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CUNTZ-PIMSNER ALGEBRAS OF
GROUP REPRESENTATIONS

VALENTIN DEACONU

ABSTRACT. Given a locally compact group G and a
unitary representation ρ : G → U(H) on a Hilbert space
H, we construct a C∗-correspondence E(ρ) = H ⊗C C∗(G)
over C∗(G) and study the Cuntz-Pimsner algebra OE(ρ). We
prove that, for G compact, OE(ρ) is strongly Morita equiv-
alent to a graph C∗-algebra. If λ is the left regular repre-
sentation of an infinite, discrete and amenable group G, we
show that OE(λ) is simple and purely infinite, with the same

K-theory as C∗(G). If G is compact abelian, any repre-
sentation decomposes into characters and determines a skew
product graph. We illustrate with several examples, and we
compare E(ρ) with the crossed product C∗-correspondence.

1. Introduction. In a seminal paper [10], Kumjian studied the
Cuntz-Pimsner algebra associated to a faithful representation π of
a separable unital C∗-algebra A on a Hilbert space H such that
π(A)∩K(H) = {0}, where K(H) denotes the set of compact operators.
He considered the C∗-correspondence E = H⊗C A over A with natural
structure and proved that OE is simple and purely infinite. Moreover,
its isomorphism class depends only upon the K-theory of A and the
class of the unit [1A]. In [1], the authors used this type of construction
to prove that any order-two automorphism of the K-theory of a unital
Kirchberg algebra A satisfying UCT with [1A] = 0 in K0(A) lifts to an
order-two automorphism of A. For more about lifting automorphisms
of K-groups to Kirchberg algebras, see [8, 15].

In this paper, we study a similar C∗-correspondence E(ρ) over
A = C∗(G), the C∗-algebra of a locally compact group G, where the
representation π of A is obtained by integrating a unitary representa-
tion ρ : G → U(H). In our setting, π is not necessarily faithful, and
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the intersection of π(A) with the compact operators is not necessar-
ily trivial. In particular, the left multiplication on E(ρ) may not be
injective, and the resulting Cuntz-Pimsner algebra may not be simple
or purely infinite. For compact groups, we prove that OE is strongly
Morita equivalent to a graph C∗-algebra. Since any representation de-
composes into a direct sum of irreducible representations, it suffices to
study C∗-correspondences arising from these representations. We illus-
trate how basic operations on representations reflect on the associated
graphs.

Graphs associated to representations of finite or compact groups
were already considered in the work of McKay [11] and of Mann,
Raeburn and Sutherland [12]. Given a representation ρ of a group G

with set of irreducible representations Ĝ = {πj}, they considered the

graph with vertex set Ĝ and incidence matrix [mjk], where

ρ⊗ πj =
⊕
k

mjkπk.

This kind of graph has connections with Doplicher-Roberts algebras,
see [2, 12]. The graphs obtained from our E(ρ) are, in general, different
from these graphs, since they may have sources.

For G infinite, discrete and amenable, it is known that the left reg-
ular representation λ extends to a faithful representation of C∗(G).
Since C∗(G) is unital and the intersection with the compacts is trivial,
it follows from [10] that the Cuntz-Pimsner algebra OE(λ) is simple,
purely infinite and KK-equivalent with C∗(G). It is a challenge to
understand the Cuntz-Pimsner algebra associated with any represen-
tation of an arbitrary group. Sometimes there are connections with
C∗-algebras of topological graphs, as in the case G = Z.

We compare the C∗-correspondence E(ρ) with the crossed product
C∗-correspondence D(ρ) associated to a group action, see [2]. Recall
that a representation of dimension n ≥ 2 determines a quasi-free action
on the Cuntz algebra On such that On o G ∼= OD(ρ). In the case
where G is abelian, we review some examples studied by Kumjian and
Kishimoto [9] and by Katsura, see [7], from a new viewpoint.

