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ON RIEMANNIAN SURFACES
WITH CONICAL SINGULARITIES

CHARALAMPOS CHARITOS, IOANNIS PAPADOPERAKIS

AND GEORGIOS TSAPOGAS

ABSTRACT. The geometry of closed surfaces of genus
g ≥ 2 equipped with a Riemannian metric of variable boun-
ded curvature with finitely many conical points is studied.
The main result is that the set of closed geodesics is dense in
the space of geodesics.

1. Introduction. Let S be a closed surface of genus ≥ 2 equipped
with a Riemannian metric with finitely many conical singularities (or
conical points), denoted by s1, . . . , sn. See Section 2 for a precise defi-
nition. Such a surface S is called a Riemannian surface with conical
singularities and will be written Rscs for brevity. Denote by θ(si) the
angle at each si, with θ(si) ∈ (0,+∞) \ {2π}, and denote by C(S) the
set {s1, . . . , sn}.

Examples of Rscs with at least one angle θ(si) < 2π include the
so-called half translation surfaces where the conical singularities are of
angle kπ, k ≥ 1, see [10]. In general, for g ≥ 2, Rscs with zero curvature
are constructed in [8] and Rscs of variable curvature are constructed
in [9].

An important property which fails even for flat or non-positively
curved Rscs, provided at least one conical point with angle θ(si) < 2π
exists, is that geodesic segments with specified homotopy class and
endpoints are no longer unique, and similarly for geodesic rays and

lines in the universal cover S̃ (see Example 2.5). Moreover, extension
of geodesics also fails. More precisely, there exist geodesic segments

σ in S̃ not containing any singularity in their interior which cannot
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be extended to any geodesic segment σ′ properly containing σ. These

facts make the study of the geometry of S̃ interesting.

In this note, under the assumption that there exists at least one
angle θ(si) < 2π, we first show that the set of points on the boundary

∂S̃ to which there corresponds more than one geodesic ray is dense in

∂S̃ (see Propositions 3.1 and 3.3). Moreover, it is shown that, for any

boundary point ξ ∈ ∂S̃, there exists a base point x̃0 ∈ S̃ such that at
least two geodesic rays emanating from x̃0 correspond to ξ. We then
show that the images of all geodesic rays corresponding to a boundary

point ξ ∈ ∂S̃ are contained in a convex subset of S̃ whose boundary is
geodesic consisting of two geodesic rays. Thus, in the class of geodesic

rays corresponding to each point ξ ∈ ∂S̃, there are associated two
distinct outermost (left and right) geodesic rays. Similarly, for every

pair of points ξ, η ∈ ∂S̃ which are joined by more than one geodesic line,
there are associated two distinct outermost (left and right) geodesic

lines which bound a convex subset of S̃ containing all geodesic lines
joining ξ, η.

We next show that the set of closed geodesics is dense in the space of
all geodesics GS in the following sense: for each pair of distinct points

ξ, η ∈ ∂S̃ and each outermost geodesic line γ joining them, there exists

a sequence of geodesics {cn} in S̃, with the projection of every cn to S
being a closed geodesic, such that {cn} converges in the usual uniform
sense on compact sets to γ.

The line of arguments is fairly simple; the crucial tools are the facts

that S is a geodesic space and the universal cover S̃ is hyperbolic in
the sense of Gromov.

2. Preliminaries. We write C(v, θ) for the cone with vertex v and
angle θ, namely, C(v, θ) is the set {(r, t) : 0 ≤ r, t ∈ R/θZ} equipped
with the metric

ds2 = e2u(dr2 + r2dt2),

where u is a continuous function on C(v, θ) and of class C2 on C(v, θ)\
{v}.

Definition 2.1. A Riemanninan surface with conical singularities s1,
. . . , sn, n ≥ 1, is a closed surface S equipped with
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• a smooth Riemannian metric at every point p ∈ S\{s1, . . . , sn},
and

• each si ∈ {s1, . . . , sn} is a conical singularity of angle θ(si),
that is, there exists a neighborhood U of si isometric to a
neighborhood of a vertex v of the cone C(v, θ(si)).

From now on, we assume that the angle θ(si) of at least one conical
point si satisfies θ(si) ∈ (0, 2π). We comment on what occurs if all
conical angles are > 2π at the beginning of Section 3 below.

The metric on S is the induced length metric and will be denoted
by d(·, ·). S with the metric d locally compact and complete, hence,

a geodesic metric space. Let S̃ be the universal covering of S, and let

p : S̃ → S be the universal covering projection. Obviously, the uni-

versal covering S̃ is homeomorphic to R2 and, by requiring p to be a

local isometric map, we may lift d to a metric d̃ on S̃ so that (S̃, d̃)

becomes an Rscs. Clearly, π1(S) is a discrete group of isometries of S̃

acting freely on S̃ such that S = S̃/π1(S).

A geodesic γ in a surface S is usually defined to be a local isometric
map. However, in our setup, a local isometry may have homotopically
trivial self intersections, that is, there exist t1, t2 ∈ R with

γ(t1) = γ(t2)

such that the loop γ|[t1,t2] is contractible. In fact, it can be shown that
any local isometric map whose image has sufficiently small distance
from a conical point with angle < π has a self intersection. Clearly,

any lift γ̃ to the universal cover S̃ of S of a local geodesic γ with
homotopically trivial self intersections is not a global isometric map.
In view of this, we restrict our attention to geodesics and geodesic
segments which do not have homotopically trivial self intersections.

