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ELLIPTIC PROBLEMS INVOLVING NATURAL
GROWTH IN THE GRADIENT AND GENERAL

ABSORPTION TERMS

HAYDAR ABDELHAMID

ABSTRACT. In this paper, we treat the existence of
solutions for a class of general elliptic problems whose
prototype is the following:{

−∆pu+ h(x)|u|q−1u = β|∇u|p + λf(x) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open subset of RN with N > 1,
1 < p < N , q ≥ 1, λ ∈ R, β ∈ R, h ∈ L1(Ω) with h ≥ 0 and
f ∈ L1(Ω). Assuming that the source term f satisfies

λ1(f) = inf

{ ∫
Ω |∇w|pdx∫
Ω |f ||w|pdx

: w ∈ W 1,p
0 (Ω) \ {0}

}
> 0,

we obtain the existence of a solution u ∈ W 1,p
0 (Ω) when |λ|

is sufficiently small.

1. Introduction. This work is devoted to the study of the existence
of solutions of nonlinear elliptic problems whose model example is the
following:

(1.1)

{
−∆pu+ h(x)|u|q−1u = β|∇u|p + λf(x) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open subset of RN with N > 1, 1 < p < N ,
q ≥ 1, λ ∈ R, β ∈ R, h ∈ L1(Ω) with h ≥ 0 and f is admissible data in
the sense of:

(1.2) f ̸≡ 0, f ∈ L1(Ω)
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and

λ1(f) = inf
w∈W 1,p

0 (Ω)
w ̸=0

∫
Ω
|∇w|pdx∫

Ω
|f ||w|pdx

> 0.

For h(x) ≡ 0, problem (1.1) is the subject of a large number of research
papers. For instance, Ferone and Murat [5] proved the existence of
solutions for general nonlinear equations when the source term belongs
to the limit space LN/p(Ω) with sufficiently small norm. In the case
where β depends upon u, we refer to [1, 10], where the problem under
growth assumptions on β was studied (also see [2] for p = 2).

In Dall’Aglio, Giachetti and Puel [4], the authors considered prob-
lem (1.1) in the case where h(x) = α0 is a positive constant and q =
p − 1. In the presence of the absorption term, the existence of weak
solutions in general domains was obtained under some summability
assumptions on the source term f without smallness conditions.

Our goal is to prove the existence of weak solutions in the Sobolev
space W 1,p

0 (Ω) under the hypothesis (1.2) when |λ| is sufficiently small.

From [8], we see that any nonzero function f ∈ LN/p(Ω) satisfies (1.2),

and λ1(f) is attained by some ϕ1 ∈ W 1,p
0 (Ω). An example of admissible

data in the sense of (1.2), which does not belong to LN/p(Ω), is the
Hardy potential f(x) = 1/|x|p when 0 ∈ Ω. This is due to the classical
Hardy inequality:∫

Ω

|∇u|pdx ≥ ΛN

∫
Ω

|u|p

|x|p
dx for all u ∈ C∞

0 (Ω),

where

ΛN =

(
N − p

p

)p

is optimal, and it is not attained in W 1,p
0 (Ω), see [6].

The outline of this paper is as follows. Section 2 is devoted to stat-
ing our main result. In Section 3, we establish a priori estimates for
Φτ (un) = (eτ |un|−1)sign(un), where un is a sequence of bounded solu-
tions of the approximating problems. In Section 4, we prove some
compactness properties for un, and we pass to the limit in the approx-
imating problems in order to conclude our main result.
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2. Assumptions and the main result. Consider the elliptic prob-
lem

(2.1)

{
−div(A(x, u,∇u)) + C(x, u) = B(x, u,∇u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open subset of RN , with N > 1, p is a real such
that 1 < p < N and A : Ω×R×RN → RN , B : Ω×R×RN → R and
C : Ω× R → R are Carathéodory functions satisfying:

(HA) there exist α > 0, η > 0 and a positive function σ ∈
Lp/(p−1)(Ω) such that

(2.2) (A(x, s, ξ)−A(x, s, η))(ξ − η) > 0,

(2.3) A(x, s, ξ) · ξ ≥ α|ξ|p,

(2.4) |A(x, s, ξ)| ≤ η(σ(x) + |s|p−1 + |ξ|p−1)

for almost every x ∈ Ω, every s ∈ R and ξ, η ∈ RN , with ξ ̸= η.