For more C∗-correspondences over group C∗-algebras, also see the
recent preprint [5].
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2. The C∗-correspondence of a group representations. Let
G be a (second countable) locally compact group. A unitary group
representation is a homomorphism ρ : G → U(H), where H is a
(separable) Hilbert space such that, for any fixed ξ ∈ H, the map
g → ρ(g)ξ is continuous. The left regular representation is

λ : G −→ U(L2(G)), λ(g)ξ(h) = ξ(g−1h).

A representation ρ : G → U(H) extends by integration to

π = πρ : C∗(G) −→ L(H)

such that

π(f)ξ =

∫
G

f(t)ρ(t)ξ dt for f ∈ L1(G), ξ ∈ H.

Definition 2.1. The C∗-correspondence over C∗(G) of a representa-
tion ρ is E = E(ρ) = H⊗CC

∗(G) where, for ξ, η ∈ H and a, b ∈ C∗(G),
the inner product is given by

⟨ξ ⊗ a, η ⊗ b⟩ = ⟨ξ, η⟩a∗b,

and the right and left multiplications are

(ξ ⊗ a) · b = ξ ⊗ ab, a · (ξ ⊗ b) = πρ(a)ξ ⊗ b.

Here ⟨ξ, η⟩ denotes the right-linear inner product in H.

It is easy to see that equivalent representations determine isomorphic
C∗-correspondences.

Theorem 2.2. If G is a compact group and ρ : G → U(H) is any
unitary representation, then OE(ρ) is strongly Morita equivalent (SME)
to a graph C∗-algebra. If πρ : C∗(G) → L(H) is injective, then the
graph has no sources. If ρ ∼= ρ1 ⊕ ρ2, then the incidence matrix for the
graph of ρ is the sum of incidence matrices for ρ1 and ρ2.

Proof. By the Peter-Weyl theorem, the group C∗-algebra C∗(G)
decomposes as a direct sum of matrix algebras Ai = Mn(i) with units

pi, indexed by the discrete set Ĝ of equivalence classes of irreducible
representations.
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Let E be the graph with vertex space E0 = Ĝ and with edges joining
the vertices vi and vj determined by the number of minimal components
of the (non-zero) Aj-Ai C

∗-correspondences pjE(ρ)pi. If pjE(ρ)pi = 0,
there is no edge from vi to vj .

It follows that OE(ρ) is isomorphic to the C∗-algebra of the graph
of C∗-correspondences in which we assign the algebra Ai at the vertex
vi and the minimal components of pjE(ρ)pi ̸= 0 for each edge joining
vi with vj . By construction, this C∗-algebra is SME to C∗(E) (see
[6, 13]). For more on graphs of C∗-correspondences, see [3].

When πρ : C∗(G) → L(H) is injective, it follows that pjE(ρ) ̸= 0,
and therefore, vj is not a source for all j. For the last part, note that
E(ρ) ∼= E(ρ1)⊕ E(ρ2). �

We recall the following result of Kumjian, see [10, Theorem 3.1]:

Theorem 2.3. Let A be a separable unital C∗-algebra, and let E =
H ⊗C A, with left multiplication given by a faithful representation
π : A → L(H) such that π(A) ∩ K(H) = {0}. Then OE is simple,
purely infinite and KK-equivalent to A.

Corollary 2.4. Let G be infinite, discrete and amenable, and let
λ : G → U(ℓ2(G)) be the left regular representation. Then, OE(λ)
is simple, purely infinite and KK-equivalent to C∗(G).

Proof. Since G is discrete, C∗(G) is unital. Since G is amenable, it
is known that the representation πλ : C∗(G) → L(ℓ2(G)) induced by λ
is faithful (see [17, Theorem A.18]). Since G is infinite, we also have

πλ(C
∗(G)) ∩ K(ℓ2(G)) = {0},

and we can apply the above theorem. �
Note that the same conclusion holds for any representation ρ of an

infinite discrete group G such that πρ is faithful.

