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THE TRACIAL ROKHLIN PROPERTY FOR ACTIONS
OF AMENABLE GROUPS ON C∗-ALGEBRAS

QINGYUN WANG

ABSTRACT. In this paper, we present a definition of the
tracial Rokhlin property for (cocyclic) actions of countable
discrete amenable groups on simple C∗-algebras, which
generalize Matui and Sato’s definition. We show that generic
examples, like Bernoulli shift on the tensor product of
copies of the Jiang-Su algebra, has the weak tracial Rokhlin
property, while it is shown in [8] that such an action does
not have finite Rokhlin dimension. We further show that
forming a crossed product from actions with the tracial
Rokhlin property preserves the class of C∗-algebras with real
rank 0, stable rank 1 and has strict comparison for pro-
jections, generalizing the structural results in [23]. We use
the same idea of the proof with significant simplification. In
another joint paper with Chris Phillips and Joav Orovitz,
we shall show that pureness and Z-stability could be
preserved by crossed product of actions with the weak tracial
Rokhlin property. The combination of these results yields an
application to the classification program, which is discussed
in the aforementioned paper. These results indicate that we
have the correct definition of tracial Rokhlin property for
actions of general countable discrete amenable groups.

1. Preliminaries and notation. The tracial Rokhlin property for
finite group actions on simple C∗-algebras was introduced in [24]
for studying the structure of the crossed product. It is much more
flexible than the Rokhlin property, but still produces good structural
theorems, [6, 24]. It should be viewed as the C∗-version of outness that
has the closest relationship with outness of actions on von Neumann
algebras, while the latter has been well developed [4, 9, 20]. The
tracial Rokhlin property for actions of Z has been studied by many
authors [13, 14, 16, 22, 23]. Matui and Sato gave a definition of
the tracial Rokhlin property for actions of discrete amenable groups
[18, 19]. They studied both the structure of the crossed product
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and classification of actions. However, their definition is (at least
formally) stricter than the standard definition for finite group actions
or Z actions, and their results work only for a special class of amenable
groups.

Let A be a C∗-algebra in the following. For a, b ∈ A, we denote
by [a, b] the commutator ab − ba. For ε > 0, we write a = εb for
∥a − b∥ < ε. For B ⊂ A, we write a ∈ εB if there is some b ∈ B such
that a = εb. If h is a real function, then h+ is the function defined by
h+(t) = Max{0, h(t)}. If a ∈ A is self-adjoint, then a+ = ι+(a), where ι
is the identity function. The set of tracial states on A is denoted by
T(A). For a ∈ A and τ ∈ T(A), we define

∥a∥2,τ = ∥τ(a∗a)1/2∥, ∥a∥2 = sup
τ∈T(A)

∥a∥2,τ .

If T(A) is non-empty, then ∥ · ∥2 is a semi-norm. For τ ∈ T (A), we
let πτ ,Hτ denote the GNS representation of A associated with τ . The
dimension function dτ associated with τ is given by

dτ (a) = lim
n→∞

τ(a1/n),

for a positive element a ∈ A. The term V(A) denotes the Murray-von
Neumann semigroup and W(A) denotes the Cuntz semigroup. (See [3,
Section 2] for an introduction to the Cuntz semigroup). The space of
states on W(A) is denoted by DF(A), where DF stands for dimension
functions. For any τ ∈ T(A), dτ give rise to lower semicontinuous
dimension functions on A. Let ω ∈ βN \ N be a free ultrafilter. Define

c∞(A) = {(an) ∈ ℓ∞(N, A) | lim
n→∞

∥an∥ = 0},

A∞ = ℓ∞(N, A)/c∞(A);

cω(A) = {(an) ∈ ℓ∞(N, A) | lim
n→ω

∥an∥ = 0},

Aω = ℓ∞(N, A)/cω(A).

Identify A with the subalgebra of A∞ (Aω) consisting of constant
sequences. Let

A∞ = A∞ ∩A′, Aω = Aω ∩A′,

and call them the central sequence algebras of A. For a sequence x =
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(xi)i∈N, define ∥x∥2,ω = limn→ω ∥xn∥2 for a seminorm in Aω. Let

(1.1) JA = {x ∈ Aω | ∥x∥2,ω = 0}.

Then JA is a well defined, two-sided closed ideal in Aω. The cardinality
of a set F is written as |F |.