(HB) There exist β > 0, λ > 0 and a nonnegative function f
satisfying (1.2) such that

(2.5) |B(x, s, ξ)| ≤ β|ξ|p + λf(x),

for almost every x ∈ Ω, every s ∈ R and every ξ ∈ RN .

(HC) The sign condition:

(2.6) C(x, u)u ≥ 0 for almost every x ∈ Ω and every u ∈ R,

and the summability hypothesis:

(2.7) ck(x) = sup
{|u|≤k}

|C(x, u)| ∈ L1(Ω) for every k > 0.

For τ > 0, we define the function

(2.8) Φτ (s) = (eτ |s| − 1)sign(s).

We also denote

(2.9) γ = β(α(p− 1))−1, λ = γ1−pαλ1(f),
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where

λ1(f) = inf
w∈W 1,p

0 (Ω)
w ̸=0

∫
Ω
|∇w|pdx∫

Ω
|f ||w|pdx

;

and, for every λ > 0, we define

(2.10) µ(λ) = (λ−1αλ1(f))
1/(p−1).

We say that u ∈ W 1,p
0 (Ω) is a solution to problem (2.1) if A(x, u,∇u) ∈

Lp/(p−1)(Ω), C(x, u) ∈ L1(Ω), B(x, u,∇u) ∈ L1(Ω) and

(2.11)

∫
Ω

A(x, u,∇u) · ∇φ+

∫
Ω

C(x, u)φ =

∫
Ω

B(x, u,∇u)φ,

for all φ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Now we are in a position to state our main result.

Theorem 2.1. Suppose that assumptions (HA), (HB) and (HC) hold.
If λ < λ, then there exists a solution of (2.1) such that

(2.12) C(x, u)Φτ (u) ∈ L1(Ω), Φτ (u) ∈ W 1,p
0 (Ω),

for every τ < µ(λ).

3. Approximation and a priori estimates. In this section, we in-
troduce a sequence of bounded approximating solutions to problem
(2.1), and we establish a priori estimates in Theorem 3.2. We begin by
introducing some useful notation: for k > 0, we define the truncation
at level ±k by

(3.1) Tk(s) = max(−k,min(s, k)).

We also consider

(3.2) Gk(s) = s− Tk(s).

Approximating problem. For n ∈ N∗, we define

(3.3) Cn(x, s) = Tn(C(x, s)), Bn(x, s, ξ) = Tn(B(x, s, ξ)).

From standard results of Leray and Lions [7] for existence and [11]

for boundedness, there exists a solution un ∈ W 1,p
0 (Ω) ∩ L∞(Ω) of the
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problem

(3.4)

{
−div(A(x, un,∇un)) + Cn(x, un) = Bn(x, un,∇un) in Ω,

un = 0 on ∂Ω.

Cancelation lemma. The following technical lemma will be useful
in the proofs.

Lemma 3.1. Suppose that (2.3) and (2.5) hold. Let un ∈ W 1,p
0 (Ω) ∩

L∞(Ω) be a sequence of solutions of (3.4). Then:

(3.5)

∫
Ω

eρ sign(v)unA(x, un,∇un) · ∇v +

∫
Ω

Cn(x, un)e
ρ sign(v)unv

≤ λ

∫
Ω

eρ sign(v)unf |v|,

for every ρ ≥ βα−1 and v ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

Proof. Let v ∈ W 1,p
0 (Ω)∩L∞(Ω), and consider eρ sign(v)unv as a test

function in the approximating problem to obtain∫
eρ sign(v)un A(x, un,∇un)·∇v+

∫
ρ eρ sign(v)un A(x, un,∇un)·∇un|v|

+

∫
Cn(x, un)e

ρ sign(v)unv

=

∫
Bn(x, un,∇un)e

ρ sign(v)unv.

