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MODELING ROGUE WAVES WITH THE
KADOMTSEV–PETVIASHVILI (KP) EQUATION

ION BICA AND RANDY WANYE K.

ABSTRACT. In this paper, we derive a new class of
solutions for the Kadomtsev-Petviashvili (KP) equation, and
we discuss their possible relevance to rogue waves. The
nonlinear interaction of these solutions is considered.

1. Background and motivation. Rogue waves, also called giant
or freak waves, are relatively powerful ocean surface waves that are a
threat to large ships and ocean liners. They are responsible for the loss
of many ships and lives. Rogue waves are particularly spontaneous, as
they appear from nowhere. This is due to the fact that they appear
from an internal process of energy accumulation sometimes combined
with external processes of energy accumulation, for example, the wind.
As spontaneous as they are, they are not totally random. They appear
more frequently in certain regions of the ocean than others. These
regions seem to have the right ingredients for the internal energy to
build up and create rogue waves. One such region is in the area
near Cape Agulhas. The Agulhas current runs southwest, while the
dominant winds are westerly. There are three categories in which rogue
waves may appear: as walls of water, sets of three, called three sisters
(three sisters is reported to have occurred in Lake Superior), and single,
giant waves building up to quadruple the height of the wave formed as
a result.

For years, sailors and other eyewitnesses have been telling stories
about their encounters with large monstrous waves. These stories have
been dismissed by oceanographers; however, this all changed following
the scientific measurement of a large wave, called the Draupner wave,
at the Draupner platform in the North Sea on January 1, 1995. Since
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then, several other accounts of rogue waves have been given, mostly
in the media. Even if we cannot determine all of the factors that
create a rogue wave, several causes of rogue waves may include strong
winds, together with fast converging currents, or diffractive focusing
of winds and currents, or a nonlinear effect, in which a particular
type of nonlinear wave forms and sucks energy from other nonlinear
waves, growing into a bigger and taller wave. The different causes
that create rogue waves give rise to the occurrence of different types.
What is common in their occurrence is the associated elevations and
depressions of the surrounding water. There are several models for
rogue waves; one example is given in [2], where the scientists used
the nonlinear Schrödinger equation to explain them. Another example
is the use of a recent method proposed in [10], where the scientists
use the Kadomtsev-Petviashvili model as an example to illustrate the
effectiveness of their suggested method. They showed that, “...a rogue
wave can come from extreme behavior of breather solitary wave for
(2 + 1)-dimensional nonlinear wave fields.” In this paper, we give an
exact formula for a rogue wave using the Kadomtsev-Petviashvili model
and a formula of their nonlinear interaction.

Rogue waves are a localized phenomenon, both in space and dura-
tion, most frequently occurring far out at sea. Many researchers are
currently trying to understand their nature, for example, through work-
shops [8]. We will make use of the equation derived by Kadomtsev and
Petviashvili:

(1.1) (ut + 6uux + uxxx)x + 3α2uyy = 0, α2 = ±1,

referred to as the Kadomtsev-Petviashvili equation (KP equation),
which is one of the many models for water waves. The evolution of
the waves described by (1.1) is weakly nonlinear, weakly dispersive and
weakly two dimensional. The sign of α2 depends upon the magnitudes
of gravity and surface tension. When α2 = −1, surface tension
dominates gravity (gravity is negligible), and (1.1) is known as the KPI
equation. When α2 = 1, gravity dominates surface tension (surface
tension is negligible), and (1.1) is known as the KPII equation.

The KP equation (1.1) has been widely studied and used in the
description of several interesting phenomena; to cite a few: [3, 4, 5, 6].
We will consider appropriate singular solutions of the KP equation and
study whether, through their nonlinear interaction, they can create
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rogue waves. The KP equation will not be able to fully describe this
phenomenon due to its limitations. However, we will show that, despite
its limitations, it provides a good explanation as to how rogue waves
occur.

With the generation of giant waves like rogue waves causing the loss
of many ships and lives, a good understanding of their occurrence will
be of great help. Rogue waves are not tsunamis, which are set in motion
by earthquakes and propagate at high speeds, building up as they get
to the shore. Rogue waves occur most frequently in deep water and are
short lived. We attempt to improve the understanding of these waves
by using the KP equation.

