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INVARIANT CURVES AND INTEGRABILITY
OF PLANAR Cr DIFFERENTIAL SYSTEMS

ANTONI FERRAGUT AND JAUME LLIBRE

ABSTRACT. We improve the known expressions of the
Cr differential systems in the plane having a given Cr+1

invariant curve, or a given Cr+1 first integral. Their appli-
cation to polynomial differential systems having either an
invariant algebraic curve, or a first integral, also improves
the known results on such systems.

1. Introduction and statement of the main results. A Cr real
planar differential system is a system of the form

(1.1) ẋ = P (x, y), ẏ = Q(x, y),

where (x, y) ∈ D ⊆ R2, D is the domain of definition of the system and
P,Q ∈ Cr, where r is a positive integer, or r = ∞, or r = ω (meaning
that the system is analytic). The vector field associated to system (1.1)
is

(1.2) X(x, y) = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

In what follows, we shall talk indistinctly of the differential system (1.1)
or of its vector field X.

Let R[x, y] be the ring of polynomials in variables x and y with
real coefficients. If P,Q ∈ R[x, y], then we say that the differential
system (1.1) is polynomial. In such a case, we define the degree of this
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polynomial system as max{degP,degQ}, where degP and degQ are
the degrees of P and Q, respectively.

Let U be an open subset of R2. A first integral of X in U is a
locally non-constant function H : U → R, which is constant on all of
the solutions of X contained in U , if H ∈ C1, then this is equivalent to
saying that X(H) = 0 in the points of U . In this case, we also say that
X is integrable on U .

Let g ∈ Cr. The curve g = 0 is invariant under the flow of system
(1.1) if

X(g)|g=0 =

(
P
∂g

∂x
+Q

∂g

∂y

)∣∣∣∣
g=0

= 0,

and the gradient of g is not identically zero on g = 0.

Let g ∈ C1. The Nambu bracket (or the Lie bracket, or the Jacobian)
of two functions f, g ∈ C1 is

{f, g} =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

We begin by finding a method (inspired in [11, Corollary 1.3.3]) for
writing all systems (1.1) having an invariant curve g = 0.

Proposition 1.1. Let g = 0 be a Cr+1 invariant curve of system (1.1).
Then, for any Cr+1 function f such that {g, f} ̸≡ 0, we have

(1.3)

ẋ = P =
X(g)fy −X(f)gy

{g, f}
,

ẏ = Q =
−X(g)fx +X(f)gx

{g, f}
.

The following result is well known. For a proof, see, for instance,
[4].

Theorem 1.2. Assume that a polynomial differential system has an
invariant algebraic curve g(x, y) = 0 such that there are no points at
which g and its first derivatives all vanish. If gcd(gx, gy) = 1, then the
system has the following normal form:

(1.4) ẋ = Ag −Dgy, ẏ = Bg +Dgx,

where A,B,D are suitable polynomials.
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Given an algebraic curve, Theorem 1.2 provides a partial solution to
the inverse problem of finding the polynomial differential systems that
have this curve invariant. For other similar inverse problems, see [3].

The hypotheses in the previous theorem are necessary, as the poly-
nomial differential system given in the next example shows. However,
applying Proposition 1.1, we can obtain the polynomial differential sys-
tem of the example if the functions A,B,D are not necessarily polyno-
mials.

Example 1.3. Consider the polynomial differential system of degree
five appearing in [2]

ẋ = 2x+ y − 3x4, ẏ = 4y + 2x3 − 9x3y + 3x5.

The algebraic curve g(x, y) = (y−x2)(y−x3) = 0 is invariant under the
flow of this differential system. Observe that g and its first derivatives
vanish at the origin as well as at (1, 1).

Note that we cannot obtain ẏ from the expression Bg + Dgx of
Theorem 1.2 since the lowest degree of g is 2 and x|gx. Hence, the
hypotheses of Theorem 1.2 do not hold for this example, and it is easy
to see that there do not exist polynomials A,B,D such that (1.4) holds
because, in Bg +Dgx, the term 4y of ẏ cannot appear.

Proposition 1.1 has no hypotheses besides {g, f} ̸≡ 0. If we apply it
with f = y, then we have

X(g)fy −X(f)gy
{g, f}

=
(2− 3x)(4 + 5x+ 6x2)

x(5x3 − 2y − 3xy)
g

− 4y + 2x3 − 9x3y + 3x5

x(5x3 − 2y − 3xy)
gy

= 2x+ y − 3x4 = ẋ,

−X(g)fx +X(f)gx
{g, f}

=
4y + 2x3 − 9x3y + 3x5

x(5x3 − 2y − 3xy)
gx

= 4y + 2x3 − 9x3y + 3x5 = ẏ.