Definition 1.1. Let G be a countable discrete group.

(1) For a finite subset K ∈ G and ε > 0, we say that a finite subset
T ⊂ G is (K, ε)-invariant if∣∣∣∣T ∩

∩
g∈F

gT

∣∣∣∣ ≥ (1− ε)|T |.

(2) Group G is amenable if, for any finite subsets K ∈ G and ε > 0,
there exists a (K, ε)-invariant finite subset T ∈ G.

Let G be any discrete group. We write ActG(A) to be the set of all
actions α : G→ Aut(A).

When α is an automorphism or an action of A, we can consider its
natural extensions on Aω and Aω. We shall denote it by the same
symbol α. For α ∈ Aut(A), we let

(1.2) Tα(A) = {τ ∈ T(A) | τ ◦ α = τ}.

Definition 1.2. Let A be a unital C∗-algebra, and let G be a discrete
group.

(1) A pair (α, u) of a map α : G → Aut(A) and a map u : G×G →
U(A) is called a cocyclic action of G on A if

αg ◦ αh = Adu(g, h) ◦ αgh

and

u(g, h)u(gh, k) = αg(u(h, k))u(g, hk)

hold for any g, h, k ∈ G. We always assume that α1 = id, u(g, 1)
= u(1, g) = 1 for all g ∈ G. Note that α gives rise to a genuine action
of G on Aω.



1310 QINGYUN WANG

(2) A cocyclic action (α, u) is said to be outer if αg is outer for every
g ∈ G except for the identity element.

(3) Two cocyclic actions (α, u) : Gy A and (β, v) : Gy B are said
to be cocyclic conjugate if there exist a family of unitaries (wg)g∈G in B
and an isomorphism θ : A→ B such that

θ ◦ αg ◦ θ−1 = Adwg ◦ βg(1.3)

and

θ(u(g, h)) = wgβg(wh)v(g, h)w
∗
gh(1.4)

for every g, h ∈ G.

Definition 1.3. Let (α, u) : G y A be a cocyclic action of a discrete
group G on a unital C∗-algebra A. The (full) twisted crossed product
A oα,u G is the universal C∗-algebra generated by A and a family of
unitaries (λαg )g∈G satisfying

(1.5) λαg λ
α
h = u(g, h)λαgh and λαg a(λ

α
g )

∗ = αg(a)

for all g, h ∈ G and a ∈ A.

If two cocyclic actions (α, u) : Gy A and (β, v) : Gy B are cocyclic
conjugate, then Aoα,u G and B oβ,v G are canonically isomorphic.

We introduce the following comparison for the convenience of study-
ing the tracial Rokhlin property.

Definition 1.4. Let f ∈ (Aω)+ and a be an element of A+. We say f
is pointwisely Cuntz subequivalent to a and write f-p.w.a if f has a
representative (fn)n∈N ∈ ℓ∞(N, A) such that each fn is positive and
fn - a in A for all n ∈ N.

2. Equivalent definitions of the tracial Rokhlin property.
Throughout this paper, we let ω ∈ βN \ N be some fixed free ultra-
filter. We shall also assume that the groups acting on C∗-algebras are
countable, discrete and amenable.



TRACIAL ROKHLIN PROPERTY FOR C∗-ALGEBRAS 1311

Definition 2.1. Let A be a simple unital C∗-algebra. Let (α, u) :
Gy A be a cocyclic action. We say that α has the tracial Rokhlin pro-
perty if, for any finite subset K of G, any ε > 0, and any z ∈ A+ \ {0},
there exist (K, ε)-invariant finite subsets T1, T2, . . . , Tn and projections
{ei | 1 ≤ i ≤ n} ⊂ Aω such that

(1) αg(ei)αh(ej) = 0 for any g ∈ Ti, h ∈ Tj such that g ̸= h or i ̸= j.
(2) With

e =
∑
g∈Ti
1≤i≤n

αg(ei),

1− e-p.w.z. (See Definition 1.4.)

If the ei are weakened to a positive contraction, then we say that α has
the weak tracial Rokhlin property.

Alternatively, the (weak) tracial Rokhlin property can be defined in
terms of the original C∗-algebra A with approximate relations.