From (2.3) and (2.5), we obtain∫
A(x, un,∇un) · ∇v eρ sign(v)un + ρα

∫
eρ sign(v)un |∇un|p |v|

+

∫
Cn(x, un)e

ρ sign(v)unv ≤ β

∫
|∇un|p eρ sign(v)un |v|

+ λ

∫
Ω

eρ sign(v)unf |v|,

and we conclude (3.5) holds if ρ ≥ βα−1. �
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A priori estimates. The following a priori estimates comprise the
main tool in the proof of our result.

Theorem 3.2. Suppose that (HA), (HB) and (HC) hold. Let un ∈
W 1,p

0 (Ω) ∩ L∞(Ω) be a sequence of solutions of (3.4). If λ < λ,
then, for every τ such that γ ≤ τ < µ(λ), there exists a constant
M = M(p, λ, α, τ, λ1(f), ∥f∥L1(Ω)) > 0 such that

(3.6)

∫
Ω

|∇Φτ (un)|pdx+

∫
Ω

Cn(x, un)Φτ (un) ≤ M,

and

(3.7)

∫
Ω

|∇Gk(un)|p dx ≤ Me−τpk.

Proof. Taking v = Φτ (un) ∈ W 1,p
0 (Ω) ∩ L∞(Ω) in the cancelation

lemma, we obtain:∫
Ω

eρ |un|A(x, un,∇un) · ∇Φτ (un) +

∫
Ω

eρ |un|Cn(x, un)Φτ (un)

≤ λ

∫
Ω

eρ |un|f |Φτ (un)|,

which gives

τ

∫
Ω

e(ρ+τ) |un|A(x, un,∇un) · ∇un +

∫
Ω

eρ |un|Cn(x, un)Φτ (un)

≤ λ

∫
Ω

eρ |un|f |Φτ (un)|.

Then, using (2.3) and (2.6), we obtain:

τα

∫
Ω

e(ρ+τ) |un||∇un|p +
∫
Ω

Cn(x, un)Φτ (un) ≤ λ

∫
Ω

eρ |un|f |Φτ (un)|.

Taking ρ = (p− 1)τ and τ ≥ βα−1/(p− 1), we get

τ1−pα

∫
Ω

|∇Φτ (un)|p +
∫
Ω

Cn(x, un)Φτ (un)

≤ λ

∫
Ω

f(1 + |Φτ (un)|)p−1|Φτ (un)|.
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Then,

τ1−pα

∫
Ω

|∇Φτ (un)|p +
∫
Ω

Cn(x, un)Φτ (un) ≤ λ

∫
Ω

f(1+|Φτ (un)|)p.

For ϵ > 0, there exists a constant K that only depends upon ϵ and p
such that

(1 + T )p ≤ (1 + ϵ)T p +K for every T ≥ 0.

Hence,

τ1−pα

∫
Ω

|∇Φτ (un)|p +
∫
Ω

Cn(x, un)Φτ (un)

≤ λ(1 + ϵ)

∫
Ω

f |Φτ (un)|pdx+ λK∥f∥L1(Ω)

≤ λ(1 + ϵ)

λ1(f)

∫
Ω

|∇Φτ (un)|pdx+ λK∥f∥L1(Ω)

due to assumption (1.2). Thus,
(3.8)(

τ1−pα− λ(1 + ϵ)

λ1(f)

)∫
Ω

|∇Φτ (un)|pdx+

∫
Ω

Cn(x, un)Φτ (un) ≤ M,

where M is a constant that only depends upon λ, ϵ, p, λ1(f) and
∥f∥L1(Ω).

For λ < λ, where λ is defined by (2.9), we observe that λ <
β1−pαp(p − 1)p−1λ1(f). The last inequality implies γ < µ(λ), where
µ(λ) is given by (2.10). Now, for every τ such that γ ≤ τ < µ(λ), we
obtain estimate (3.8) since τ ≥ γ = βα−1/(p− 1).