Let GS be the space of all local isometric maps γ : R → S so that its

lift to the universal cover S̃ is a global isometry. The image of such a
γ will be referred to as a geodesic in S. Similarly, we define the notion
of a geodesic segment, that is, a local isometric map whose domain is

a closed interval which lifts to an isometry in S̃. The image of any
geodesic γ in S satisfies

(2.1) Imγ̃ ∩ {si | θ(si) < 2π} = ∅.

The group π1(S) with the word metric is hyperbolic in the sense of

Gromov. On the other hand, π1(S) acts co-compactly on S̃ by isom-
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etries; this implies that S̃ is itself a hyperbolic space in the sense of
Gromov (see, for example, [4, Theorem 4.1]), which is complete and

locally compact. Hence, S̃ is a proper space, i.e., each closed ball in S̃

is compact (see [6, Theorem 1.10]). Therefore, the visual boundary ∂S̃

of S̃ is defined by means of geodesic rays and is homeomorphic to S1
(see [4, page 19]).

We will need a precise description of the open ball D(x̃0, R) with
center x̃0 and radius R > 0: the open ball D(x̃0, R) is homeomorphic
to an open 2-disk with k holes, k ≥ 0, removed. Each hole corresponds
to a conical point of angle < π. If

(2.2) R = d(x̃0, s̃i)

for some conical point s̃i with angle < π, then the corresponding hole
is merely the point s̃i. Clearly, each component of

∂D(x̃0, R) = D(x̃0, R) \D(x̃0, R)

is homeomorphic to either a circle or a point (if equation (2.2) holds for
some s̃i). Amongst all components of ∂D(x̃0, R), exactly one contains
x̃0 in its interior, i.e., the bounded one of the two components of

S̃ determined by the component. We will call this component the
principal component and denote it by ∂0D(x̃0, R). Observe that the
arc length of ∂0D(x̃0, R) tends to ∞ as R → ∞. Each of the rest of
the components is contained in a neighborhood of a conical point with
angle < 2π, and its arc length is bounded by a number independent
of R.

Lemma 2.2. If two geodesic segments σ1, σ2 in S̃ intersect at two
interior points x and y such that x and y are isolated in σ1 ∩ σ2,
then both x and y are conical points with angle > 2π. If σ1 ∩ σ2 is
a closed segment, then its endpoints are conical points with angle > 2π.
The same results hold for homotopic (with endpoints fixed) geodesic
segments in S.

Proof. Let σ1 = [w1, z1] and σ2 = [w2, z2] be two geodesic segments

in S̃ intersecting at two points x and y, which are isolated in σ1 ∩ σ2.
Clearly, σ1|[x,y] ∪ σ2|[y,z2] realizes the distance from x to z2. Therefore,
the angle formed by σ1|[x,y], σ2|[y,z2] at y is at least π. Similarly, the
angle formed by σ2|[x,y], σ1|[y,z1] at y is at least π; hence, θ(y) > 2π. �
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Since S̃ is a hyperbolic space in the sense of Gromov, the isometries

of S̃ are classified as elliptic, parabolic and hyperbolic [5]. On the
other hand, π1(S) is a hyperbolic group; thus, π1(S) does not contain
parabolic elements with respect to its action on its Cayley graph (see
[4, Theorem 3.4]). From this, it follows that all elements of π1(S) are

hyperbolic isometries of S̃. Therefore, for each φ ∈ π1(S) and each

x ∈ S̃, the sequence φn(x) (respectively, φ−n(x)) has a limit point
φ(+∞) (respectively, φ(−∞)) when n → +∞ and φ(+∞) ̸= φ(−∞).
The point φ(+∞) is called attractive and the point φ(−∞) a repulsive
point of φ.

The following important property for hyperbolic spaces (see [4,

Proposition 2.1]) holds for ∂S̃.

Proposition 2.3. For every pair of points x ∈ S̃ and ξ ∈ ∂S̃

(respectively, η, ξ ∈ ∂S̃), there is a geodesic ray r : [0,∞) → S̃ ∪ ∂S̃

(respectively, a geodesic line γ : (−∞,∞) → S̃∪∂S̃) such that r(0) = x,
r(∞) = ξ (respectively, γ(−∞) = η, γ(∞) = ξ).

Uniqueness does not hold in the above proposition. In fact, we have
the following straightforward corollary to Lemma 2.2.

Corollary 2.4. If a geodesic segment intersects a geodesic ray (respec-
tively, a line) at two isolated points as in Lemma 2.2, then there exist
two distinct geodesic rays (respectively, lines) defining the same point
(respectively, points) at infinity.

Thus, for each pair of points x ∈ S̃ and ξ ∈ ∂S̃, there corresponds
a class of geodesic rays r with r(0) = x and r(∞) = ξ, the cardinality
of which varies from a singleton to uncountable (see the discussion
following Example 2.5). It is well known that, in hyperbolic metric
spaces, any two asymptotic geodesic rays r1 and r2 are at uniformly
bounded distance, that is, there exists a constant A > 0 which depends

only upon the hyperbolicity constant of S̃ such that, for all t ∈ [0,+∞),

(2.3) d(r1(t), r2(t)) < A,

see [2, Lemma 3.3].

For a point ξ ∈ ∂S̃ (and having fixed a base point in S̃) we write
r ∈ ξ to indicate that the geodesic ray r belongs to the class of rays
corresponding to ξ, that is, r(∞) = ξ. We also say that ξ is the positive
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point of r. Similarly, for a pair (η, ξ) of points in ∂S̃ with η ̸= ξ, we
write γ ∈ (η, ξ) to indicate that the geodesic line γ belongs to the class
of lines with the property γ(−∞) = η and γ(∞) = ξ. We say that ξ is
the positive point of γ and η the negative.