Proposition 2.2. Let A be a simple separable unital C∗-algebra. Let
(α, u) : G y A be a cocyclic action. Then, (α, u) has the weak tracial
Rokhlin property if, and only if, for any finite subset K of G, any
ε0 > 0, and any non-zero positive element z ∈ A, there is a (K, ε0)-
invariant subset T1, . . . , Tn of G such that, for any finite subset F
of A, any ε1 > 0, there exist mutually orthogonal positive contractions
{eg,i}g∈Ti,1≤i≤n with the following properties:

(1) ∥[eg,i, f ]∥ < ε1 for any g ∈ Ti and any f ∈ F .
(2) ∥αhg−1(eg,i)− λhg−1,geh,iλ

∗
hg−1,g∥ < ε1 for any g and h in Ti.

(3) With

e =
∑
g∈Ti
1≤i≤n

eg,i,

we have 1− e - z.

Furthermore, if α has the tracial Rokhlin property, then the positive
contractions eg may always be chosen to be non-zero projections.

Remark 2.3. Proposition 2.2 shows that the definition of the (weak)
tracial Rokhlin property is independent of the choice of the free ultra-
filter. In addition, A∞ can be used instead of Aω in the definition. For
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most of the results and proofs of this paper, it does not matter which
one is used. However, one advantage of using a free ultrafilter instead
of the sequence algebra is that, if (M, τ) is a tracial von Neumann al-
gebra, then Mω = ℓ∞(M)/cω,τ (M) is again a von Neumann algebra,
where

cω,τ (M) = {x ∈M | lim
n→ω

τ(xx∗)1/2 = 0}.

The analogue algebra M∞ = ℓ∞(M)/c0,τ (M) is not a von Neumann
algebra. We will make use of this fact in the proof of Proposition 3.7.

When the C∗-algebra has strict comparison, the Cuntz comparison
is equivalent to comparison by traces, which yields:

Proposition 2.4. Let A be a simple unital C∗-algebra with strict
comparison. Let (α, u) : G y A be a cocyclic action. Then, (α, u)
has the weak tracial Rokhlin property if, and only if, for any finite
subset K of G, any ε0, ε1 > 0, there exist (K, ε0)-invariant subsets
T1, . . . , Tn and positive contractions e1, . . . , en ∈ Aω, such that

(1) αg(ei)αh(ej) = 0 for g ∈ Ti and h ∈ Tj such that g ̸= h or i ̸= j.
(2) Let

e =
∑
g∈Ti
1≤i≤n

(αg(ei)).

There is a representative (e(n))n∈N of e such that

(2.1) lim
n→ω

max
τ∈T(A)

dτ (1− e(n)) < ε1.

In the case of the tracial Rokhlin property, positive contraction may be
replaced by non-zero projection in the above statement.

Proposition 2.4 leads to the next definition:

Definition 2.5. Let (α, u) : G y A be a cocyclic action. Let S ⊂
T(A). We say that (α, u) has the (weak) tracial Rokhlin property
with respect to S if, for any finite subset K of G, any ε0, ε1 > 0,
there exist (K, ε0)-invariant subsets T1, . . . , Tn and projections (positive
contractions) e1, . . . , en ∈ Aω, such that

(1) αg(ei)αh(ej) = 0 for g ∈ Ti and h ∈ Tj such that g ̸= h or i ̸= j.
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(2) Let

e =
∑
g∈Ti
1≤i≤n

(αg(ei)).

There is a representative (e(n))n∈N of e such that

(2.2) lim
n→ω

max
τ∈S

dτ (1− e(n)) < ε1.

In the following, we shall show that, if A has tracial rank zero, then
the weak tracial Rokhlin property actually implies the tracial Rokhlin
property. The case G = Z was proven by Phillips and Osaka [22,
Theorem 2.14] and [25, Proposition 1.3]). We need the next lemma
before proving it.

Lemma 2.6. Let A be a C∗-algebra, and let B be a finite-dimensional
subalgebra. Let {elij} be the standard matrix units of B. Then, for
any ε > 0, there is a δ > 0 such that, whenever a projection p ∈ A
satisfies ∥[p, elij ]∥ < δ for all i, j, l, there is a projection q in the relative
commutant A ∩B′ such that ∥p− q∥ < ε.

