ELLIPTIC PROBLEMS INVOLVING NATURAL GROWTH IN THE GRADIENT AND GENERAL ABSORPTION TERMS

HAYDAR ABDELHAMID

$$
\begin{aligned}
& \text { ABSTRACT. In this paper, we treat the existence of } \\
& \text { solutions for a class of general elliptic problems whose } \\
& \text { prototype is the following: } \\
& \qquad \begin{cases}-\Delta_{p} u+h(x)|u|^{q-1} u=\beta|\nabla u|^{p}+\lambda f(x) & \text { in } \Omega, \\
u=0 & \text { on } \partial \Omega,\end{cases}
\end{aligned}
$$

where Ω is a bounded open subset of \mathbb{R}^{N} with $N>1$, $1<p<N, q \geq 1, \lambda \in \mathbb{R}, \beta \in \mathbb{R}, h \in L^{1}(\Omega)$ with $h \geq 0$ and $f \in L^{1}(\Omega)$. Assuming that the source term f satisfies

$$
\lambda_{1}(f)=\inf \left\{\frac{\int_{\Omega}|\nabla w|^{p} d x}{\int_{\Omega}|f||w|^{p} d x}: w \in W_{0}^{1, p}(\Omega) \backslash\{0\}\right\}>0
$$

we obtain the existence of a solution $u \in W_{0}^{1, p}(\Omega)$ when $|\lambda|$ is sufficiently small.

1. Introduction. This work is devoted to the study of the existence of solutions of nonlinear elliptic problems whose model example is the following:

$$
\begin{cases}-\Delta_{p} u+h(x)|u|^{q-1} u=\beta|\nabla u|^{p}+\lambda f(x) & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded open subset of \mathbb{R}^{N} with $N>1,1<p<N$, $q \geq 1, \lambda \in \mathbb{R}, \beta \in \mathbb{R}, h \in L^{1}(\Omega)$ with $h \geq 0$ and f is admissible data in the sense of:

$$
\begin{equation*}
f \not \equiv 0, \quad f \in L^{1}(\Omega) \tag{1.2}
\end{equation*}
$$

[^0]and
$$
\lambda_{1}(f)=\inf _{\substack{w \in W_{0}^{1, p}(\Omega) \\ w \neq 0}} \frac{\int_{\Omega}|\nabla w|^{p} d x}{\int_{\Omega}|f||w|^{p} d x}>0
$$

For $h(x) \equiv 0$, problem (1.1) is the subject of a large number of research papers. For instance, Ferone and Murat [5] proved the existence of solutions for general nonlinear equations when the source term belongs to the limit space $L^{N / p}(\Omega)$ with sufficiently small norm. In the case where β depends upon u, we refer to $[\mathbf{1}, \mathbf{1 0}]$, where the problem under growth assumptions on β was studied (also see [2] for $p=2$).

In Dall'Aglio, Giachetti and Puel [4], the authors considered problem (1.1) in the case where $h(x)=\alpha_{0}$ is a positive constant and $q=$ $p-1$. In the presence of the absorption term, the existence of weak solutions in general domains was obtained under some summability assumptions on the source term f without smallness conditions.

Our goal is to prove the existence of weak solutions in the Sobolev space $W_{0}^{1, p}(\Omega)$ under the hypothesis (1.2) when $|\lambda|$ is sufficiently small. From [8], we see that any nonzero function $f \in L^{N / p}(\Omega)$ satisfies (1.2), and $\lambda_{1}(f)$ is attained by some $\phi_{1} \in W_{0}^{1, p}(\Omega)$. An example of admissible data in the sense of (1.2), which does not belong to $L^{N / p}(\Omega)$, is the Hardy potential $f(x)=1 /|x|^{p}$ when $0 \in \Omega$. This is due to the classical Hardy inequality:

$$
\int_{\Omega}|\nabla u|^{p} d x \geq \Lambda_{N} \int_{\Omega} \frac{|u|^{p}}{|x|^{p}} d x \quad \text { for all } u \in \mathcal{C}_{0}^{\infty}(\Omega)
$$