3. Examples.

Example 3.1. Let S3 = {(1), (12), (13), (23), (123), (132)} be the

symmetric group. Then, Ŝ3 = {ι, ε, σ}, where

ι : S3 −→ U(C), ι(g) = 1,
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is the trivial representation,

ε : S3 → U(C), ε(12) = −1, ε(123) = 1

is the signature representation, and

σ : S3 −→ U(C2),

σ(12) =

[
−1 −1
0 1

]
,

σ(123) =

[
−1 −1
1 0

]
is the (standard) irreducible two-dimensional representation. These
representations have characters

χι(g) = 1, χε(1) = 1, χε(12) = −1, χε(123) = 1

and
χσ(1) = 2, χσ(12) = 0, χσ(123) = −1.

The group algebra C∗(S3) is isomorphic to C ⊕ C ⊕M2(C) with unit
p1 ⊕ p2 ⊕ p3 = (1/6)χι ⊕ (1/6)χε ⊕ (1/3)χσ.

Any representation ρ : S3 → U(H) extends to a representation

πρ : C∗(S3) −→ L(H), πρ

(∑
agδg

)
=

∑
agρ(g),

where, for g ∈ S3, ag ∈ C, δg(h) = 1 for h = g and δg(h) = 0 otherwise.

Since ρ decomposes as a direct sum of irreducibles (with multiplic-
ities), we first list the graphs associated with the representations ι, ε
and σ.

Since πι(p1) = 1, πι(p2) = πι(p3) = 0, we have E(ι) = C⊗C∗(S3) ∼=
C⊕ C⊕M2(C), which gives the graph of C∗-correspondences:

...
C

..
C
..

M2

.

C

.

M2

.

C
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Similarly, πε(p2) = 1, πε(p1) = πε(p3) = 0, and E(ε) = C ⊗ C∗(S3) ∼=
C⊕ C⊕M2(C) gives

...
C

..
C
..

M2

.

C

. M2.C

Since

πσ(p3) =

[
1 0
0 1

]
and

πσ(p1) = πσ(p2) =

[
0 0
0 0

]
,

it follows that E(σ) = C2⊗C∗(S3) ∼= C2⊕C2⊕C2⊗M2(C) determines

...
C

..
C
..

M2
.

M2

.

M2

.

C2

.

C2

Example 3.2. For the permutation representation ρ : S3 → U(C3),
we have πρ

∼= πι ⊕ πσ and

πρ(p1) =

1 0 0
0 0 0
0 0 0

 ,

πρ(p2) = 0,

πρ(p3) =

0 0 0
0 1 0
0 0 1

 .

The C∗-correspondence E(ρ) = C3 ⊗ C∗(S3) ∼= C3 ⊕ C3 ⊕ C3 ⊗ M2
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decomposes as

E(ρ) = p1E(ρ)p1 ⊕ p3E(ρ)p1 ⊕ p1E(ρ)p2 ⊕ p3E(ρ)p2 ⊕ p1E(ρ)p3 ⊕ p3E(ρ)p3
∼= C⊕ C2 ⊕ C⊕ C2 ⊕M2 ⊕ C2 ⊗M2.

Counting dimensions, we obtain the following graph of C∗-correspondences:

...
C

..
C
.. M2
.

M2

.

M2

.

C2

. C2

.

C

.

M2

.C

The subjacent graph E has incidence matrix

Bρ = Bι +Bσ =

1 1 1
0 0 0
1 1 2

 ,

where the entry Bρ(v, w) counts the edges from w to v. It follows that
OE(ρ) is SME to the graph algebra C∗(E).

Using [14, Theorem 3.2], we obtain

K0(C
∗(E)) ∼= cokerD ∼= Z, K1(C

∗(E)) ∼= kerD ∼= 0,

where

D =

 0 −1
−1 0
−1 −2

 .

Compared with [14], note that we reverse the direction of the edges;
thus, sinks become sources.