Hence, we obtain ẋ = Ag − Dgy, ẏ = Bg + Dgx with the rational
functions
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A =
(2− 3x)(4 + 5x+ 6x2)

x(5x3 − 2y − 3xy)
,

B = 0,

D =
4y + 2x3 − 9x3y + 3x5

x(5x3 − 2y − 3xy)
.

The arguments used in the previous example to construct the vector
field can be generalized. The following theorem includes the condition
gx ̸≡ 0 on a curve g = 0. This condition is not restrictive. If gx ≡ 0,
then gy ̸≡ 0 (otherwise g is a constant), and, in this case, the theorem
can be applied by swapping x and y.

Theorem 1.4. Assume that a polynomial differential system has an
invariant algebraic curve g = g(x, y) = 0. If gx ̸≡ 0, then the system
has the following normal form:

(1.5) ẋ = Ag −Bgy, ẏ = Bgx,

where A and B are suitable rational functions. Conversely, if the de-
nominator of A in (1.5) divides gx, then the curve g = 0 is invariant
under the flow of system (1.5).

Note that Theorem 1.4 provides all the polynomial differential sys-
tems having a given invariant algebraic curve without any assumptions
on the curve, while Theorem 1.2 needs some assumptions.

When system (1.1) is polynomial and g = 0 is an invariant algebraic
curve, there exists a polynomial k, called the cofactor, that satisfies
the equation X(g) = kg. The polynomial cofactors play a main role
in the Darboux theory of integrability, see [1, 6, 7, 13]. Of course,
we can write this equation as k = X(g)/g, and this is a polynomial, so
g|X(g). If g is an invariant curve of system (1.1), we can also define its
cofactor as the function k = X(g)/g. We know that, in [8], the authors
improved the Darboux theory of integrability using invariant curves
which are not necessarily algebraic but have polynomial cofactors. Note
that, in our case, the cofactors are, in general, non-polynomial.

It is widely known that, if a linear combination of cofactors of in-
variant algebraic curves of a polynomial differential system is zero, then
this system has a Darboux first integral, see [7, Theorem 8.7]. These
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cofactors are the basis of the so-called Darboux theory of integrability,
which is very useful for finding first integrals of this kind, see, for in-
stance, [12]. Other kinds of first integrals are shown, for example, in
[10].

Our next result generalizes the classical Darboux theorem for poly-
nomial differential systems to Cr differential systems with Cr+1 invari-
ant curves.

Proposition 1.5 (Darboux theorem). Consider the Cr differential
system (1.1), and let gi = 0 be a Cr+1 invariant curve of (1.1) with

cofactor ki for i = 1, . . . ,M . Then, H =
∏M

i=1 g
νi
i is a first integral of

(1.1) if and only if
∑M

i=1 νiki = 0, for some convenient νi ∈ R.

Proposition 1.5 will be proven in Section 4.

A function V (x, y) is an inverse integrating factor of the differential
system (1.1) if there exists a C1 function H defined in D\{V = 0} such
that

(1.6) ẋ =
P

V
= −Hy, ẏ =

Q

V
= Hx.

In the case where H is single-valued, system (1.6) is Hamiltonian, with
H(x, y) the Hamiltonian function in D \ {V = 0}. For more informa-
tion regarding the inverse integrating factor, see [9]. Concerning the
differential system (1.1) and the inverse integrating factors, we have
the following proposition, inspired by [11, Corollary 1.4.4].

Proposition 1.6. If the differential system (1.1) If the vector field
(1.2) has a first integral H, then we can write it as

ẋ =
X(f)

{H, f}
{H,x}, ẏ =

X(f)

{H, f}
{H, y},

where f is an arbitrary function such that {H, f} ̸= 0. Moreover,

V (x, y) =
X(f)

{H, f}

is an inverse integrating factor of the system.
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We finally deal with differential systems having a first integral of the
form geh/g. The next result is apparent.

Proposition 1.7. Suppose that the differential system (1.1) has the
first integral

H(x, y) = geh/g,

where g, h ∈ Cr+1 are such that {g, h} ̸= 0. Then, the function V =
−X(g)g/{g, h} is an inverse integrating factor of the system.

2. Preliminary results. We state here some results of [11] that
we shall use later on. The first one, see [11, Corollary 1.3.3], provides
the planar differential systems which have a given invariant curve.