where

$$
\Lambda_{N}=\left(\frac{N-p}{p}\right)^{p}
$$

is optimal, and it is not attained in $W_{0}^{1, p}(\Omega)$, see [6].
The outline of this paper is as follows. Section 2 is devoted to stating our main result. In Section 3, we establish a priori estimates for $\Phi_{\tau}\left(u_{n}\right)=\left(e^{\tau\left|u_{n}\right|}-1\right) \operatorname{sign}\left(u_{n}\right)$, where u_{n} is a sequence of bounded solutions of the approximating problems. In Section 4, we prove some compactness properties for u_{n}, and we pass to the limit in the approximating problems in order to conclude our main result.
2. Assumptions and the main result. Consider the elliptic problem

$$
\begin{cases}-\operatorname{div}(A(x, u, \nabla u))+C(x, u)=B(x, u, \nabla u) & \text { in } \Omega \tag{2.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded open subset of \mathbb{R}^{N}, with $N>1, p$ is a real such that $1<p<N$ and $A: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}, B: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ and $C: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ are Carathéodory functions satisfying:
(HA) there exist $\alpha>0, \eta>0$ and a positive function $\sigma \in$ $L^{p /(p-1)}(\Omega)$ such that

$$
\begin{equation*}
(A(x, s, \xi)-A(x, s, \eta))(\xi-\eta)>0 \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
A(x, s, \xi) \cdot \xi \geq \alpha|\xi|^{p} \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
|A(x, s, \xi)| \leq \eta\left(\sigma(x)+|s|^{p-1}+|\xi|^{p-1}\right) \tag{2.4}
\end{equation*}
$$

for almost every $x \in \Omega$, every $s \in \mathbb{R}$ and $\xi, \eta \in \mathbb{R}^{N}$, with $\xi \neq \eta$.
(HB) There exist $\beta>0, \lambda>0$ and a nonnegative function f satisfying (1.2) such that

$$
\begin{equation*}
|B(x, s, \xi)| \leq \beta|\xi|^{p}+\lambda f(x) \tag{2.5}
\end{equation*}
$$

for almost every $x \in \Omega$, every $s \in \mathbb{R}$ and every $\xi \in \mathbb{R}^{N}$.
(HC) The sign condition:

$$
\begin{equation*}
C(x, u) u \geq 0 \quad \text { for almost every } x \in \Omega \text { and every } u \in \mathbb{R} \tag{2.6}
\end{equation*}
$$

and the summability hypothesis:

$$
\begin{equation*}
c_{k}(x)=\sup _{\{|u| \leq k\}}|C(x, u)| \in L^{1}(\Omega) \quad \text { for every } k>0 \tag{2.7}
\end{equation*}
$$

For $\tau>0$, we define the function

$$
\begin{equation*}
\Phi_{\tau}(s)=\left(e^{\tau|s|}-1\right) \operatorname{sign}(s) \tag{2.8}
\end{equation*}
$$

We also denote

$$
\begin{equation*}
\gamma=\beta(\alpha(p-1))^{-1}, \quad \bar{\lambda}=\gamma^{1-p} \alpha \lambda_{1}(f), \tag{2.9}
\end{equation*}
$$

where

$$
\lambda_{1}(f)=\inf _{\substack{w \in W_{0}^{1, p}(\Omega) \\ w \neq 0}} \frac{\int_{\Omega}|\nabla w|^{p} d x}{\int_{\Omega}|f||w|^{p} d x}
$$

and, for every $\lambda>0$, we define

$$
\begin{equation*}
\mu(\lambda)=\left(\lambda^{-1} \alpha \lambda_{1}(f)\right)^{1 /(p-1)} \tag{2.10}
\end{equation*}
$$