On the other hand, the inequality τ < µ(λ) implies τ1−pαλ1(f)− λ
> 0. Thus, for every 0 < ϵ < τ1−pαλ1(f)− λ, we have(

τ1−pα− λ(1 + ϵ)

λ1(f)

)
> 0.

Therefore, we obtain estimate (3.6) from (3.8) for a new constant M
which does not depend upon n.

Finally, since

{|un| > k} = {|Φτ (un)| > (eτ k − 1)}
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and

|∇un| = τ−1e−τ |un||∇Φτ (un)|,

we have:∫
{|un|>k}

|∇un|pdx =

∫
{|Φτ (un)|>(eτ k−1)}

τ−pe−τp|un||∇Φτ (un)|p dx

≤ τ−pe−τpk

∫
{|Φτ (un)|>(eτ k−1)}

|∇Φτ (un)|p dx

≤ τ−pe−τpk

∫
Ω

|∇Φτ (un)|pdx,

and we deduce estimate (3.7) using (3.6). �

4. Compactness and proof of the main result. In this section,
we will prove our main result (Theorem 2.1). Toward this aim, we es-
tablish the following compactness properties for a sequence of solutions
un of (3.4). In the sequel, we denote, respectively, by ϵ(n) and ϵ(n, h)
all possible different quantities such that:

lim
n→+∞

ϵ(n) = 0, lim
h→+∞

lim
n→+∞

ϵ(n, h) = 0.

Theorem 4.1. Under the hypotheses of Theorem 3.2, a subsequence
of un, still denoted un, and a function u ∈ W 1,p

0 (Ω) exist such that

(4.1) Cn(x, un) −→ C(x, u) strongly in L1(Ω),

(4.2) f eρ|un| −→ f eρ|u| strongly in L1(Ω) for ρ = βα−1,

and

(4.3) Tk(un) −→ Tk(u) strongly in W 1,p
0 (Ω) for all k > 0.

Proof. From estimate (3.6), we can easily see that un is bounded in

W 1,p
0 (Ω). Then, we can extract a subsequence, still denoted un, such

that

(4.4) un ⇀ u weakly in W 1,p
0 (Ω),
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and

(4.5) un −→ u almost everywhere in Ω,

for some u ∈ W 1,p
0 (Ω).

It follows from (4.5) that Cn(x, un) and feρ|un| converge almost
everywhere in Ω to C(x, u) and feρ|u|, respectively.

In order to obtain (4.1) and (4.2) by applying Vitali’s theorem,
we will prove the equi-integrability of the sequence un. Let E be a
measurable set of Ω. For any k > 0, in view of the assumption (2.6),
we have:∫
E

|Cn(x, un)| ≤
∫

E∩{|un|≤k}

|Cn(x, un)|+
1

eτk−1

∫
E∩{|un|>k}

Cn(x, un)Φτ (un)

≤
∫
E

ck(x) +
M

eτk − 1
.

For ρ = βα−1 and γ = ρ(p− 1)−1, we see that∫
E

feρ|un| =

∫
E

f(1 + |Φγ(un)|)p−1

=

∫
E

f1/pf (p−1)/p(1 + |Φγ(un)|)p−1

≤

(∫
E

f

)1/p(∫
E

f(1 + |Φγ(un)|)p
)(p−1)/p

,

which yields, using the assumption λ1(f) > 0 and (3.6),

∫
E

feρ|un| ≤ M

(∫
E

f

)1/p

,

where M is a constant that does not depend upon n.

Now, we shall prove the strong convergence (4.3). Toward this end,
we follow the technique used by Porretta [9, 10]. For fixed k and h > k,
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consider the function:

vn = T2k(un − Th(un) + Tk(un)− Tk(u)).

Let l = h+ 4k, and denote:

(4.6) Dn

=

∫
Ω

eρsign(vn)Tk(un){[A(x, Tk(un),∇Tk(un))−A(x, Tk(un),∇Tk(u))]

· [∇Tk(un)−∇Tk(u)]} dx.