By writing that the sequence {ξn} ⊂ ∂S̃ converges to ξ in the visual
metric, notation ξn → ξ, we mean that there exist geodesic rays rn ∈ ξn
and r ∈ ξ such that the sequence {rn} converges in the usual uniform
sense on compact sets to r.

The next example demonstrates a simple case where lifts of distinct
closed geodesics (as well as non-closed geodesics) have the same nega-

tive and positive points in ∂S̃.

Example 2.5. Consider the genus 0 surface Σ obtained from the flat
figures ACEBZDA and AC ′E′B′Z ′D′A by identifying AB2C with
AB′

2C
′, AB1D with AB′

1D
′ and EBZ with E′B′Z ′ (see Figure 1). The

resulting cylinder Σ has two singular points A,B with angles θ(A) = π
and θ(B) = 3π. The segments BB1 and B′

1B
′ give rise to a simple

closed geodesic σ in Σ. Similarly, the segments BB2 and B′
2B

′ give
rise to a simple closed geodesic τ in Σ. Both σ and τ contain B, and
their union bounds a convex subset of Σ with the same homotopy type
as Σ.

At every point ̸= A and B, Σ has a flat (Euclidean) structure and,
since Σ has geodesic boundaries, the described example can clearly

occur in surfaces of any genus. Choose a lift σ̃ of σ in Σ̃. Then,

there is a countable number of points B̃i, i ∈ Z, with the properties

B̃i ∈ Imσ̃ and p(B̃i) = B. Clearly, any lift τ̃ of τ containing B̃i0 for

some i0 must contain B̃i for all i and, moreover, τ̃(+∞) = σ̃(+∞)
and τ̃(−∞) = σ̃(−∞). Therefore, using σ and τ , we may construct
countably many pairwise distinct closed geodesics in Σ, as well as

uncountably many non-closed geodesics, whose lifts in Σ̃ are contained
in Imτ̃ ∪ Im σ̃, and they all share the same positive (respectively,
negative) point τ̃(+∞) = σ̃(+∞) (respectively, τ̃(−∞) = σ̃(−∞)).

The limit set Λ of π1(S) is defined to be Λ = π1(S)x∩∂S̃, where x is

an arbitrary point in S̃. Since the action of π1(S) on S̃ is co-compact,

it is a well-known fact that Λ = ∂S̃, and hence, Λ = S1. Note that

the action of π1(S) on S̃ can be extended to ∂S̃ and that the action of

π1(S) on ∂S̃ × ∂S̃ is given by the product action.
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Figure 1. The surface Σ with two conical points of angle π and 3π.

Denote by Fh the set of points in ∂S̃ which are fixed by hyperbolic

elements of π1(S). Since Λ = ∂S̃, the next three results can be derived
from [3].

Proposition 2.6. The set Fh is π1(S)-invariant and dense in ∂S̃.

Proposition 2.7. There exists an orbit of π1(S) dense in ∂S̃ × ∂S̃.

Proposition 2.8. The set {(ϕ(+∞), ϕ(−∞)) : ϕ ∈ π1(S)} is dense in

∂S̃ × ∂S̃.
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3. Density in ∂S̃. In this section, we first show that the set of

points in ∂S̃, for which the class of the corresponding geodesic rays is

not a singleton, forms a dense subset of ∂S̃. Throughout, we fix a base

point x̃0 ∈ S̃.

Note that the existence of at least one conical point with angle < 2π
is crucial for all results in this section since, if all angles are > 2π, then

S̃ is a CAT(0) space, provided that the curvature at every regular point

n is non-positive. In fact, S̃ contains flat strips which correspond to
closed geodesics not containing conical singularities. It is well known
that, in a CAT(0) space, geodesic rays are unique, see [2, Proposition
8.2], and geodesic lines are also unique except those corresponding to
flat strips, see [1, Corollary 5.8].

Proposition 3.1. The set

Yx̃0
=

{
ξ ∈ ∂S̃

∣∣∣ there exist distinct geodesic rays r1 and r2 such
that r1(0) = x̃0 = r2(0) and r1(∞) = ξ = r2(∞)

}
is dense in ∂S̃.

Proof. Since ∂S̃ is homeomorphic to S1, we concentrate on intervals

in ∂S̃, and we mean open (respectively, closed) connected subsets of ∂S̃
homeomorphic to open (respectively, closed) intervals in S1. It suffices

to show that, for any interval I ⊂ ∂S̃, I ∩ Yx̃0
̸= ∅.

Claim 3.2. Let ξ /∈ Yx̃0
, rξ the (unique) geodesic ray with rξ(0) = x̃0,

rξ(+∞) = ξ and r an arbitrary geodesic ray with r(0) = x̃0 and
r(+∞) ̸= ξ. Then, Imrξ ∩ Imr is either a geodesic segment of the form
[x̃0, x̃1] for some x̃1 ∈ Imrξ, or a singleton, namely, {x̃0}. Similarly, if
r is an arbitrary geodesic segment, then Imrξ ∩ Imr is either a geodesic
sub-segment of r, or a singleton, or the empty set.