We say that $u \in W_{0}^{1, p}(\Omega)$ is a solution to problem (2.1) if $A(x, u, \nabla u) \in$ $L^{p /(p-1)}(\Omega), C(x, u) \in L^{1}(\Omega), B(x, u, \nabla u) \in L^{1}(\Omega)$ and

$$
\begin{equation*}
\int_{\Omega} A(x, u, \nabla u) \cdot \nabla \varphi+\int_{\Omega} C(x, u) \varphi=\int_{\Omega} B(x, u, \nabla u) \varphi \tag{2.11}
\end{equation*}
$$

for all $\varphi \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$.
Now we are in a position to state our main result.
Theorem 2.1. Suppose that assumptions (HA), (HB) and (HC) hold. If $\lambda<\bar{\lambda}$, then there exists a solution of (2.1) such that

$$
\begin{equation*}
C(x, u) \Phi_{\tau}(u) \in L^{1}(\Omega), \quad \Phi_{\tau}(u) \in W_{0}^{1, p}(\Omega) \tag{2.12}
\end{equation*}
$$

for every $\tau<\mu(\lambda)$.
3. Approximation and a priori estimates. In this section, we introduce a sequence of bounded approximating solutions to problem (2.1), and we establish a priori estimates in Theorem 3.2. We begin by introducing some useful notation: for $k>0$, we define the truncation at level $\pm k$ by

$$
\begin{equation*}
T_{k}(s)=\max (-k, \min (s, k)) \tag{3.1}
\end{equation*}
$$

We also consider

$$
\begin{equation*}
G_{k}(s)=s-T_{k}(s) \tag{3.2}
\end{equation*}
$$

Approximating problem. For $n \in \mathbb{N}^{*}$, we define

$$
\begin{equation*}
C_{n}(x, s)=T_{n}(C(x, s)), \quad B_{n}(x, s, \xi)=T_{n}(B(x, s, \xi)) \tag{3.3}
\end{equation*}
$$

From standard results of Leray and Lions [7] for existence and [11] for boundedness, there exists a solution $u_{n} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ of the
problem

$$
\begin{cases}-\operatorname{div}\left(A\left(x, u_{n}, \nabla u_{n}\right)\right)+C_{n}\left(x, u_{n}\right)=B_{n}\left(x, u_{n}, \nabla u_{n}\right) & \text { in } \Omega \tag{3.4}\\ u_{n}=0 & \text { on } \partial \Omega\end{cases}
$$

Cancelation lemma. The following technical lemma will be useful in the proofs.

Lemma 3.1. Suppose that (2.3) and (2.5) hold. Let $u_{n} \in W_{0}^{1, p}(\Omega) \cap$ $L^{\infty}(\Omega)$ be a sequence of solutions of (3.4). Then:

$$
\begin{array}{r}
\int_{\Omega} e^{\rho \operatorname{sign}(v) u_{n}} A\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla v+\int_{\Omega} C_{n}\left(x, u_{n}\right) e^{\rho \operatorname{sign}(v) u_{n}} v \tag{3.5}\\
\leq \lambda \int_{\Omega} e^{\rho \operatorname{sign}(v) u_{n}} f|v|
\end{array}
$$

for every $\rho \geq \beta \alpha^{-1}$ and $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$.

Proof. Let $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$, and consider $e^{\rho \operatorname{sign}(v) u_{n}} v$ as a test function in the approximating problem to obtain

$$
\begin{gathered}
\int e^{\rho \operatorname{sign}(v) u_{n}} A\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla v+\int \rho e^{\rho \operatorname{sign}(v) u_{n}} A\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n}|v| \\
+\int C_{n}\left(x, u_{n}\right) e^{\rho \operatorname{sign}(v) u_{n}} v \\
=\int B_{n}\left(x, u_{n}, \nabla u_{n}\right) e^{\rho \operatorname{sign}(v) u_{n}} v
\end{gathered}
$$

From (2.3) and (2.5), we obtain

$$
\begin{aligned}
& \int A\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla v e^{\rho \operatorname{sign}(v) u_{n}}+\rho \alpha \int e^{\rho \operatorname{sign}(v) u_{n}}\left|\nabla u_{n}\right|^{p}|v| \\
&+\int C_{n}\left(x, u_{n}\right) e^{\rho \operatorname{sign}(v) u_{n}} v \leq \beta \int\left|\nabla u_{n}\right|^{p} e^{\rho \operatorname{sign}(v) u_{n}}|v| \\
&+\lambda \int_{\Omega} e^{\rho \operatorname{sign}(v) u_{n}} f|v|,
\end{aligned}
$$

and we conclude (3.5) holds if $\rho \geq \beta \alpha^{-1}$.

A priori estimates. The following a priori estimates comprise the main tool in the proof of our result.