Theorem 2.1. Let g(x, y) = 0 be a function defined in an open set
D ⊆ R2. Then, any differential system defined in D for which g = 0 is
invariant can be written as:

ẋ = ϕ
{x, f}
{g, f}

+ λ
{g, x}
{g, f}

,

ẏ = ϕ
{y, f}
{g, f}

+ λ
{g, y}
{g, f}

,

where f , ϕ and λ are arbitrary functions such that ϕ|g=0 = 0 and
{g, f} ̸= 0 in D.

The next theorem [11, Corollary 1.4.4] provides the planar dif-
ferential systems which have a given first integral.

Theorem 2.2. Let H(x, y) be a function defined in an open set
D ⊆ R2. Then, the most general differential systems defined in D
which admit the first integral H are:

ẋ = λ
{H,x}
{H, f}

, ẏ = λ
{H, y}
{H, f}

,

where λ and f are arbitrary functions such that {H, f} ̸= 0 in D.
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3. Proofs.

Proof of Proposition 1.1. According to Theorem 2.1, system (1.1)
can be written in D as:

(3.1)

ẋ = P (x, y) = ϕ
{x, f}
{g, f}

+ λ
{g, x}
{g, f}

,

ẏ = Q(x, y) = ϕ
{y, f}
{g, f}

+ λ
{g, y}
{g, f}

,

where ϕ is an arbitrary function such that ϕ|g=0 = 0, {g, f} ̸≡ 0 in D
and λ, f are arbitrary functions.

We note that we can actually compute an expression for ϕ, λ in
terms of g, f by merely solving the linear system (3.1) that defines P
and Q in the unknowns ϕ and λ, which has a unique solution since its
determinant is one. This linear system is:

{x, f}ϕ+ {g, x}λ = P{g, f},
{y, f}ϕ+ {g, y}λ = Q{g, f},

or equivalently,

fyϕ− gyλ = P{g, f},
−fxϕ+ gxλ = Q{g, f},

and, by using the Cramer method, we have

ϕ =

∣∣∣∣ P{g, f} −gy
Q{g, f} gx

∣∣∣∣∣∣∣∣ fy −gy
−fx gx

∣∣∣∣ =
{g, f}(Pgx +Qgy)

{g, f}
= X(g),

and

λ =

∣∣∣∣ fy P{g, f}
−fx Q{g, f}

∣∣∣∣∣∣∣∣ fy −gy
−fx gx

∣∣∣∣ =
{g, f}(Qfy + Pfx)

{g, f}
= X(f).

Hence, the only arbitrary function in (3.1) is f , and it must satisfy that
{g, f} ̸≡ 0 in D. �
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Proof of Theorem 1.4. It is clear that, under the hypotheses of the
theorem, g = 0 is invariant under the flow of system (1.5) since X(g)/g
is a polynomial (the cofactor). Thus, the second part of the theorem
immediately follows.

We assume in this proof that gx ̸≡ 0. If gx ≡ 0, then we must have
gy ̸≡ 0, and we can swap x and y.

Proposition 1.1 assures that all of the differential systems having
g = 0 as invariant are written as system (1.3). The function f , which
appears in Proposition 1.1, is arbitrary since the simplification of the
quotients in (1.3) directly provide P and Q. In particular, we can fix
f(x, y) = y; therefore, {g, f} = gx ̸≡ 0. Moreover, system (1.3) may be
written as:

(3.2) ẋ =
X(g)−X(y)gy

gx
, ẏ = X(y).

Since we are assuming that g = 0 is invariant, there must exist a
polynomial k such that X(g) = kg. Substituting into (3.2), we have

(3.3) ẋ =
kg −X(y)gy

gx
, ẏ = X(y).

It is clear that there exist two polynomials P and R such that

kg −X(y)gy = Pgx +R.

In order to obtain a polynomial differential system, we must impose
that (kg−X(y)gy)/gx is a polynomial, that is, we must impose R = 0.
Several conditions on the coefficients of k and X(y) should appear. If
we succeed, then the differential system (3.3) is a polynomial, with
P = (kg−Qgy)/gx and Q = X(y), and moreover, g = 0 is an invariant
algebraic curve.

Therefore, we need to obtain conditions on the coefficients of k and
X(y) such that R = 0. The equation R = 0 can be written as a
linear system of equations, one equation for each monomial of R. The
unknowns of this linear system are the coefficients of k and X(y). Of
course, the degrees of k and X(y) must be large enough to assure that
the system is compatible.