2. Intuitive derivation of the KP equations: A mathematical
approach. Recall that the classical wave equation in Rn, n ≥ 1, is the
following integer:

(2.1)
∂2u

∂t2
− c2∆u = 0, u = u(x⃗, t),

x⃗ = (x1, x2, . . . , xn)
T ∈ Rn, ∆u =

n∑
i=1

∂2u

∂x2
i

has solutions

(2.2) u(x⃗, t) = ei(k⃗·x⃗−ωt)

that satisfy the dispersion relation:

(2.3) ω2 = c2 |⃗k|2, |⃗k|2 = k21 + k22 + · · ·+ k2n,

where c is the speed of wave propagation, k⃗ = (k1, k2, . . . , kn)
T is the

wave number vector and k⃗ · x⃗ is the scalar inner product in Rn.

We generalize the right hand side of the dispersion relation (2.3) as

an arbitrary function of |⃗k|2:

(2.4) ω2 = f(|⃗k|2).

Under the assumption that f is well approximated by its Taylor

expansion about |⃗k|2 = 0 and f(0) = 0, f ′(0) = A2, A > 0,
f ′′(0) = −B2, B > 0, we have:

(2.5) f(|⃗k|2) = A2 |⃗k|2 −B2 |⃗k|4 +O(|⃗k|6).



1440 ION BICA AND RANDY WANYE K.

For |⃗k|2 sufficiently small, in the asymptotic expansion (2.5), we can

drop the terms O(|⃗k|6), so that:

(2.6) f(|⃗k|2) = A2 |⃗k|2 −B2 |⃗k|4.

Hence, from (2.4) and (2.6), we obtain:

(2.7) ω2 = A2 |⃗k|2 −B2 |⃗k|4

for |⃗k|2 sufficiently small.

We now consider the cases n = 2 and k1 = kx, k2 = ky. Then, (2.7)
becomes:

(2.8) ω2 = A2(k2x + k2y)−B2(k2x + k2y)
2.

Extracting the positive root in (2.8), and assuming that kx is small but
ky/kx ≪ 1, we obtain:

(2.9) ω = Akx − B2

2A
k3x +

A

2
k2yk

−1
x + · · · .

Multiplying (2.9) by kx, we obtain:

(2.10) ωkx = Ak2x − B2

2A
k4x +

A

2
k2y + · · · .

The equation (2.10) suggests that u(x, y, t) (the function (2.2) for the
case n = 2, where x1 = x, x2 = y) satisfies the linear equation:

(2.11)

(
ut +Aux +

B2

2A
uxxx

)
x

+
A

2
uyy = 0.

We make the following change of variables (we consider two cases):

told =
4

√
2A

B2
tnew, xold =

4

√
B2

2A
xnew +A

4

√
2A

B2
tnew

yold =

i
√

A
6 ynew case(i),√

A
6 ynew case(ii).

Then, equation (2.11) becomes, accordingly:

(2.12) (ut + uxxx)x ∓ 3uyy = 0.
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The minus case corresponds to case (i), and the plus case corresponds
to case (ii). The equation

(2.13) (ut + uxxx)x − 3uyy = 0

is known as the linear KPI equation, and the equation

(2.14) (ut + uxxx)x + 3uyy = 0

is known as the linear KPII equation.

In order to cause a variation in the amplitude in both space and
time to the sinusoidal oscillations of u(x, y, t), the variation in x of the
nonlinear term in the KdV model is added, (6uux)x, to equations (2.13)
and (2.14), accordingly. This addition turns the linear equations (2.13)
and (2.14), respectively, into the following nonlinear equations:

(2.15) (ut + 6uux + uxxx)x − 3uyy = 0,

and correspondingly,

(2.16) (ut + 6uux + uxxx)x + 3uyy = 0.

Equation (2.15) is known as the KPI equation, and equation (2.16) is
known as the KPII equation.

3. Main results.

Theorem 3.1. Let u(x, y, t) be defined as:

(3.1) u(x, y, t) = 2
∂2

∂x2
ln detK,

where K is the N ×N matrix :

(3.2) K =


K11 K12 · · · K1N

K21 K22 · · · K2N

· · · · · · · · · · · ·
KN1 KN2 · · · KNN

 .