Theorem 3.2. Suppose that (HA), (HB) and (HC) hold. Let $u_{n} \in$ $W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ be a sequence of solutions of (3.4). If $\lambda<\bar{\lambda}$, then, for every τ such that $\gamma \leq \tau<\mu(\lambda)$, there exists a constant $M=M\left(p, \lambda, \alpha, \tau, \lambda_{1}(f),\|f\|_{L^{1}(\Omega)}\right)>0$ such that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla \Phi_{\tau}\left(u_{n}\right)\right|^{p} d x+\int_{\Omega} C_{n}\left(x, u_{n}\right) \Phi_{\tau}\left(u_{n}\right) \leq M \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega}\left|\nabla G_{k}\left(u_{n}\right)\right|^{p} d x \leq M e^{-\tau p k} \tag{3.7}
\end{equation*}
$$

Proof. Taking $v=\Phi_{\tau}\left(u_{n}\right) \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ in the cancelation lemma, we obtain:

$$
\begin{array}{r}
\int_{\Omega} e^{\rho\left|u_{n}\right|} A\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla \Phi_{\tau}\left(u_{n}\right)+\int_{\Omega} e^{\rho\left|u_{n}\right|} C_{n}\left(x, u_{n}\right) \Phi_{\tau}\left(u_{n}\right) \\
\quad \leq \lambda \int_{\Omega} e^{\rho\left|u_{n}\right|} f\left|\Phi_{\tau}\left(u_{n}\right)\right|
\end{array}
$$

which gives

$$
\begin{array}{r}
\tau \int_{\Omega} e^{(\rho+\tau)\left|u_{n}\right|} A\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla u_{n}+\int_{\Omega} e^{\rho\left|u_{n}\right|} C_{n}\left(x, u_{n}\right) \Phi_{\tau}\left(u_{n}\right) \\
\quad \leq \lambda \int_{\Omega} e^{\rho\left|u_{n}\right|} f\left|\Phi_{\tau}\left(u_{n}\right)\right|
\end{array}
$$

Then, using (2.3) and (2.6), we obtain:

$$
\tau \alpha \int_{\Omega} e^{(\rho+\tau)\left|u_{n}\right|}\left|\nabla u_{n}\right|^{p}+\int_{\Omega} C_{n}\left(x, u_{n}\right) \Phi_{\tau}\left(u_{n}\right) \leq \lambda \int_{\Omega} e^{\rho\left|u_{n}\right|} f\left|\Phi_{\tau}\left(u_{n}\right)\right|
$$

Taking $\rho=(p-1) \tau$ and $\tau \geq \beta \alpha^{-1} /(p-1)$, we get

$$
\begin{aligned}
\tau^{1-p} \alpha \int_{\Omega}\left|\nabla \Phi_{\tau}\left(u_{n}\right)\right|^{p}+\int_{\Omega} C_{n}(& \left.x, u_{n}\right) \Phi_{\tau}\left(u_{n}\right) \\
& \leq \lambda \int_{\Omega} f\left(1+\left|\Phi_{\tau}\left(u_{n}\right)\right|\right)^{p-1}\left|\Phi_{\tau}\left(u_{n}\right)\right|
\end{aligned}
$$

Then,

$$
\tau^{1-p} \alpha \int_{\Omega}\left|\nabla \Phi_{\tau}\left(u_{n}\right)\right|^{p}+\int_{\Omega} C_{n}\left(x, u_{n}\right) \Phi_{\tau}\left(u_{n}\right) \leq \lambda \int_{\Omega} f\left(1+\left|\Phi_{\tau}\left(u_{n}\right)\right|\right)^{p} .
$$