We note that we can always find a solution, i.e., the differential
system ẋ = g − gy, ẏ = gx has the invariant curve g = 0. Its cofactor
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is gx. Thus, the system which comes from R = 0 is compatible if we
have enough unknowns, more precisely, if there are enough coefficients
of k and X(y), or equivalently, if the degrees of k and X(y) are large
enough.

Since degR ≤ deg g − 2, the linear system has at most
(
deg g
2

)
equations. The number of unknowns is(

deg k + 2

2

)
+

(
degX(y) + 2

2

)
.

Hence, we must have(
deg k + 2

2

)
+

(
degX(y) + 2

2

)
≥

(
deg g

2

)
.

Once the linear system is solved, some coefficients of k and X(y)
are fixed, and others may remain free. Therefore, R = 0, and P is
a polynomial. Those free coefficients provide all of the polynomial
differential systems which have the invariant curve g = 0.

We have obtained the most general polynomial differential system
ẋ = P , ẏ = Q having the invariant curve g = 0. Moreover, k is the
cofactor of g = 0. The degree of the system is either degQ in the case
deg k < degQ, or deg k+1 otherwise. Hence, the theorem follows. �

Example 3.1. Let g = y2 − x3 + 3x2 − x − 1. We note that gx and
gy have two common roots (1±

√
2/3, 0); thus, Theorem 1.2 does not

apply.

According to the proof of Theorem 1.4, there is no polynomial
differential system of degree 1, ẋ = P , ẏ = Q, that has g = 0 as
invariant algebraic curve.

Following the proof of Theorem 1.4, we note that the degree of the
system must increase in order to obtain a solution to our problem.
Thus, we try the solution with a polynomial differential system of
degree 2. In this case, after solving the associated linear system, we
obtain the quadratic polynomial differential system:

ẋ = − 2by

3x2 − 6x+ 1
g +

a− 4b+ 2(2b− 3a)x+ 3ax2 + 3by2

3(3x2 − 6x+ 1)
gy,
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ẏ = −a− 4b+ 2(2b− 3a)x+ 3ax2 + 3by2

3(3x2 − 6x+ 1)
gx,

or, simplifying,
ẋ = (a− b)y + bxy,

ẏ = a− 4b+ 2(2b− 3a)x+ 3ax2 + 3by2,

where a and b are arbitrary constants. The cofactor of g = 0 for this
system is k = 2by.

4. Invariant objects.

4.1. Darboux first integrals. Now, we prove Proposition 1.5.

Proof of Proposition 1.5. We compute X(H):

X(H) = X

( M∏
i=1

gνi
i

)
=

M∑
i=1

νiX(gi)g
νi−1
i

∏
j ̸=i

g
νj

j

=
M∑
i=1

νikig
νi
i

∏
j ̸=i

g
νj

j =

( M∑
i=1

νiki

)
H.

Then, the theorem follows. �

In the Darboux theory of integrability for complex polynomial differ-
ential systems (and, consequently, also for real polynomial differential
systems) there exists a minimum number of invariant algebraic curves
that assures a first integral. This is due to the linear combination of
cofactors: these cofactors are polynomials of degree lower than the de-
gree of the polynomial system, say m, that is, they belong to the vector
space of all complex polynomials in the variables x, y of degree at most
m− 1. A base of this ring has

(
m+1
2

)
elements. If we have more than(

m+1
2

)
cofactors, then there must exist a linear combination of them

being zero.

For the Cr differential systems in the real plane, these kinds of facts
do not occur in general; thus, a minimum number of curves that assures
a first integral cannot be established unless we restrict the class of
differential systems.
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4.2. The inverse integrating factor. We first prove Proposition 1.6.

Proof of Proposition 1.6. If the differential system (1.1) has a first
integral H, then, from Theorem 2.2, we know that we can write it as

(4.1) ẋ = λ
{H,x}
{H, f}

, ẏ = λ
{H, y}
{H, f}

,

where λ and f are arbitrary functions such that {H, f} ̸≡ 0. We prove
that X(f) = λ, indeed:

X(f) = λ
{H,x}
{H, f}

fx + λ
{H, y}
{H, f}

fy = λ
−Hyfx +Hxfy

{H, f}
= λ.

From (4.1), the function V = X(f)/{H, f} is an inverse integrating
factor since we have

ẋ = P = −V Hy, ẏ = Q = V Hx.