For the proof of Claim 3.2, observe that Imrξ ∩ Imr is necessarily
connected. For, if x and y belong to distinct connected components
of Imrξ ∩ Imr, then r|[x,y] does not coincide with rξ|[x,y]. Thus, the
geodesic ray

r′ = rξ|[x̃0,x] ∪ r|[x,y] ∪ rξ|[y,+∞]

is distinct from rξ and, clearly, r′(+∞) = ξ, a contradiction. Since
both Imrξ and Imr are homeomorphic to [0,+∞), Claim 3.2 follows.
The proof in the case where r is a geodesic segment is similar.
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Returning to the proof of Proposition 3.1, suppose, on the contrary,

that, for some closed interval [η, ρ] ⊂ ∂S̃, we have [η, ρ]∩Yx̃0
= ∅. From

Claim 3.2, we may assume that Imrη ∩ Imrρ = {x̃0}; otherwise, replace
in the sequel the union Imrη ∪ Imrρ by

Imrη ∪ Imrρ \ [x̃0, x̃1).

Then, inside the compact, convex set S̃ ∪ ∂S̃, the union

Imrη ∪ Imrρ ∪ [η, ρ]

splits the set S̃ ∪ ∂S̃ into two closed subsets, whose common boundary

is the union Imrη ∪ Imrρ ∪ {η, ρ}. Denote by S̃([η, ρ]) the subset of

S̃ ∪ ∂S̃ which contains [η, ρ]. Choose and fix a conical point s̃ in the

interior of S̃([η, ρ]) with θ(s̃) < 2π. By replacing [η, ρ] by a subinterval
[η′, ρ′] ( [η, ρ], if necessary, we may assume that the angle formed
by rη and rρ at x̃0 is < π. Then, by Claim 3.2 and the assumption

[η, ρ] ∩ Yx̃0
= ∅, it follows that S̃([η, ρ]) is convex.

For each ξ ∈ [η, ρ], consider the (unique, as [η, ρ]∩Yx̃0
= ∅) geodesic

ray rξ with rξ(0) = x0 and rξ(+∞) = ξ. Choose geodesic segments
[xη, s̃] (respectively, [xρ, s̃]) joining s̃ with some point xη ∈ Imrη
(respectively, xρ ∈ Imrρ) such that

[xη, s̃] ∩ [xρ, s̃] = {s̃}.

Since [η, ρ] ∩ Yx̃0
= ∅, for any ξ ∈ [η, ρ] ∩ Y , the unique geodesic ray

rξ cannot (by Lemma 2.2) intersect [xη, s̃] twice. Similarly, it cannot
intersect [xρ, s̃] twice. Moreover, rξ cannot intersect both since, then,
it would have to intersect one of the two segments twice. It follows
that Imrξ intersects exactly one of the two segments [xη, s̃] and [xρ, s̃].
To be more precise, Imrξ intersects exactly one of the two half-open
segments

[xη, s̃) and [xρ, s̃)

since a geodesic ray cannot contain a conical point s̃ with θ(s̃) < 2π.
Define the following sets

I(η) := {ξ ∈ [η, ρ] | Imrξ ∩ [xη, s̃) ̸= ∅}(3.1)

and

I(ρ) := {ξ ∈ [η, ρ] | Imrξ ∩ [xρ, s̃) ̸= ∅}.(3.2)
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We will show that I(η) and I(ρ) are closed and disjoint subsets of [η, ρ],
thus contradicting the connectedness of [η, ρ].

Since every geodesic ray rξ intersects exactly one of the segments
[xη, s̃) and [xρ, s̃), it follows that I(η) and I(ρ) are disjoint.

In order to see that I(η) is closed, let {ξn} ⊂ I(η) be a sequence
converging to ξ with rξn and rξ the corresponding (unique) geodesic
rays with positive points ξn and ξ. We want to show that ξ ∈ I(η).
Assume, on the contrary, that ξ ∈ I(ρ), that is, Imrξ∩[xρ, s̃). Then, for
sufficiently large n, rξn must also intersect the segment [xρ, s̃) which,
by (3.2), means that ξn ∈ I(ρ), a contradiction. �

We now show the analogous result for geodesic lines. We write ∂2S̃

for the product ∂S̃ × ∂S̃ with the diagonal excluded.

Proposition 3.3. The set

Z =

{
(η, ξ) ∈ ∂2S̃

∣∣∣∣ there exist distinct geodesic lines γ1, γ2 such that
γ1(−∞) = η = γ2(−∞) and γ1(∞) = ξ = γ2(∞)

}
is dense in ∂2S̃.

Proof. It suffices to show that, for arbitrary ξ0 ∈ ∂S̃ and any closed

interval [η, ρ] ⊂ ∂S̃ with ξ0 /∈ [η, ρ], there exist two distinct geodesics
γ1 and γ2 with γ1(−∞) = ξ0 = γ2(−∞) and γ1(+∞) = ξ = γ2(+∞) ∈
[η, ρ]. For, if, for all ξ ∈ [η, ρ], there exists a unique geodesic line γξ with
γξ ∈ (ξ0, ξ), we may repeat the argument in the proof of the previous
proposition as follows: choose and fix a singular point s̃ with θ(s̃) < 2π

in the interior of the (convex) set S̃([η, ρ]) bounded by the geodesic line
γη joining the pair (ξ0, η) and the line γρ joining the pair (ξ0, ρ). For
each ξ ∈ [η, ρ], consider the (unique, as ξ0 × [η, ρ] ∩ Z = ∅) geodesic γξ
with γξ(−∞) = ξ0 and γξ(+∞) = ξ.