For $\epsilon>0$, there exists a constant K that only depends upon ϵ and p such that

$$
(1+T)^{p} \leq(1+\epsilon) T^{p}+K \quad \text { for every } T \geq 0
$$

Hence,

$$
\begin{aligned}
& \tau^{1-p} \alpha \int_{\Omega}\left|\nabla \Phi_{\tau}\left(u_{n}\right)\right|^{p}+\int_{\Omega} C_{n}\left(x, u_{n}\right) \Phi_{\tau}\left(u_{n}\right) \\
& \quad \leq \lambda(1+\epsilon) \int_{\Omega} f\left|\Phi_{\tau}\left(u_{n}\right)\right|^{p} d x+\lambda K\|f\|_{L^{1}(\Omega)} \\
& \quad \leq \frac{\lambda(1+\epsilon)}{\lambda_{1}(f)} \int_{\Omega}\left|\nabla \Phi_{\tau}\left(u_{n}\right)\right|^{p} d x+\lambda K\|f\|_{L^{1}(\Omega)}
\end{aligned}
$$

due to assumption (1.2). Thus,

$$
\begin{equation*}
\left(\tau^{1-p} \alpha-\frac{\lambda(1+\epsilon)}{\lambda_{1}(f)}\right) \int_{\Omega}\left|\nabla \Phi_{\tau}\left(u_{n}\right)\right|^{p} d x+\int_{\Omega} C_{n}\left(x, u_{n}\right) \Phi_{\tau}\left(u_{n}\right) \leq M \tag{3.8}
\end{equation*}
$$

where M is a constant that only depends upon $\lambda, \epsilon, p, \lambda_{1}(f)$ and $\|f\|_{L^{1}(\Omega)}$.

For $\lambda<\bar{\lambda}$, where $\bar{\lambda}$ is defined by (2.9), we observe that $\lambda<$ $\beta^{1-p} \alpha^{p}(p-1)^{p-1} \lambda_{1}(f)$. The last inequality implies $\gamma<\mu(\lambda)$, where $\mu(\lambda)$ is given by (2.10). Now, for every τ such that $\gamma \leq \tau<\mu(\lambda)$, we obtain estimate (3.8) since $\tau \geq \gamma=\beta \alpha^{-1} /(p-1)$.

On the other hand, the inequality $\tau<\mu(\lambda)$ implies $\tau^{1-p} \alpha \lambda_{1}(f)-\lambda$ >0. Thus, for every $0<\epsilon<\tau^{1-p} \alpha \lambda_{1}(f)-\lambda$, we have

$$
\left(\tau^{1-p} \alpha-\frac{\lambda(1+\epsilon)}{\lambda_{1}(f)}\right)>0
$$

Therefore, we obtain estimate (3.6) from (3.8) for a new constant M which does not depend upon n.

Finally, since

$$
\left\{\left|u_{n}\right|>k\right\}=\left\{\left|\Phi_{\tau}\left(u_{n}\right)\right|>\left(e^{\tau k}-1\right)\right\}
$$

and

$$
\left|\nabla u_{n}\right|=\tau^{-1} e^{-\tau\left|u_{n}\right|}\left|\nabla \Phi_{\tau}\left(u_{n}\right)\right|,
$$

we have:

$$
\begin{aligned}
\int_{\left\{\left|u_{n}\right|>k\right\}}\left|\nabla u_{n}\right|^{p} d x & =\int_{\left\{\left|\Phi_{\tau}\left(u_{n}\right)\right|>\left(e^{\tau k}-1\right)\right\}} \tau^{-p} e^{-\tau p\left|u_{n}\right|}\left|\nabla \Phi_{\tau}\left(u_{n}\right)\right|^{p} d x \\
& \leq \tau^{-p} e^{-\tau p k} \int_{\left\{\left|\Phi_{\tau}\left(u_{n}\right)\right|>\left(e^{\tau k}-1\right)\right\}}\left|\nabla \Phi_{\tau}\left(u_{n}\right)\right|^{p} d x \\
& \leq \tau^{-p} e^{-\tau p k} \int_{\Omega}\left|\nabla \Phi_{\tau}\left(u_{n}\right)\right|^{p} d x
\end{aligned}
$$

and we deduce estimate (3.7) using (3.6).
4. Compactness and proof of the main result. In this section, we will prove our main result (Theorem 2.1). Toward this aim, we establish the following compactness properties for a sequence of solutions u_{n} of (3.4). In the sequel, we denote, respectively, by $\epsilon(n)$ and $\epsilon(n, h)$ all possible different quantities such that:

$$
\lim _{n \rightarrow+\infty} \epsilon(n)=0, \quad \lim _{h \rightarrow+\infty} \lim _{n \rightarrow+\infty} \epsilon(n, h)=0
$$