Note that V = 0 is an invariant curve of system (1.1). Hence, the
proposition follows. �

When the differential system (1.1) has an inverse integrating factor,
the associated differential system ẋ = P/V , ẏ = Q/V is Hamiltonian;
thus, the area of any region of the domain of the definition of this
Hamiltonian system is the same after it is moved forward or backward
by the flow of the system. In the set {V = 0}, this system is not
Hamiltonian. The orbits that in their neighborhood do not allow this
preservation of the area are contained in {V = 0}.

In the next example, we study a polynomial differential system
having a polynomial inverse integrating factor V . The set {V = 0}
in this example is formed by a focus and a limit cycle. The area
is not preserved close to these two orbits; hence, the corresponding
Hamiltonian system cannot be defined in them.

Example 4.1. Consider the polynomial differential system

ẋ = −y + x(x2 + y2 − 1), ẏ = x+ y(x2 + y2 − 1),

which appears in [14, page 126, Example 2]. Using polar coordinates,
it is easy to see that this system has a focus at the origin and a limit
cycle at the circle x2+ y2 = 1. Moreover, it has the polynomial inverse
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integrating factor V (x, y) = (x2+y2)(x2+y2−1). The system has the
Darboux first integral

H(x, y) =
x2 + y2 − 1

x2 + y2
e2 arctan y/x.

We can write it in polar coordinates as

H(r, θ) =
r2 − 1

r2
e2(θ+kπ), k ∈ Z.

4.3. No exponential factors. When system (1.1) is polynomial and
we have an invariant algebraic curve g = 0 and an additional invariant
algebraic curve close to g = 0, say gε = g + εf +O(ε2), we can define
an exponential factor, which is a function F = ef/g such that X(F )/F
is a polynomial. Thus, the notion of exponential factor is associated
to the notion of multiplicity of an invariant algebraic curve, see [5] for
more details.

When dealing with Cr+1 invariant curves of a Cr differential system,
the notion of exponential factor makes no sense since, close to a Cr+1

invariant curve, there are infinitely many other Cr+1 invariant curves.

5. A special Darboux function. We consider in this section dif-
ferential systems (1.1) having a first integral of the form H(x, y) =
geh/g, where h, g ∈ Cr+1. Here, we prove Proposition 1.7.

Proof of Proposition 1.7. We have

∂ logH

∂x
=

ggx + hxg − hgx
g2

=
Q

V
,

∂ logH

∂y
=

ggy + hyg − hgy
g2

= −P

V
,

where V is the inverse integrating factor associated to the first integral
logH. Note that V = −P/(logH)y = Q/(logH)x. Since g = 0 is
invariant under the flow of system (1.1), from the expressions of P and
Q given in (1.3), we have

V = − (X(g)fy −X(f)gy)g
2

{g, f}(gyg + hyg − hgy)
=

(−X(g)fx +X(f)gx)g
2

{g, f}(gxg + hxg − hgx)
,
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where f is an arbitrary function such that {g, f} ̸= 0. This last equality
can be written as

(5.1) gX(f){h, g}+ (h− g)X(g){g, f} − gX(g){h, f} = 0.

Since f is arbitrary and {g, h} ̸= 0, we can set f = h. Then,

(X(g)(h− g)− gX(h)){g, h} = 0,

or equivalently,

(5.2) X(h) =
X(g)

g
(h− g).

When the differential system (1.1) is a polynomial, equation (5.2) is
equivalent to saying that −X(g)/g is the cofactor of the exponential
factor eh/g.

Returning to the expression of V , we have

V =
Q

(logH)x
=

(−X(g)hx +X(h)gx)/{g, h}
(gxg + hxg − hgx)/g2

=
X(g)g(−ghx + (h− g)gx)

{g, h}(gxg + hxg − hgx)
= −X(g)g

{g, h}
.

Then, the proposition follows. �

Note that, if the differential system of Proposition 1.7 is a polyno-
mial, then eh/g is an exponential factor with cofactor −X(g)/g.

Remark 5.1. If {g, h} = 0 in the proof of Proposition 1.7, then, from
(5.1), we can obtain:

(h− g){g, f} − g{h, f} = 0

for all f such that {g, f} ̸= 0. In particular, for f = logH, we have

(h− g){g, logH} − g{h, logH}

= (h− g)

(
− gx

P

V
− gy

Q

V

)
− g

(
− hx

P

V
− hy

Q

V

)
= −(h− g)

X(g)

V
+ g

X(h)

V
= −X(g)(h− g)− gX(h)

V
= 0.

Thus, we also obtain (5.2) in the case {g, h} = 0.
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