Choose geodesic segments [xη, s̃] (respectively, [xρ, s̃]) joining s̃ with
some point xη ∈ Imγη (respectively, xρ ∈ Imγρ) such that

[xη, s̃] ∩ [xρ, s̃] = {s̃}.

Similarly to the proof of Proposition 3.1, γξ intersects exactly one of
the two half-open segments

[xη, s̃) and [xρ, s̃) .
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Define the following sets

(3.3) I(η) := {ξ ∈ [η, ρ] | Imγξ ∩ [xη, s̃) ̸= ∅}

and

(3.4) I(ρ) := {ξ ∈ [η, ρ] | Imγξ ∩ [xρ, s̃) ̸= ∅}.

Clearly, I(η) and I(ρ) are disjoint. We will show that they are closed
subsets of [η, ρ], thus contradicting the connectedness of [η, ρ]. �

Proof of I(η) closed. Let {ξn} ⊂ I(η) be a sequence converging
to ξ with γξn and γξ the corresponding (unique) geodesic lines with
γξn(−∞) = ξ0 = γξ(−∞) and γξn(∞) = ξn, γξ(∞) = ξ. Choose a
parametrization for γξ. For example, set γξ(0) to be a point of minimal
distance from s̃, and assume, on the contrary, that ξ ∈ I(ρ). This
means that

Imγξ ∩ [xρ, s̃) ̸= ∅.

Then, for sufficiently large n, γξn must also intersect the segment [xρ, s̃)
which, by (3.4), means that ξn ∈ I(ρ), a contradiction. �

We conclude this section with the following proposition which indi-
cates that uniqueness of geodesic rays is a property which depends on
the choice of the base point.

Proposition 3.4. Let ξ ∈ ∂S̃ be arbitrary. Then, for some point

x ∈ S̃, there exist at least two geodesic rays r1, r2 such that r1(0) =
r2(0) = x and r1(+∞) = r2(+∞) = ξ.

Proof. Assume, on the contrary, that, for every point x ∈ S̃, there
exists exactly one geodesic ray, denoted by rx, with rx(0) = x and
rx(+∞) = ξ. Observe that, for two arbitrary distinct geodesic rays r1
and r2 with r1(+∞) = r2(+∞) = ξ (then, by assumption, r1(0), r2(0)
must be distinct) we have that

(3.5) Imr1 ∩ Imr2 is either a geodesic subray of both or ∅.

Otherwise, for a base point in the intersection, we would have two dis-
tinct geodesic rays corresponding to ξ.

Fix a point s̃0 where s0 = p(s̃0) is a conical point with angle θ(s0)
< 2π. Let D(s̃0, ε) be a disk of radius ε > 0 whose closure does not
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contain any conical point except s̃0. Moreover, choose ε > 0 small
enough such that, in addition, ∂D(s̃0, ε) is homeomorphic to a circle.
The geodesic ray rs̃0 intersects ∂D(s̃0, ε) at a single point, denoted x̃0.
A contradiction may be reached by defining a continuous surjective
map from ∂D(s̃0, ε) \ {x̃0} to a space {+,−} consisting of two points.

Let Aε = A + ε be a positive number (see equation (2.3)) such
that, for any x ∈ D(s̃0, ε), the (unique) geodesic ray rx satisfies, for all
t ∈ [0,+∞),

dist(rx(t), Imrs̃0) < Aε.

Let D(rs̃0(3Aε), Aε) be the closed disk of radius Aε centered at
rs̃0(3Aε). Then, the set

D(rs̃0(3Aε), Aε) \ Imrs̃0

consists of two connected components. Using the orientation of rs̃0 , we
may mark these components by saying that the component to the right
is the positive component and the one to the left the negative, notation
D+ and D−, respectively. In order to define a map

R : ∂D(s̃0, ε) \ {x̃0} −→ {+,−},

we will distinguish two cases for each point x ∈ ∂D(s̃0, ε) \ {x̃0}:
Case (i). Imrx ∩ Imrs̃0 = ∅, or Imrx ∩ Imrs̃0 ̸= ∅, and the unique

time tx ∈ [0,+∞) so that Imrs̃0 |[tx,+∞] ⊂ Imrx, which exists by (3.5),
satisfies tx > 2Aε.

Case (ii). Imrx ∩ Imrs̃0 ̸= ∅, and the unique time tx ∈ [0,+∞) so
that Imrs̃0 |[tx,+∞] ⊂ Imrx satisfies tx ≤ 2Aε.

Observe that, in Case (ii), Imrx intersects neither D+ nor D−.
Clearly, in Case (i), Imrx intersects at least one component D+, D−.
We claim that, in Case (i), Imrx cannot intersect both components
D+ and D−. In order to see this, assume that Imrx intersected both

D+ and D−. Let σ : [a, b] → S̃ be a curve with the properties
σ(a) ∈ D+, σ(b) ∈ D− and Imσ ∩ Imrs̃0 = ∅. By standard triangle
inequality arguments, it follows that length (σ) > 2Aε. Therefore, Imrx
cannot be disjoint from rs̃0 , and, since it is a geodesic, it must intersect
rs̃0 transversely, a contradiction according to the assumptions in Case
(i). Thus, it follows that either Imrx ∩D+ ̸= ∅ or Imrx ∩D− ̸= ∅, but
not both. For x ∈ ∂D(s̃0, ε) \ {x̃0}, whose geodesic ray rx falls into
Case (i), we may now define:
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R(x) := + if Imrx ∩D+ ̸= ∅

and
R(x) := − if Imrx ∩D− ̸= ∅.