Theorem 4.1. Under the hypotheses of Theorem 3.2, a subsequence of u_{n}, still denoted u_{n}, and a function $u \in W_{0}^{1, p}(\Omega)$ exist such that

$$
\begin{equation*}
C_{n}\left(x, u_{n}\right) \longrightarrow C(x, u) \quad \text { strongly in } L^{1}(\Omega) \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
f e^{\rho\left|u_{n}\right|} \longrightarrow f e^{\rho|u|} \quad \text { strongly in } L^{1}(\Omega) \text { for } \rho=\beta \alpha^{-1} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{k}\left(u_{n}\right) \longrightarrow T_{k}(u) \quad \text { strongly in } W_{0}^{1, p}(\Omega) \text { for all } k>0 \tag{4.3}
\end{equation*}
$$

Proof. From estimate (3.6), we can easily see that u_{n} is bounded in $W_{0}^{1, p}(\Omega)$. Then, we can extract a subsequence, still denoted u_{n}, such that

$$
\begin{equation*}
u_{n} \rightharpoonup u \quad \text { weakly in } W_{0}^{1, p}(\Omega) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n} \longrightarrow u \quad \text { almost everywhere in } \Omega, \tag{4.5}
\end{equation*}
$$

for some $u \in W_{0}^{1, p}(\Omega)$.
It follows from (4.5) that $C_{n}\left(x, u_{n}\right)$ and $f e^{\rho\left|u_{n}\right|}$ converge almost everywhere in Ω to $C(x, u)$ and $f e^{\rho|u|}$, respectively.

In order to obtain (4.1) and (4.2) by applying Vitali's theorem, we will prove the equi-integrability of the sequence u_{n}. Let E be a measurable set of Ω. For any $k>0$, in view of the assumption (2.6), we have:

$$
\begin{aligned}
\int_{E}\left|C_{n}\left(x, u_{n}\right)\right| & \leq \int_{E \cap\left\{\left|u_{n}\right| \leq k\right\}}\left|C_{n}\left(x, u_{n}\right)\right|+\frac{1}{e^{\tau k}-1} \int_{E \cap\left\{\left|u_{n}\right|>k\right\}} C_{n}\left(x, u_{n}\right) \Phi_{\tau}\left(u_{n}\right) \\
& \leq \int_{E} c_{k}(x)+\frac{M}{e^{\tau k}-1} .
\end{aligned}
$$

For $\rho=\beta \alpha^{-1}$ and $\gamma=\rho(p-1)^{-1}$, we see that

$$
\begin{aligned}
\int_{E} f e^{\rho\left|u_{n}\right|} & =\int_{E} f\left(1+\left|\Phi_{\gamma}\left(u_{n}\right)\right|\right)^{p-1} \\
& =\int_{E} f^{1 / p} f^{(p-1) / p}\left(1+\left|\Phi_{\gamma}\left(u_{n}\right)\right|\right)^{p-1} \\
& \leq\left(\int_{E} f\right)^{1 / p}\left(\int_{E} f\left(1+\left|\Phi_{\gamma}\left(u_{n}\right)\right|\right)^{p}\right)^{(p-1) / p},
\end{aligned}
$$

which yields, using the assumption $\lambda_{1}(f)>0$ and (3.6),

$$
\int_{E} f e^{\rho\left|u_{n}\right|} \leq \bar{M}\left(\int_{E} f\right)^{1 / p}
$$

where \bar{M} is a constant that does not depend upon n.
Now, we shall prove the strong convergence (4.3). Toward this end, we follow the technique used by Porretta [9, 10]. For fixed k and $h>k$,
consider the function:

$$
v_{n}=T_{2 k}\left(u_{n}-T_{h}\left(u_{n}\right)+T_{k}\left(u_{n}\right)-T_{k}(u)\right)
$$

Let $l=h+4 k$, and denote:
(4.6) D_{n}

$$
\begin{array}{r}
=\int_{\Omega} e^{\rho \operatorname{sign}\left(v_{n}\right) T_{k}\left(u_{n}\right)}\left\{\left[A\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-A\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right]\right. \\
\left.\cdot\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]\right\} d x .
\end{array}
$$