(i) First, u(x, y, t) is a solution of the KPI equation if the matrix K
has the following entries:

(3.3) Knn = −Υn − sinh 2Γn

2λn
,
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(3.4)

Knk =
(λn+λk) sinh(Γn+Γk)

(µn−µk)2+(λn+λk)2
− (λn−λk) sinh(Γn−Γk)

(µn−µk)2+(λn−λk)2

+ i

[
(µn−µk) cosh(Γn+Γk)

(µn−µk)2+(λn+λk)2
− (µn−µk) cosh(Γn−Γk)

(µn−µk)2+(λn−λk)2

]
, n ̸= k;

(3.5)
Υn = ρn + x cosχn − 2[λn sinχn + µn cosχn] y

− 12[λ2
n cosχn − µ2

n cosχn − 2λnµn sinχn] t;

(3.6) Γn = γn + λnx− 2λnµny − 4λn(λ
2
n − 3µ2

n) t.

(ii) Second, u(x, y, t) is a solution of the KPII equation if the matrix
K has the following entries:

(3.7) Knn = −Υn +
sinh 2Γn

2λn
;

(3.8)

Knk =
(λn−λk) sinh(Γn−Γk)

(µn−µk)2−(λn−λk)2
− (λn+λk) sinh(Γn+Γk)

(µn−µk)2−(λn+λk)2

+
(µn−µk) cosh(Γn+Γk)

(µn−µk)2−(λn+λk)2
+
(µn−µk) cosh(Γn−Γk)

(µn−µk)2−(λn−λk)2
, n ̸= k;

(3.9)
Υn = ρn + x coshχn − 2[λn sinhχn + µn coshχn] y

− 12[λ2
n coshχn + µ2

n coshχn + 2λnµn sinhχn] t;

(3.10) Γn = γn + λnx− 2λnµny − 4λn(λ
2
n + 3µ2

n) t,

where λn, µn, χn, γn, ρn, n = 1, . . . , N , are real scalars.

Remark 3.2. Some entries of the matrix are complex; however, the
matrix is self adjoint. Hence, it has a real determinant.

The formulae in Theorem 3.1 may be understood as follows: for
N = 1, we obtain an explicit solution for the KP model; for N = 2, we
obtain the interaction of two explicit solutions, and so on. The formula
given in Theorem 3.1 describes the nonlinear interaction of N such
solutions. In this paper, we are only interested in describing the nature
of one solution (N = 1) and the simulations for the interaction of two
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solutions (N = 2). The general study of the nonlinear interactions of
these singular solutions is a topic for future research.

4. Singular solutions. We consider the simplest case of the formu-
lae (3.3)–(3.10) when N = 1. In this case, the formulae are:

(4.1) u(x, y, t) = ± 8λ3
1 sinh 2Γ1

2Υ1 ± λ1 sinh 2Γ1
− 8

[
cosχ1 ± λ2

1 cosh 2Γ1

2Υ1 ± λ1 sinh 2Γ1

]2
;

Υ1 = ρ1 + x cosχ1 − 2[λ1 sinχ1 + µ1 cosχ1] y(4.2)

− 12[λ2
1 cosχ1 − µ2

1 cosχ1 − 2λ1µ1 sinχ1] t;

(4.3) Γ1 = γ1 + λ1x− 2λ1µ1y − 4λ1(λ
2
1 − 3µ2

1) t.

The solution (4.1)–(4.3) is determined by a spectral triplet (three
spectral parameters) (λ1, µ1, χ1); for +, the solution is for KPI, and
for −, the solution is for KPII. For any choice of the spectral triplet,
the solution has a singular set, where its value sinks to negative ∞.
We can isolate small domains where we do not have singularities for
limited amounts of time; however, this is not the purpose of this work.
We are interested in seeing how these singularities behave within the
system and what role they play in the formation of rogue waves. Is
there any “rule” in the chaos with which they are usually associated?
From the simulations of the nonlinear interaction of two of such singular
solutions, it seems that there is, but the “mathematical truth” is deeply
hidden in the complex structure of their interaction.

Where these singularities occur, the KP model fails; however, we
should not be deterred by this, for it is similar to Coulomb’s law of
electrostatics. Apart from these singularities, the model is valid and
provides good solutions. For the model to be physically correct, we
need to remove the singularities. However, there is no particular way
of regulating these singularities. We choose the ad hoc regularization:

(4.4) U = eu − 1,

due to its properties

U = 0 if u = 0

U −→ −1 as u → −∞,
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where the enormous energy from these singularities gives rise to the
rogue waves. The function u in (4.4) is given by (4.1)–(4.3). The
case N = 2 will be at an observational level, where we will observe a
very interesting situation which leads to the idea that the Kadomtsev-
Petviashvili model can be a good start in understanding rogue waves.