Remark 3.3. In all of the above cases the graphs have sources since
the extension of the given representation to C∗(S3) is not one-to-one.

If we consider a representation ρ of S3 which contains each of ι, ε
and σ, for example, σ⊗ σ = ι⊕ ε⊕ σ or the left regular representation
λ = ι⊕ε⊕2σ, then πρ will be injective and the graph associated to E(ρ)
will have no sources. Its incidence matrix is obtained by adding the
incidence matrices corresponding to ι, ε and σ, counting multiplicities.



1836 VALENTIN DEACONU

For ρ = σ⊗σ, we obtain the following graph of C∗-correspondences:

...
C

..
C
.. M2
.

M2

.

M2

.

C2

.

C

.

C

.

C

.
M2

.
C

.
C2

.

M2

.
C

with incidence matrix

Bσ⊗σ = Bι +Bε +Bσ =

1 1 1
1 1 1
1 1 2

 .

Example 3.4. Any representation ρ of a cyclic group G is determined
by a unitary ρ(1) ∈ U(H) and decomposes as a direct sum or a direct
integral of characters. Recall that this is merely a restatement of the
spectral theorem for unitary operators.

If G = Z/nZ, then Ĝ = {χ1, . . . , χn}, and E(ρ) determines a
graph with n vertices where the incidence matrix [aji] is such that
aji = dimχjHχi.

For G = Z, we assume that H = L2(X,µ) for a measure space
(X,µ) and that ρ(1) = Mφ, the multiplication operator with a function
φ : X → T.

Then, E(ρ) = L2(X,µ) ⊗ C∗(Z) ∼= C(T, L2(X,µ)) becomes a C∗-
correspondence over C∗(Z) ∼= C(T), with operations:

⟨ξ, η⟩(k) = ⟨ξ(k), η(k)⟩L2(X,µ), for ξ, η ∈ Cc(Z, L2(X,µ)),

and

(ξ · f)(k) =
∑
k

ξ(k)f(k), (f · ξ)(k) =
∑
k

f(k)φkξ(k),

for f ∈ Cc(Z), ξ ∈ Cc(Z, L2(X,µ)).
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If dimH = n is finite, then the function φ is given by (z1, . . . , zn) ∈
Tn, and E(ρ) is isomorphic to the C∗-correspondence of the topological
graph with vertex space E0 = T, edge space E1 = T × {1, 2, . . . , n},
source map s : E1 → E0, s(z, k) = z and range map r : E1 → E0,
r(z, k) = zkz.

If λ is the left regular representation of G = Z on ℓ2(Z), it follows
from Theorem 2.3 that OE(λ) is simple and purely infinite with the
same K-theory as C(T).

Example 3.5. Let G = R, and let µ be the (normalized) Lebesgue
measure µ on R. Consider the representation

ρ : R −→ U(L2(R, µ)), (ρ(t)ξ)(s) = eitsξ(s),

which extends to the Fourier transform πρ on C∗(R) ∼= C0(R), where

(πρ(f)ξ)(s) =

∫
R
f(t)eitsξ(s) dµ(t),

for f ∈ L1(R, µ), ξ ∈ L2(R, µ).

It is known that ρ is equivalent to the right regular representation of R
(see [16, page 117, Theorem 2.2]) and that ρ is a direct integral of
characters χt, where χt(s) = eits.

Then, E(ρ) = L2(R, µ) ⊗ C∗(R) ∼= C0(R, L2(R, µ)) becomes a C∗-
correspondence over C∗(R) ∼= C0(R) such that the left multiplication is
injective and πρ(C0(R))∩K(L2(R, µ)) = {0}. It follows that OE(ρ) has
the K-theory of C0(R); however, since C0(R) is not unital, we cannot
apply Theorem 2.3 to conclude that this algebra is simple or purely
infinite.