We can write

$$
\begin{equation*}
D_{n}=I_{n}-J_{n} \tag{4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{n}=\int_{\Omega} e^{\rho \operatorname{sign}\left(v_{n}\right) T_{k}\left(u_{n}\right)} A\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{n}=\int_{\Omega} e^{\rho \operatorname{sign}\left(v_{n}\right) T_{k}\left(u_{n}\right)} A\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) d x \tag{4.9}
\end{equation*}
$$

Using $A(x, s, \xi) \cdot \xi \geq 0$, from (2.3), we have

$$
\begin{aligned}
& A\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right) \cdot\left(\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right) \\
& \quad \leq A\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla v_{n}+\left|A\left(x, T_{l}\left(u_{n}\right), \nabla T_{l}\left(u_{n}\right)\right)\right|\left|\nabla T_{k}(u)\right| \chi_{\left\{\left|u_{n}\right|>k\right\}}
\end{aligned}
$$

Then,

$$
\begin{align*}
I_{n} \leq & \int_{\Omega} e^{\rho \operatorname{sign}\left(v_{n}\right) u_{n}} A\left(x, u_{n}, \nabla u_{n}\right) \cdot \nabla v_{n} \tag{4.10}\\
& +\int_{\Omega} e^{\rho \operatorname{sign}\left(v_{n}\right) u_{n}}\left|A\left(x, T_{l}\left(u_{n}\right), \nabla T_{l}\left(u_{n}\right)\right)\right|\left|\nabla T_{k}(u)\right| \chi_{\left\{\left|u_{n}\right|>k\right\}}
\end{align*}
$$

Combining (3.5) and (4.10) for $v=v_{n}$ and (4.7), we obtain:

$$
\begin{equation*}
D_{n}+J_{n}+L_{n} \leq F_{n}+E_{n}, \tag{4.11}
\end{equation*}
$$

where

$$
\begin{gathered}
L_{n}=\int_{\Omega} C_{n}\left(x, u_{n}\right) v_{n}, \quad F_{n}=\int_{\Omega} f e^{\rho\left|u_{n}\right|}\left|v_{n}\right| \\
E_{n}=\int_{\Omega} e^{\rho\left|u_{n}\right|}\left|A\left(x, T_{l}\left(u_{n}\right), \nabla T_{l}\left(u_{n}\right)\right)\right|\left|\nabla T_{k}(u)\right| \chi_{\left\{\left|u_{n}\right|>k\right\}}
\end{gathered}
$$

Let us examine the terms J_{n}, L_{n}, F_{n} and E_{n}.
For J_{n}, from (4.4), we know that $T_{k}\left(u_{n}\right)-T_{k}(u)$ weakly converges to 0 in $W_{0}^{1, p}(\Omega)$. From assumption (2.4), we observe that

$$
e^{\rho \operatorname{sign}\left(v_{n}\right) T_{k}\left(u_{n}\right)} A\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)
$$

is uniformly bounded with respect to n in $L^{p^{\prime}}(\Omega)$. Therefore, by applying Lebesgue's convergence theorem, we obtain:

$$
\begin{equation*}
J_{n}=\epsilon(n) \tag{4.12}
\end{equation*}
$$

For L_{n}, using convergences (4.1) and (4.5), we can apply Lebesgue's theorem to obtain

$$
\lim _{n \rightarrow+\infty} \int_{\Omega} C_{n}\left(x, u_{n}\right) v_{n}=\int_{\Omega} C(x, u) T_{2 k}\left(u-T_{h}(u)\right)
$$

Then,

$$
\begin{equation*}
L_{n}=\epsilon(n, h) \tag{4.13}
\end{equation*}
$$

since $C(x, u) T_{2 k}\left(u-T_{h}(u)\right)$ converges pointwise to 0 as $h \rightarrow+\infty$ and is bounded by $2 k C(x, u) \in L^{1}(\Omega)$.

