk with p a prime number, then the
space P(n) is not a manifold.

Proof. If U is a local neighborhood around σ(Rn), as in Theo-
rem 4.8, then, by Kwun’s theorem [8], it is sufficient to prove that
H1(S2n−5/⟨∆n⟩) is not trivial. By Theorems 4.3 and 4.8, the subgroup
of ⟨δ⟩, which fixes some points in the level spheres Es, is exactly ⟨δp⟩.
Using Armstrong’s theorem [1], we conclude that π1(S2n−5/⟨∆n⟩);
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hence, also H1(S2n−5/⟨∆n⟩), is isomorphic to ⟨δ⟩/⟨δp⟩, which is cyclic
of order p. �

The same argument shows that π1(Es/⟨δ⟩) is trivial if n is not a power
of a prime number. For these cases, we do not have any properties of
the quotients Es/⟨δ⟩.
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