Proof. Fix some ε > 0. Choose δ0 according to ε/2 as in [15,
Lemma 2.5.10]. Choose δ1 according to δ0 as in [15, Theorem 2.5.9].
(It is easy to see that this lemma generalizes to finite-dimensional
C∗-algebras.) Set δ = δ1/2. Let p ∈ A be a projection satisfying
∥[p, elij ]∥ < δ. Identify C = pAp⊕ (1− p)A(1− p) as a subalgebra of A.
Let

(2.3) alij = peli,jp+ (1− p)eli,j(1− p) ∈ C.

Then, ∥ali,j − eli,j∥ < δ1. Hence, by [15, Theorem 2.5.9], there

are matrix units {f li,j} ⊂ C such that ∥f li,j − eli,j∥ < δ0. By [15,

Lemma 2.5.10], there is a unitary u ∈ A such that uf li,ju
∗ = eli,j and

∥u − 1∥ < ε/2. Now, let q = upu∗. Then ∥q − p∥ < ε. We shall show
that q commutes with B by showing that q commutes with each eli,j .

Since {f li,j} ⊂ C, we have f li,j = (1−p)f li,j(1−p)+pf li,jp for any i, j, l.
Hence,

�(2.4) qeli,j = upf li,ju
∗ = upf li,jpu

∗ = uf li,jpu
∗ = eli,jq.



1314 QINGYUN WANG

Theorem 2.7. Let (α, u) : G y A be a cocyclic action with the weak
tracial Rokhlin property. If A is a simple C∗-algebra tracial rank 0,
then (α, u) indeed has the tracial Rokhlin property.

Proof. If A has tracial rank 0, then A is tracially approximately di-
visible [17, Theorem 5.4]. If we define tracial Z-absorption [7, Defini-
tion 2.1] using finite-dimensional C∗-algebras whose simple component
has arbitrarily large size instead of matrix algebras, tracial approxi-
mate divisibility will imply tracial Z-absorption. This implies that [7,
Theorem 3.3] will still hold, using essentially the same proof. Hence, A
has strict comparison. (It turns out that, in the simple case, the afore-
mentioned definition of tracial Z-absorbing coincides with [7, Defini-
tion 2.1], although we do not need it.) LetK be a finite subset ofG, and
let ε0 > 0 be given. By Proposition 2.4, there exist (K, ε0)-invariant
subsets T1, . . . , Tn and positive contractions e1, . . . , en ∈ Aω, such that

(1) αg(ei)αh(ej) = 0 for g ∈ Ti and h ∈ Tj such that g ̸= h or i ̸= j.
(2) Let

e =
∑
g∈Ti
1≤i≤n

(αg(ei)).

There is a representative (e(n))n∈N of e such that

(2.5) lim
n→ω

max
τ∈T(A)

dτ (1− e(n)) < ε1/3.

The rest of the proof amounts to perturbation of the eis to projections
with the desired properties. Let F be a finite subset of A. Let η > 0
be arbitrary. Set M = |T1|+ · · ·+ |Tn|. Choose δ such that

(2.6) δ = ε1/3(M + 1).

Since A has tracial rank 0, there is a finite-dimensional subalgebra
B ⊂ A with 1B = p, such that

(1) ∥[p, a]∥ < η for any a ∈ F .
(2) pap ∈ ηB.
(3) τ(1− p) < δ for any τ ∈ T(A).

Consider C = Aω∩B′ ⊃ Aω. The sequence algebra of a real rank 0 C∗-
algebra is again real rank 0. As a consequence of Lemma 2.6 we obtain
C = (A ∩ B′)ω. In particular, the C∗-algebras C and {peiCeip}1≤i≤n
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have real rank 0. Note here that we regard p ∈ A as constant sequence
in Aω, which commutes with each ei. Choose a projection qi ∈ peiCeip
such that ∥qieiqi − peip∥ < δ. We first claim that αg(qi)αh(qj) = 0
for g ∈ Ti and h ∈ Tj such that g ̸= h or i ̸= j. In order to prove

this, since qi ∈ peiCeip for any γ > 0, we can find di ∈ C such that
∥qi − peidieip∥ < γ. Hence,

∥αg(qi)αh(qj)∥ ≤ ∥αg(qi − peidieip)αh(qj)∥
+ ∥αg(peidieip)αh(qj − pejdjejp)∥
+ ∥αg(peidieip)αh(pejdjejp)∥

≤ γ + (1 + γ)γ + 0 = (2 + γ)γ.

Since γ is arbitrary, we have αg(qi)αh(qj) = 0. Let

q =
∑
g∈Ti
1≤i≤n

αg(qi).