(a) Projection onto xy-plane. (b) 3D plot.

Figure 1. Singular wave generated from the KPI equation with χ1 = 0.9,
λ1 = 1.2, µ1 = 0.01, γ1 = 0, ρ1 = 0, at t = 0.

(a) Projection onto xy-plane. (b) 3D plot.

Figure 2. Singular wave generated from the KPII equation with χ1 = 1,
λ1 = 1.5, µ1 = 0.01, γ1 = 0, ρ1 = 0, at t = 0.

Figures 1 and 2 show the graph of U , where U is as given by equation
(4.4); the function u in (4.4) is given by (4.1)–(4.3). In both cases (KPI
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and KPII, respectively), the fluid moves to the left for U < 0, shown in
regions with dark shadings in both figures; the fluid moves to the right
for U > 0, shown in regions with light shadings in both figures. When
the fluid moving to the left collides with the fluid moving to the right,
we obtain a point of “crossing” of dark and light shades. The velocity
of motion of the fluid at this point is given by v = (vx, vy), where, for
KPI:

(4.5) vx = 4(λ2
1 + 3µ2

1)−
8λ1µ1

tanχ1
,

(4.6) vy = 12µ1 −
4λ1

tanχ1
.

For KPII:

(4.7) vx = 4(λ2
1 − 3µ2

1)−
8λ1µ1

tanhχ1
,

(4.8) vy = −12µ1 −
4λ1

tanhχ1
.

The singularities break the solution into two simple-connected waves,
each of which is a solution of the KP equation. Each wave moves
like a soliton, just like the waves observed in oceans. This is shown
in Figure 3. Figure 3 shows the graph of U , where U is as given by
equation (4.4), and it is an example of simple-connected waves. This
graph is similar to that observed in Figure 4, for U , as given by equation
(4.4), and can be compared to the photo in Figure 5.

(a) Projection onto xy-plane. (b) 3D plot.

Figure 3. Simple-connected wave generated from the KPI equation with
χ1 = 0.9, λ1 = 1.2, µ1 = 0.01, γ1 = 0, ρ1 = 0, at t = 0.
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(a) Projection onto xy-plane. (b) 3D plot.

Figure 4. Simple-connected wave generated from the KPII equation
with χ1 = 1.9, λ1 = 1.7, µ1 = 0.01, γ1 = 0, ρ1 = 0.2, at t = 0,
http://www.popsci.com/science/article/2009-11/econophysicists-rogue-waves-

could-account-volatility-financial-markets.

Figure 5 shows how the water wave collects at its highest point of
elevation. We observed similarities in the depression and elevation of
Figures 3 and 4, compared with the photo in Figure 5. This could
be formed as a result of wind blowing over a calm water surface,
therefore generating ripples which are affected by gravity and surface
tension. Over a period of time, energy builds up between high and low
frequencies. Some energy is lost as a result of breaking, and the rest of
the energy is transferred by nonlinear affects to the lower frequencies,
causing a sudden change in peaks.

5. Interaction of singular solutions. Can the occurrence of rogue
waves be predicted by the Kadomtsev-Petviashvili equation? Some
aspects of the waves presented here will be considered non-physical
due to how thin they are. The KP equation does not take into account
wave-overturning; this, therefore, does not make the KP equation a
good model for traveling waves.

We consider the case N = 2 for the KP equation. This gives us
the interaction of two singular waves. The example illustrated here is
shown in Figures 6–8, which show the time evolution of the interaction
of two solutions of the KPI equation. We look at the amplitudes of the
waves occurring at a time preceding (t = −0.1), at t = 0 and the time
after (t = 0.1).
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Figure 5. A rogue wave that compares to Figures 3 and 4.

(a) Projection onto xy-plane. (b) 3D plot.

Figure 6. Interaction of two singular waves with χ1 = 0.6, χ2 = 5, λ1 =
1.8, λ2 = 1.5, µ1 = 0.007, µ2 = 0.0005, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at
t = −0.1.
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(a) Projection onto xy-plane. (b) 3D plot.