Now, let x ∈ ∂D(s̃0, ε) \ {x̃0} be such that rx falls into Case (ii). It
is easy to see that tx > ε. For, if 0 < tx ≤ ε, then rs̃0(tx) ∈ D(s̃0, ε),
which is impossible since rs̃0(tx) is a conical point and ε is chosen such
that s̃0 is the unique conical point in the closure of D(s̃0, ε). If tx = 0,
then the conical point s̃0 = rs̃0(0) of angle < 2π lies on the geodesic
ray rx, a contradiction by (2.1). Thus, tx > ε, and there exists a
δ > 0 sufficiently small so that the disk D(rs̃0(tx), δ) does not contain
x̃0 = rs̃0(ε). This disk D(rs̃0(tx), δ) can be used to define R(x) as
above: Imrx intersects exactly one of the two oriented components of
D(rs̃0(tx), δ) \ Imrs̃0 , and define R(x) accordingly.

We show that R is continuous. Let {xn} be a sequence in ∂D(s̃0, ε)\
{x̃0} converging to a point x. The sequence of geodesic rays {rxn}
converges, up to a subsequence, to a geodesic ray qx emanating from
x. Since rxn

(+∞) = ξ for all n, it follows that qx(+∞) = ξ. From
the assumption of uniqueness of geodesic rays we have qx = rx. Thus,
rxn

→ rx uniformly on compact sets. Without loss of generality we
may assume that R(x) = +.

First, assume that the geodesic ray rx falls into Case (i), that is,
Imrx∩ D+ ̸= ∅. Since rxn → rx uniformly on compact sets, it follows
that there exists an N so that, for all n ≥ N ,

Imrxn ∩D+ ̸= ∅,

which means that R(xn) = +, for all n ≥ N .

In Case (ii), we employ the same argument as in the definition of
the function R to reduce to a situation similar to Case (i). This shows
that R is continuous.

We show that R is onto. We may choose a sequence {xn} ⊂ ∂D(s̃0, ε)
\ {x̃0} converging to x̃0 from the right in the following sense: for
all sufficiently small δ > 0, the set D(x̃0, δ) \ Imrs̃0 consists of two
connected components. We mark them as right (positive) and left
(negative) according to the positive direction of rs̃0 . We say that a
sequence {xn} ⊂ ∂D(s̃0, ε) \ {x̃0} converges to x̃0 from the right if xn
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belongs to the right (positive) component of D(x̃0, δ)\ Imrs̃0 for all but
finitely any n. Clearly, for such a sequence {xn}, the corresponding
geodesic rays rxn → rs̃0 |[ε,+∞) uniformly on compact sets. Fix ε1 < ε,
and set

N (ε1) = {y ∈ S̃ | there exists a t ∈ [ε, 4Aε] : d(y, rs̃0(t)) < ε1}.

As above, N (ε1) \ Imrs̃0 consists of two components: N+ and N−.
Pick a sequence xn → x̃0 from the right. Then, for all n large enough,
xn ∈ N+ and, by the uniform convergence of rxn , Imrxn intersects N+,
while

Imrxn ∩N− = ∅.

This implies that R(xn) = + for all large enough n. Similarly, we show
that R attains the value −. �

4. Density of closed geodesics. We begin by showing that each
class of geodesic rays with the same boundary point at infinity contains
a leftmost and a rightmost geodesic ray which bound a convex set
containing the image of any other geodesic ray in the same class. Our
standing assumption that there exists at least one conical point with
angle < 2π asserts that the leftmost and rightmost rays are distinct.

If all angles are > 2π, then S̃ is a CAT(0) space, provided that the
curvature at every regular point is non-positive. In this case, the geo-
desic rays are unique.

Proposition 4.1. Let ξ ∈ ∂S̃ and x̃0 ∈ S̃ be such that the geodesic
ray from x̃0 to ξ is not unique. Then, there exist two geodesic rays rL
and rR with rL(∞) = ξ = rR(∞ and rL(0) = x̃0 = rR(0), and whose

images bound a convex subset S̃(ξ) of S̃ with the property

Imr ⊂ S̃(ξ)

for all geodesic rays r with r(∞) = ξ and r(0) = x̃0.

Proof. Let A be the number posited in equation (2.3). For each
N ∈ N large enough, let ∂0D(x̃0, N) be the principal component of
∂D(x̃0, N). The set

ξ(N) = {r(N) | r(∞) = ξ}
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is contained in an interval IN,ξ of diameter 2A inside the circle
∂0D(x̃0, N). Thus, for large enough N , we may orient IN,ξ and consider
its left and right endpoint.

We claim that ξ(N) is a closed set. In order to see this, let {yn}
be a sequence of points in ξ(N) converging to y ∈ IN,ξ. By the defi-
nition of ξ(N), for each yn, there exists a geodesic ray rn ∈ ξ (not
necessarily unique) such that rn(N) = yn. By passing to a subsequence,
if necessary, {rn} converges to a geodesic ray r and, clearly, r ∈ ξ. As
yn → y, y must belong to Imr and, on the other hand, y ∈ IN,ξ ⊂
∂0D (x̃0, N). Thus, y = r(N), which shows that ξ(N) is closed.

By compactness, the leftmost and rightmost points of ξ(N) inside
IN,ξ, denoted by yL and yR, respectively, exist. Since the number of
conical points in the closure of D(x̃0, N) is finite, we may choose (cf.,
Lemma 2.2) geodesic segments σL,N and σR,N with endpoints x̃0, yL
and x̃0, yR, respectively, satisfying the following property: the convex
subset of the closure of D(x̃0, N), bounded by the union

(4.1) σL,N ∪ [yL, yR] ∪ σR,N ,

where [yL, yR] indicates the subinterval of ∂0D(x̃0, N) containing ξ(N),
contains all geodesic segments r|[0,N ] for all r for which r(∞) = ξ.