Let (q(m))m∈N be a representative of q such that each q(m) is a projec-
tion. We can estimate:

lim
m→ω

max
τ∈T(A)

{τ(1− q(m))}

≤ lim
m→ω

max
τ∈T(A)

{τ(1− q(m)e(m)q(m))}

≤ lim
m→ω

max
τ∈T(A)

{τ(1− pe(m)p) + ∥pe(m)p− q(m)e(m)q(m)∥}

≤ lim
m→ω

max
τ∈T(A)

{dτ (1− e(m)) + τ(1− p) + ∥pep− qeq∥}

≤ ε1
3

+ δ +Mδ < ε1.

Finally, for any a ∈ F , find b ∈ B such that ∥pap− b∥ < η. Then,

∥qia− aqi∥ = ∥pqipa− apqip∥
≤ ∥pqipa− pqipap∥
+ ∥pqipap− papqip∥+ ∥papqip− apqip∥

≤ ∥pqib− bqip∥+ 2η + η + η = 4η.

Now we choose an increasing sequence of finite subsets {Fk} whose
union is dense in A. Letting η = 1/k, we can obtain a sequence of
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projections {qi,k}1≤i≤n,k∈N in Aω satisfying:

(1) ∥qi,ka− aqi,k∥ ≤ 4/k for any a ∈ Fk.
(2) αg(qi,k)αh(qj,k) = 0 for any g ∈ Ti and h ∈ Tj such that g ̸= h

or i ̸= j.
(3) Let

qk =
∑
g∈Ti
1≤i≤n

αg(qi,k).

There is a representative (q
(m)
k )m∈N of qk, such that

(2.7) lim
m→ω

max
τ∈T(A)

τ(1− q
(m)
k ) < ε1.

We can then use Cantor’s diagonal argument to select projections pi
in Aω satisfying the conditions in Proposition 2.4; therefore, α has the
tracial Rokhlin property. �

3. Examples of actions with the weak tracial Rokhlin prop-
erty.

Definition 3.1. Let G be a discrete group, let A and B be unital
C∗-algebras and let α : G y A and β : G y B be actions of G on A
and B. We say that B admits an approximate equivariant central
unital homomorphism from A if there is a sequence of unital completely
positive maps ϕi : A → B such that, for any a, a1 ∈ A and b ∈ B, we
have

(1) limi→∞ ϕi(a)ϕi(a1)− ϕi(aa1) = 0.
(2) limi→∞ ϕi(a)b− bϕi(a) = 0.
(3) limi→∞ ϕi(αg(a))− βg(ϕi(a)) = 0.

It is immediate from the definition that an approximate equivariant
central unital homomorphism from A toB induces an equivariant unital
homomorphism from A to the central sequence algebra Bω.

Theorem 3.2. Let α ∈ ActG(A), where G is amenable. Let X be
a compact metrizable space with a Borel probability measure µ. Let
β : Gy (X,µ) be a free and measure-preserving action which is also a
topological action (i.e., it acts on X by homeomorphisms). It induces
an action on C(X). Let τ be a tracial state on A. Suppose that there
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are approximate equivariant central unital homomorphisms

ιi : C(X) −→ A

with µi the measure induced by τ ◦ ιi. If µ is the ω-limit of (µi)i∈N,
then α has the weak tracial Rokhlin property with respect to τ . Fur-
thermore, if X is totally disconnected, then α has the tracial Rokhlin
property.

Proof. Let K ∈ G be a finite subset and let ε0, ε1 > 0. Since
β : G y X is a free and measure preserving action, by [21, page 59,
Theorem 5, remark after proof], there exist (K, ε0)-invariant subsets
T1, T2, . . . , Tn and measurable subsets B1, . . . , Bn such that:

(1) gBi and hBj are disjoint for g ∈ Ti and h ∈ Tj such that g ̸= h
or i ̸= j.

(2)

µ

(
X \

∪
g∈Ti
1≤i≤n

gBi

)
< ε1.

Any finite measure on a compact metrizable space is regular. Without
loss of generality, we may assume that each Bi is compact.