4. The crossed product C∗-correspondence. We want to com-
pare our C∗-correspondence E(ρ) associated to a group representation
with another C∗-correspondence from the literature. Let G be a lo-
cally compact group, and let ρ : G → U(H) be a representation
with dimH = n for n ∈ N ∪ {∞}. In [2], we studied the crossed-
product On oρ G, using the crossed product C∗-correspondence D(ρ)
over C∗(G), constructed also from H ⊗C C∗(G) with the same inner
product and right multiplication as E(ρ)

⟨ξ, η⟩(t) =
∫
G

⟨ξ(s), η(st)⟩ ds,
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(ξ · f)(t) =
∫
G

ξ(s)f(s−1t) ds,

but with a different left multiplication

(h · ξ)(t) =
∫
G

h(s)ρ(s)ξ(s−1t) ds

for ξ, η ∈ Cc(G,H) and f, h ∈ Cc(G). This left multiplication is always
one-to-one, which changes the structure of the Cuntz-Pimsner algebra
OD(ρ). We recall the following result (see [4]):

Theorem 4.1. The representation ρ determines a quasi-free action of
G on the Cuntz algebra On and OD(ρ)

∼= On oρ G.

Example 4.2. If G = S3 and ρ : S3 → U(C3) is the permutation repre-
sentation, then D(ρ) = C3⊗C∗(S3) with the above operations becomes
a C∗-correspondence over C∗(S3), different from E(ρ) discussed in Ex-
ample 3.2. It decomposes as C⊕ C⊕M2 ⊕M2 ⊕ C2 ⊕ C2 ⊕ C2 ⊕ C2,
see [2, Example 6.4], and it determines the following graph of C∗-
correspondences for O3 oρ S3:

...

C

..

C

..

M2

.
C2

.
C2

.
C2

.
C2

.

C

.

C

.

M2

.

M2
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The subjacent graph has no sources, and the incidence matrix is1 0 1
0 1 1
1 1 2

 .

5. Quasi-free actions of abelian groups. If G is compact and
abelian, then any representation ρ of dimension n ≥ 2 (including n =

∞) decomposes into characters and determines a cocycle c : E1
n → Ĝ,

where En is the graph with one vertex and n edges. Recall that
C∗(En) = On.

It turns out that On oρ G is isomorphic to C∗(En(c)), where En(c)

is the skew product graph (Ĝ, Ĝ× E1
n, r, s) with

r(χ, e) = χc(e), s(χ, e) = χ,

for χ ∈ Ĝ and e ∈ E1
n.

Example 5.1. If G = T, and λ : T → U(L2(T)) is the left regular
representation, then the algebra O∞ oλ T is isomorphic to the graph
algebra, where the vertices are labeled by Z, and the incidence matrix
has each entry equal to 1.

Example 5.2. If G = R and ρ : R → U(Cn) is a representation for
n ≥ 2, Kishimoto and Kumjian (see [9]) showed that OnoρR is simple
and purely infinite if the characters in the decomposition of ρ generate
R as a closed semigroup.

In [7], Katsura determined the ideal structure of the crossed prod-
ucts On oρ G, where G is a locally compact second countable abelian
group. The action of G is determined by an n-dimensional representa-
tion ρ with characters {ω1, . . . , ωn} such that

ρt(Si) = ωi(t)Si,

for t ∈ G, where Si are the generators of On for i = 1, . . . , n. It is
shown in [7] that On oρ G ∼= OD, where D is the C∗-correspondence
obtained from Cn ⊗ C∗(G) with the obvious right multiplication and
inner product, and with left multiplication given by

f · (f1, f2, . . . , fn) = (σω1(f)f1, σω2(f)f2, . . . , σωn(f)fn),

for f, f1, . . . , fn ∈ C0(Ĝ), where (σωf)(γ) = f(γ + ω).
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Note that, in this case, our C∗-correspondence E(ρ) determines a
different Cuntz-Pimsner algebra, since the left multiplication is not
injective. The ideal structure of the algebras OE(ρ) will be considered
in future work.
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