The segment σL,N (and similarly for σR,N ) can be obtained by
starting with a geodesic segment σ′

L,N with endpoints x̃0, yL and then,

if a geodesic ray intersects the segment σ′
L,N , it must do so at pairs

of (conical) points (otherwise, the property of yL being leftmost would
be violated). As the intersection points are conical points, they are
finitely many pairs of intersection points; thus, we may replace (see
Lemma 2.2) finitely many parts of the segment σ′

L,N to obtain σL,N .

The sequences {σL,N}N∈N and {σR,N}N∈N converge to geodesic rays
rL, rR ∈ ξ, respectively. The required property in the statement of

Proposition 4.1 for the convex set S̃(ξ) bounded by ImrL and ImrR
now follows: for, if r ∈ ξ with Imr " S̃(ξ), then, for some M > 0,

r(M) /∈ S̃(ξ). Assume that the distance d(r(M), S̃(ξ)) = C0 > 0 of

r(M) from S̃(ξ) is realized by a point on ImrR. Then, for a compact
set K ⊃ [0,M ] and the positive number C0/2, there exists an N0 so
that

d(rR(t), σR,N (t)) < C0/2
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for all t ∈ K and for all N > N0. We may assume that N0 satisfies
N0 > [M ] + 1. It follows that r(M) does not belong to the convex
subset of D(x̃0, N0) bounded by the union

σL,N0 ∪ [yL, yR] ∪ σR,N0 ,

contradicting (4.1). �

In view of the above proposition, we introduce the following.

Notation. For each ξ ∈ ∂S̃, the geodesic rays posited in the above
proposition will be called leftmost and rightmost geodesic rays in the
class of ξ and will be denoted by rL,ξ and rR,ξ, respectively.

Proposition 4.2. For every pair of points η, ξ ∈ ∂S̃ with η ̸= ξ, there
exist two geodesic lines γL, γR ∈ (η, ξ), that is, γL(−∞) = η = γR(−∞)

and γL(∞) = ξ = γR(∞), whose images bound a convex subset S̃(η, ξ)

of S̃ with the property

Imγ ⊂ S̃(η, ξ)

for all geodesic lines γ ∈ (η, ξ) .

Proof. The line of proof is similar to that of the previous proposition;
however, we include it here since certain modifications are needed.

We may assume that there exist at least two geodesics in the class
of (η, ξ); otherwise, the statement is trivial. Moreover, each γ ∈ (η, ξ)
is considered oriented with positive direction from η to ξ, and then the

left and right components of ∂S̃ \{η, ξ} are determined. Choose a base
point x̃0 on the image of an arbitrary γ0 ∈ (η, ξ), and set γ0(0) = x̃0.

For large enough t > 0, the principal boundary ∂0D(x̃0, γ0(t)) of the
disk centered at x̃0 with radius d(x̃0, γ0(t)) is a circle. Write I+t for the
closed subinterval of ∂0D(x̃0, γ0(t)), which is minimal with respect to
the inclusion

I+t ⊂ ∂0D(x̃0, γ0(t)) ∩D(γ0(t), A),

whereA is the constant posited in (2.3). Similarly, using ∂D(γ0(−t), A),
we define I−t . For sufficiently large t > 0, we have

I+t ∩ I−t = ∅.
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For large enough N ∈ N, the sets I+N and I−N have the property that,
for all γ ∈ (η, ξ),

Imγ ∩ ∂0D(x̃0, γ0(N)) ⊂ I+N ∪ I−N .

For each γ in (η, ξ), the intersection Imγ ∩ I+N (respectively, I−N ) is
not necessarily a singleton. However, there exist unique numbers
t−γ,N , t+γ,N ∈ R such that

γ(t−γ,N ) ∈ I−N , γ(t+γ,N ) ∈ I+N ,

and |t−γ,N − t+γ,N | is minimal with respect to the above inclusions.

Equivalently, γ|(t−γ,N ,t+γ,N ) ∩ ∂0D(x̃0, γ0(t)) = ∅. Set

ξ+(N) = {γ(t+γ,N ) | γ ∈ (η, ξ)},

and similarly for ξ−(N). We claim that both sets ξ+(N), ξ−(N) are
closed. In order to see this, let {yn} be a sequence of points in ξ+(N)
converging to y ∈ I+N . From the definition of ξ+(N), for each yn,
there exists a geodesic γn ∈ (η, ξ) (not necessarily unique) such that
γn(t

+
γn,N

) = yn. By passing to a subsequence, if necessary, {γn} con-

verges to a geodesic γ′. Clearly, γ′ ∈ (η, ξ), and y must belong to
Imγ′ ∩ I+N . In order to complete the proof that ξ+(N) is closed, we

need to show that y = γ′(t+γ′,N ) or, equivalently, if ty ∈ R such that

y = γ′(ty), then ty = t+γ′,N .

For ε positive, say ε < N/2, the sequence {γn(t+γn,N
− ε)}n∈N con-

verges to a point in D(x̃0, N). Therefore, all points on Imγ′|(−∞,ty ] of
distance ε from y belong to D(x̃0, N). It follows that the time ty with
y = γ′(ty) is the smallest time t > 0 for which γ′(ty) ∈ I+N . Therefore,

ty = t+γ′,N , which shows that ξ+(N) is closed. Similarly, we show that

ξ−(N) is closed.