For F_{n}, in a similar manner to L_{n}, due to the convergence (4.2), we have:

$$
\begin{equation*}
F_{n}=\epsilon(n, h) . \tag{4.14}
\end{equation*}
$$

For E_{n}, we conclude, by using assumption (2.3) and the boundedness of u_{n} in $W_{0}^{1, p}(\Omega)$, that

$$
e^{\rho\left|u_{n}\right|}\left|A\left(x, T_{l}\left(u_{n}\right), \nabla T_{l}\left(u_{n}\right)\right)\right|
$$

is uniformly bounded with respect to n in $L^{p^{\prime}}(\Omega)$. Then, using that $\left|\nabla T_{k}(u)\right| \chi_{\left\{\left|u_{n}\right|>k\right\}}$ strongly converges to 0 in $L^{p}(\Omega)$, we get:

$$
\begin{equation*}
E_{n}=\epsilon(n) \tag{4.15}
\end{equation*}
$$

In view of (4.11), the results (4.12), (4.13), (4.14) and (4.15) yield:

$$
\limsup _{h \rightarrow+\infty} \limsup _{n \rightarrow+\infty} D_{n}=0
$$

Taking into account assumption (2.3) and that $e^{\operatorname{sign}\left(v_{n}\right) T_{k}\left(u_{n}\right)} \geq e^{-k}$ >0, we conclude that

$$
\begin{aligned}
\int_{\Omega}\left\{\left[A\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}\left(u_{n}\right)\right)-A\right.\right. & \left.\left(x, T_{k}\left(u_{n}\right), \nabla T_{k}(u)\right)\right] \\
\cdot & {\left.\left[\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)\right]\right\} d x=\epsilon(n) }
\end{aligned}
$$

Under assumption (HA), due to [3, Lemma 5], this implies the strong convergence (4.3).

Proof of Theorem 2.1. Recalling the definitions (3.1) and (3.2), we can write

$$
\nabla u_{n}-\nabla u=\nabla T_{k}\left(u_{n}\right)-\nabla T_{k}(u)+\nabla G_{k}\left(u_{n}\right)-\nabla G_{k}(u)
$$

Then, using (3.7) and (4.3), we prove that u_{n} strongly converges to u in $W_{0}^{1, p}(\Omega)$. Therefore, taking into account (4.1), we can pass to the limit in the approximating problem (3.4), and we conclude that $u \in W_{0}^{1, p}(\Omega)$ is a solution of (2.1) in the sense of (2.11). Finally, using the a priori estimate (3.6), we deduce the regularity (2.12) by means of Fatou's lemma.

REFERENCES

1. H. Abdel Hamid and M.F. Bidaut-Véron, On the connection between two quasilinear elliptic problems with source terms of order 0 and 1, Comm. Contemp. Math. 12 (2010), 727-788.
2. B. Abdellaoui, A. Dall'Aglio and I. Peral, Some remarks on elliptic problems with critical growth in the gradient, J. Diff. Eqs. 222 (2006), 21-62; Corrigendum, J. Diff. Eqs. 246 (2009), 2988-2990.
3. L. Boccardo, F. Murat and J.P. Puel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Ann. Mat. Pura Appl. 152 (1988), 183-196.
4. A. Dall'Aglio, D. Giachetti and J.P. Puel, Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl. 181 (2002), 407-426.
5. V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: An existence result when the source terms are small, Nonlin. Anal. 42 (2000), 1309-1326.
6. J. Garcia Azorero and I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Diff. Eqs. 144 (1998), 441-476.
7. J. Leray and J.L. Lions, Quelques résulats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107.
8. M. Lucia and S. Prashant, Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight, Arch. Math. 86 (2006), 79-89.
9. A. Porretta, Nonlinear equations with natural growth terms and measure data, Electr. J. Diff. Eqs. Conf. 09 (2002), 183-202.
10. A. Porretta and S. Segura de Léon, Nonlinear elliptic equations having a gradient term with natural growth, J. Math. Pures Appl. 85 (2006), 465-492.
11. G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Les Presses de l'Université de Montréal, Montreal, 1966.

Fahed Ben Sultan University, Faculty of Sciences and Humanities, Tabuk, Saudi Arabia
Email address: habdelhamid@fbsu.edu.sa

[^0]: 2010 AMS Mathematics subject classification. Primary 35J60, 35J65.
 Keywords and phrases. Elliptic equations, natural growth, absorption term.
 Received by the editors on September 2, 2017.