We can write

(4.7) Dn = In − Jn,

where
(4.8)

In=

∫
Ω

eρsign(vn)Tk(un)A(x, Tk(un),∇Tk(un)) · (∇Tk(un)−∇Tk(u)) dx

and
(4.9)

Jn=

∫
Ω

eρsign(vn)Tk(un)A(x, Tk(un),∇Tk(u)) · (∇Tk(un)−∇Tk(u)) dx.

Using A(x, s, ξ) · ξ ≥ 0, from (2.3), we have

A(x, Tk(un),∇Tk(un)) · (∇Tk(un)−∇Tk(u))

≤ A(x, un,∇un) · ∇vn + |A(x, Tl(un),∇Tl(un))||∇Tk(u)|χ{|un|>k}.

Then,

In ≤
∫
Ω

eρsign(vn)unA(x, un,∇un) · ∇vn

(4.10)

+

∫
Ω

eρsign(vn)un |A(x, Tl(un),∇Tl(un))||∇Tk(u)|χ{|un|>k}.

Combining (3.5) and (4.10) for v = vn and (4.7), we obtain:

(4.11) Dn + Jn + Ln ≤ Fn + En,
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where

Ln =

∫
Ω

Cn(x, un)vn, Fn =

∫
Ω

feρ|un||vn|,

En =

∫
Ω

eρ|un||A(x, Tl(un),∇Tl(un))||∇Tk(u)|χ{|un|>k}.

Let us examine the terms Jn, Ln, Fn and En.

For Jn, from (4.4), we know that Tk(un) − Tk(u) weakly converges

to 0 in W 1,p
0 (Ω). From assumption (2.4), we observe that

eρ sign(vn)Tk(un)A(x, Tk(un),∇Tk(u))

is uniformly bounded with respect to n in Lp′
(Ω). Therefore, by apply-

ing Lebesgue’s convergence theorem, we obtain:

(4.12) Jn = ϵ(n).

For Ln, using convergences (4.1) and (4.5), we can apply Lebesgue’s
theorem to obtain

lim
n→+∞

∫
Ω

Cn(x, un)vn =

∫
Ω

C(x, u)T2k(u− Th(u)).

Then,

(4.13) Ln = ϵ(n, h)

since C(x, u)T2k(u − Th(u)) converges pointwise to 0 as h → +∞ and
is bounded by 2kC(x, u) ∈ L1(Ω).

For Fn, in a similar manner to Ln, due to the convergence (4.2), we
have:

(4.14) Fn = ϵ(n, h).

For En, we conclude, by using assumption (2.3) and the boundedness

of un in W 1,p
0 (Ω), that

eρ|un||A(x, Tl(un),∇Tl(un))|

is uniformly bounded with respect to n in Lp′
(Ω). Then, using that

|∇Tk(u)|χ{|un|>k} strongly converges to 0 in Lp(Ω), we get:

(4.15) En = ϵ(n).
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In view of (4.11), the results (4.12), (4.13), (4.14) and (4.15) yield:

lim sup
h→+∞

lim sup
n→+∞

Dn = 0.

Taking into account assumption (2.3) and that esign(vn)Tk(un) ≥ e−k

> 0, we conclude that∫
Ω

{[A(x, Tk(un),∇Tk(un))−A(x, Tk(un),∇Tk(u))]

· [∇Tk(un)−∇Tk(u)]} dx = ϵ(n).

Under assumption (HA), due to [3, Lemma 5], this implies the strong
convergence (4.3). �

Proof of Theorem 2.1. Recalling the definitions (3.1) and (3.2), we
can write

∇un −∇u = ∇Tk(un)−∇Tk(u) +∇Gk(un)−∇Gk(u).

Then, using (3.7) and (4.3), we prove that un strongly converges to

u in W 1,p
0 (Ω). Therefore, taking into account (4.1), we can pass to

the limit in the approximating problem (3.4), and we conclude that

u ∈ W 1,p
0 (Ω) is a solution of (2.1) in the sense of (2.11). Finally, using

the a priori estimate (3.6), we deduce the regularity (2.12) by means
of Fatou’s lemma. �
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