Denote by y+L (respectively, y+R) the leftmost (respectively, right-

most) point of ξ+(N) in I+N and y−L (respectively, y−R) the leftmost

(respectively, rightmost) point of ξ−(N) in I−N , all of which exist
by compactness. We may construct a rightmost geodesic segment
σR,N = [y−R , y

+
R ] in the closure of D(x̃0, N) with endpoints y−R , y

+
R and

a leftmost geodesic segment σL,N = [y−L , y
+
L ] in the closure of D(x̃0, N)

with endpoints y−L , y
+
L such that the following property holds:



1472 C. CHARITOS, I. PAPADOPERAKIS AND G. TSAPOGAS

• the convex subset bounded by the union

σL,N ∪ [y+L , y
+
R ] ∪ σR,N ∪ [y−R , y

+
R ],

where [y+L , y
+
R ] (respectively, [y−L , y

−
R ]) indicates the subinterval of

∂0D(x̃0, N) containing ξ+(N) (respectively, ξ−(N)), contains all seg-

ments Imγ ∩D(x̃0, N) for all γ ∈ (η, ξ).

The segment σL,N (and, similarly, for σR,N ) can be obtained by
starting with a geodesic segment σ′

L,N with endpoints y−L , y
+
L , and then,

if a geodesic line intersects the segment σ′
L,N , it must do so at pairs

of (conical) points (otherwise, the property of y+L , y
−
L being leftmost

would be violated). Since the intersection points are conical points,
they are finitely many; thus, we may replace (see Lemma 2.2) finitely
many parts of the segment σ′

L,N to obtain σL,N .

Similarly to the proof of the previous proposition, we obtain the
desired geodesic lines as limits of the sequences {σL,N}N∈N and
{σR,N}N∈N. �

Notation. For each (η, ξ) ∈ ∂2S̃, the geodesic lines posited in the
above proposition will be called leftmost and rightmost geodesic lines
in the class of (η, ξ) and will be denoted by γL,(η,ξ) and γR,(η,ξ), respec-
tively.

Theorem 4.3. Closed geodesics are dense in GS in the following sense:

for each pair (η, ξ) ∈ ∂2S̃, there exists a sequence of geodesics {cn} such
that cn → γL,(η,ξ) in the usual uniform sense on compact sets, and p(cn)
is a closed geodesic in S for all n; similarly for γR,(η,ξ).

Proof. For arbitrary (η, ξ) ∈ ∂2S̃, we orient as positive the direction

from η to ξ and name the components of ∂S̃ \{η, ξ} “left” and “right.”
We choose, by Proposition 2.8, a sequence {(ϕn(−∞), ϕn(+∞))}n∈N
where each ϕn is a (hyperbolic) element of π1(S) such that ϕn(−∞) →
η and ϕn(∞) → ξ with the additional property, that for all n, both
ϕn(−∞) and ϕn(∞) belong to the same (say, right) component of

∂S̃ \ {η, ξ}. In particular, we have that ϕn(−∞) ̸= η and ϕn(∞) ̸= ξ.

We claim that, for each n ∈ N, there exists a geodesic

c′′n ∈ (ϕn(−∞), ϕn(+∞)),
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that is,
c′′n(−∞) = ϕn(−∞) and c′′n(∞) = ϕn(+∞),

whose projection to S is closed. In order to see this, pick arbitrary

y ∈ S̃, and consider the geodesic segment [y, ϕn(y)] which, clearly,
projects to a closed curve, say σn in S. There exists a length minimizing
closed curve in the (free) homotopy class of σn (see [6, Remark

1.13(b)]). By choosing an appropriate lift to S̃ of this length minimizing
closed curve, we obtain a geodesic line c′′n such that the set

{ϕi
n(y) | i ∈ Z}

is at a bounded distance from Im c′′n. Thus, c′′n(−∞) = ϕn(−∞) and
c′′n(∞) = ϕn(+∞), as desired.

Since, by construction, the projection of c′′n to S is a closed curve,
we can speak of the period of c′′n. Let γR,(η,ξ) ∈ (η, ξ) be the rightmost
geodesic posited in Proposition 4.2. Since c′′n(−∞) ̸= η and c′′n(∞) ̸= ξ,
the intersection

Imc′′n ∩ ImγR,(η,ξ)

has finitely many components. For each n ∈ N, consider the geodesic
line c′n having the same image as c′′n, and its period is a multiple of the
period of c′′n such that

Imc′n ∩ ImγR,(η,ξ)

is contained in a single period of c′n. We may alter c′n in its (enlarged)
period so that it does not intersect the interior of the convex subset

S̃(η, ξ) of S̃ bounded by ImγL,(η,ξ) and ImγR,(η,ξ). For such an alter-
ation, we only need modify c′n in subintervals, say [z, w], of its image

contained in S̃(η, ξ), namely, we must replace c′n|[z,w] by γR,(η,ξ)|[z,w].
Then, by repeating this alteration, weobtain a geodesic line, denoted
cn, whose projection to S is a closed geodesic. Clearly, by construction,

cn(−∞) = c′′n(−∞) = ϕn(−∞),

cn(∞) = c′′n(+∞) = ϕn(+∞)

and, since Imcn ∩ S̃(η, ξ) ⊂ ImγR,(η,ξ), it follows that cn → γL,(η,ξ)

uniformly on compact sets. �
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