Now, we shall construct open sets Ui ⊃ Bi such that gUi and hUj

are disjoint for g ∈ Ti and h ∈ Tj with g ̸= h or i ̸= j. Since X is a
normal topological space, for any i and any g ∈ Ti, we can inductively
find an open set Vg,i ⊃ gBi such that Vg,i and Vh,j are disjoint for any
g ∈ Ti and h ∈ Tj such that g ̸= h or i ̸= j. For each i, define

(3.1) Ui =
∩
g∈Ti

g−1Vg,i.

It is easy to see from our construction that Ui satisfies the requirement
previously mentioned. Furthermore, if X is totally disconnected and
compact, we may choose the Vg,is to be clopen sets. It is clear from
the construction that the Uis are clopen sets as well.

Repeating the above argument and replacing Bi by Ui, we can
obtain open sets Wi ⊃ Ui such that gWi and hWj are disjoint for
any g ∈ Ti, h ∈ Tj such that (g, i) ̸= (h, j). Now, by Urysohn’s lemma,
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we can find the continuous function

fi : X −→ [0, 1],

which is 1 on Ui and 0 outside Wi. If X is totally disconnected, we
let fi be the characteristic function on the clopen set Wi. Let ei =
(ιk(fi))k∈N for 1 ≤ i ≤ n. Now, we can see that {ei}1≤i≤n are positive
contractions (or projections, if X is totally disconnected) in Aω such
that

(1) αg(ei) and αh(ej) are disjoint for g ∈ Ti and h ∈ Tj such that
g ̸= h or i ̸= j.

(2) With

f =
∑
g∈Ti
1≤i≤n

αg(fi) and e(k) = ιk(f),

we see that (e(k))k∈N is a representative of

e =
∑
g∈Ti
1≤i≤n

ei

such that

lim
k→ω

dτ (1− e(k)) = lim
k→ω

dµi(1− f) = lim
k→ω

µi({x ∈ X | 1− f(x) ̸= 0})

≤ lim
k→ω

µi

(
X \

∪
g∈Ti
1≤i≤n

gUi

)

≤ µ

(
X \

∪
g∈Ti
1≤i≤n

gUi

)
< ε1.

The second equality follows from [1, Proposition I.2.1]. By Propo-
sition 2.4, the action α has the weak tracial Rokhlin property with
respect to τ and has the tracial Rokhlin property with respect to τ
if X is further assumed to be totally disconnected. �

Let A be a separable unital C∗-algebra and G a countable discrete
group. Let ⊗GA be the minimal tensor product of countably many
copies of A indexed by the elements of G. The left multiplication of G
on itself induces an action on ⊗GA (permuting the indices), which we
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shall call the Bernoulli shift on ⊗GA. We can generalize [25, Corollary]
to actions of amenable groups.

Proposition 3.3. Let A be a unital C∗-algebra. Let τ ∈ T(A) be such
that, with πτ the associated GNS representation, the von Neumann
algebra πτ (A)

′′ has no minimal projections. When G is infinite and
amenable the Bernoulli shift on ⊗GA has the weak tracial Rokhlin pro-
perty with respect to τ .

Proof. By [25, Proposition 2.8], there is some a ∈ A with 0 ≤ a ≤ 1
such that the spectral measure µ0 on [0, 1], defined by∫ 1

0

f dµ0 = τ(f(a)) for f ∈ C([0, 1])

satisfies µ0({t}) = 0 for all t ∈ [0, 1]. Using functional calculus, there
is a unital embedding

ι : C([0, 1]) −→ A

defined by f → f(a). Let

X =
∏
G

[0, 1]

be the product of countably many copies of [0, 1] indexed by elements
of G. There is a natural isomorphism between C(X) and ⊗GC([0, 1]).
We use

f
(g1)
1 ⊗ f

(g2)
2 ⊗ · · · ⊗ f (gn)n

to indicate the elementary tensor in ⊗GA which is fi in the gith tensor
factor for 1 ≤ i ≤ n and is 1 = 1A in all other places. Let α be the
Bernoulli shift on ⊗GC([0, 1]), determined by

(3.2) αg(f
(g1)
1 ⊗ f

(g2)
2 ⊗ · · · ⊗ f (gn)n ) = f

(gg1)
1 ⊗ f

(gg2)
2 ⊗ · · · ⊗ f (ggn)n .

Using the natural isomorphism between C(X) and ⊗GC([0, 1]) and
the duality between actions on C(X) and actions on X, we obtain an
induced action β on X, defined by

(3.3) βg(x
(g1)
1 , x

(g2)
2 , . . . , x(gn)n , . . .) = (x

(gg1)
1 , x

(gg2)
2 , . . . , x(ggn)n , . . .).