(c) Cross-section by plane y = 0. (d) Cross-section by plane x = 0.

Figure 7. Interaction of two singular waves with χ1 = 0.6, χ2 = 5, λ1 =
1.8, λ2 = 1.5, µ1 = 0.007, µ2 = 0.0005, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at t = 0.

We note that the waves will have an inelastic collision and observe
that energy accumulates to increase the amplitude of a new wave, larger
than those creating it. This gives us an idea that the KP model may
describe, up to a point, the evolution of a rogue wave. The more waves
collide with others at the same time, the larger the amplitude of the
new wave; this is the birth of a rogue wave. As the amplitude grows
larger and larger, the KP equation fails at some point when the surface
becomes multi-valued and the waves break. The waves of interest to
us are Figure 6 (backwards in time t = −0.1), Figure 7 (at time t = 0),
and Figure 8 (forward in time t = 0.1). They show the wave appearing
basically from nowhere. The two small peaks in Figures 6 and 8 are
very thin and should be considered unphysical since they are not strong
enough to support themselves and will, therefore, collapse. We should
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also take note of the elevations and depressions surrounding the wave.
Elevations and depressions are observed whenever a rogue wave occurs.

(a) Projection onto xy-plane. (b) 3D plot.

Figure 8. Interaction of two singular waves with χ1 = 0.6, χ2 = 5, λ1 =
1.8, λ2 = 1.5, µ1 = 0.007, µ2 = 0.0005, γ1 = γ2 = 0, ρ1 = ρ2 = 0, at t = 0.1.

Figure 9 shows an example of a rogue wave that is similar to the
graph in Figure 7.

Figure 9. An example of a rogue wave similar to Figure 7,
http://www.armageddononline.org/Rogue-Waves-and-Freak-Waves.html.

6. Conclusions. We used the Kadomtsev-Petviashvili equation to
show the basic mechanism of rogue waves. Through many simula-
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tions on their interactions, our solutions repeatedly showed the ap-
pearance of large-amplitude waves with a short life span that appear
seemingly from nowhere and may cause great destruction. The so-
lutions obtained in this paper are from the dimensionless form of the
Kadomtsev-Petviashvili equation. As a result, contributions from phys-
ical parameters like wind, gravity, density and surface tension were lost.

We can conclude that, among the many theories for rogue waves,
the mechanism produced by the Kadomtsev-Petviashvili model may be
able to forecast and predict the occurrence of rogue waves. By studying
the solutions obtained, the Kadomtsev-Petviashvili model seems to
describe the time evolution of their interaction. Existing models show
how many waves come together and create rogue waves. In our study,
we saw the manner in which even two singular waves produced a wave
with relatively higher amplitude upon interaction.

Observe that the Kadomtsev-Petviashvili model does not account for
overturning waves. This is a limitation to the KP equation in modeling
rogue waves, since these waves overturn at a point in their short life
span. It should be noted, however, that the KP equation can be quite
a good model even under these ‘ideal’ conditions.

For further research, it would be interesting to see the interactions
of many waves described by formulae (3.1)–(3.10) and what must be
added to the KP equation to make it account for overturning waves,
as well as witnessing the birth of these waves (i.e, complete evolution
of the wave). In addition, we suggest that the physical KP equation
be used in an experimental laboratory setting, with all of the physical
variables accounted for. This would go far in improving the results
obtained here.

7. Proofs. Here, we give proofs of the solutions (3.1)–(3.10) de-
scribed in Section 2. The solutions obtained here are a continuation of
the work in [7]. We give the proof for the case α = 1. We begin with
the N -soliton wall solution [1, 9], in the form

(7.1) u(x, y, t) = 2
∂2

∂x2
ln detB,

where
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Bmn = δmn +
cn

pn + qm
e(pn+qm)x+(q2n−p2

n)y−4(p3
n+q3n)t,(7.2)

m,n = 1, 2, . . . , 2N.

δmn =

{
1 if m = n,

0 if m ̸= n,

and pn, qn, cn > 0 are arbitrary constants. Noting that both m and n
go from 1 to 2N , we choose

(7.3)

p2k−1 = −λk + µk + εe−χk , p2k = λk + µk + εeχk ,

q2k−1 = −λk − µk + εeχk , q2k = λk − µk + εe−χk ,

c2k−1 = 2εe−2γk+2ρkε, c2k = 2εe2γk+2ρkε,

λk, µk, χk, γk, ρk ∈ ℜ, k = 1, 2, . . . , N,

ε a perturbation parameter. Substituting the transformations (7.3) into
(7.1) and (7.2), we obtain

(7.4) u(x, y, t) = 2
∂2

∂x2
ln detBε,

where

(7.5) Bε =


Bε
11 Bε

12 · · · Bε
1N

Bε
21 Bε

22 · · · Bε
2N

...
...

...
...

Bε
N1 Bε

N2 · · · Bε
NN

 ,

with 2× 2 block entries

(7.6) Bε
mn =

(
Bε
mn,11 Bε

mn,12

Bε
mn,21 Bε

mn,22,

)
,

Bε
mn,11=δmn+

c2n−1
p2n−1+q2m−1

e(p2n−1+q2m−1)x+(q22n−1−p2
2n−1)y−4(p3

2n−1+q32n−1)t,

Bε
mn,12 =

c2n
p2n + q2m−1

e(p2n+q2m)x+(q22n−p2
2n)y−4(p3

2n+q32n)t,

Bε
mn,21 =

c2n−1

p2n−1 + q2m
e(p2n−1+q2m−1)x+(q22n−1−p2

2n−1)y−4(p3
2n−1+q32n−1)t,
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Bε
mn,22 = δmn +

c2n
p2n + q2m

e(p2n+q2m)x+(q22n−p2
2n)y−4(p3

2n+q32n)t,

δmn the regular Kronecker symbols. Then,

(7.7) detBε =
∑

σ∈S2N

sgn(σ)
N∏
i=1

detDε
2i−1 2ik2i−1 k2i

,

where S2N is the group of permutations of {1, 2, . . . , 2N} and σ =
{k1, k2, . . . , k2N} ∈ S2N . The 2×2 matrices Dε

2i−12ik2i−1k2i
are obtained

by taking the elements of Bε at the intersection of the (2i − 1)th and
(2i)th rows and the k2i−1th and k2ith columns, with k2i−1 < k2i. These
2× 2 matrices have the following determinants as ε → 0:

(1) If k2i−1 = 2i− 1 and k2i = 2i, then:

(7.8) detDε
2i−1 2i k2i−1 k2i

= detBε
ii = 4ε

[
−Υi +

sinh 2Γi

2λi

]
+O(ε2).

(2) If k2i−1 = 2i− 1 and k2i ̸= 2i, then:

detDε
2i−1 2i k2i−1 k2i

(7.9)

= −2ε

[
cosh(Γki1 − Γki2)

(µki1 − µki2)− (λki1 − λki2)

+
sinh(Γki1− Γki2)

(µki1− µki2)− (λki1− λki2)
+

cosh(Γki1 + Γki2)

(µki1− µki2)− (λki1+ λki2)

+
sinh(Γki1 + Γki2)

(µki1 − µki2)− (λki1 + λki2)

]
+O(ε2).

(3) If k2i−1 ̸= 2i− 1 and k2i = 2i, then:

detDε
2i−1 2i k2i−1 k2i

(7.10)

= −2ε

[
cosh(Γki1 − Γki2)

(µki1 − µki2) + (λki1 − λki2)

− sinh(Γki1− Γki2)

(µki1− µki2) + (λki1− λki2)
+

cosh(Γki1+ Γki2)

(µki1− µki2) + (λki1+ λki2)

− sinh(Γki1 + Γki2)

(µki1 − µki2) + (λki1 + λki2)

]
+O(ε2).
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(4) If k2i−1 ̸= 2i− 1 and k2i ̸= 2i, then:

(7.11) detDε
2i−1 2i k2i−1 k2i

= O(ε2),

where the Υis and Γis are given by (3.9) and (3.10), respectively. Since
ε → 0, we obtain that

(7.12) detBε = (4ε)N
∑

σ∈S2N

sgn(σ)
N∏
i=1

Kiσ(i) + terms of order O(εN ).

In the limiting process ε → 0, we obtain that u(x, y, t) as defined by
equations (3.7)–(3.10) satisfies the KPII equation.

For a change of variables y = α−1y∗, µn = αµ∗
n and χn = αχ∗

n,
we obtain as proof that u(x, y, t), as defined by equations (3.3)–(3.6),
satisfies the KPI equation.
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