Let µ be the product measure on X induced by µ0. It is easy to see
that β is measure preserving. Now, we check that it is also free. Given
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g ∈ G \ {1}, let
S = {x ∈ X | βg(x) = x}.

We have
S = {(xh)h∈G | xh = xk for all h, k ∈ G}.

Using Fubini’s theorem along with the assumption that the single point
set in [0, 1] has measure 0, we get µ(S) = 0. Next, list the elements
in G by h1, h2, . . . . Let ϕk : C(X) → ⊗GA be the right index shift by
hk determined by

(3.4)
f
(g1)
1 ⊗ f

(g2)
2 ⊗ · · · ⊗ f (gn)n −→ f1(a)

(g1hk)

⊗ f2(a)
(g2hk) ⊗ · · · ⊗ fn(a)

(gnhk).

We can see that {ϕn}n∈N is a sequence of equivariant unital homomor-
phisms. We now check that it is approximately central. Let f ∈ C(X)
and b ∈ ⊗G(A). Without loss of generality, we may assume that f, b
are elementary tensors:

(3.5)
f = f

(g1)
1 ⊗ f

(g2)
2 ⊗ · · · ⊗ f (gn)n ,

b = b
(h1)
1 ⊗ b

(h2)
2 ⊗ · · · ⊗ b(hn)

n .

There are only finitely many g ∈ G such that gig = hj for some
1 ≤ i ≤ j ≤ n; hence, limk→∞ϕk(a)b−bϕk(a) = 0. By Theorem 3.2, the
action α has the weak tracial Rokhlin property with respect to τ . �

In particular, for the Jiang-Su algebra Z, there is a central embed-
ding of C([0, 1]) such that the unique trace τ on Z induces the Lebesgue
measure on [0, 1]. Hence, we have:

Corollary 3.4. If G is countable, discrete and amenable, then the
Bernoulli shift on ⊗GZ ∼= Z has the weak tracial Rokhlin property.

A cocyclic action (α, u) : Gy A is called strongly outer, if and only
if, for any g ̸= 1 and any τ ∈ Tαg (A), the weak extension of αg on
πτ (A)

′′ is not weakly inner.

Proposition 3.5. Let G be a countable discrete amenable group, let A
be a unital simple infinite dimensional C∗-algebra, let (α, u) : G y A
be an action with the weak tracial Rokhlin property. Suppose that the
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tracial state space T(A) has finitely many extreme points. Then α is
strongly outer.

Proof. Let 1 ̸= g ∈ G be given, and let τ be an αg-invariant trace.
Let E : A oαg Z → A be the conditional expectation determined by
E(anλ

n
g ) = a0, where an ∈ A and λg is the canonical unitary in

A oαg Z implementing the action. We will show that, for any trace
Φ ∈ T(A oαg

Z), we have Φ(aλg) = 0. If this is done, then the proof
of [13, Lemma 4.4] shows that αg is not weakly inner.

For any τ ∈ T(A) and x = (xn)n∈N, let τω(x) = limn→ω τ(xn), which
is a trace on Aω. Let ε > 0 be arbitrary. Since α has the weak tracial
Rokhlin property, by Proposition 2.4, we can find a ({g}, ε)-invariant
subsets T1, . . . , Tn of G, and positive contractions e1, . . . , en in A∞,
such that:

(1) αg(ei)αh(ej) = 0 for h ∈ Ti and k ∈ Tj such that h ̸= k or i ̸= j.
(2) Let

e =
∑
h∈Ti
1≤i≤n

(αh(ei)).

There is a representative (e(n))n∈N of e such that

(3.6) lim
n→ω

max
τ∈T(A)

dτ (1− e(n)) < ε.

Now let τ1, τ2, . . . , τk be the extreme tracial states of A. Identify aλg
with the constant sequence in (A oαg Z)∞, without loss of generality,
assume ∥a∥ = 1. We have

|Φω(aλg)| ≤
∣∣∣∣Φω

( ∑
h∈Ti,i

αh(ei)aλg

)∣∣∣∣+ ∣∣∣∣Φω

((
1−

∑
h∈Ti,i

αh(ei)

)
aλg

)∣∣∣∣
(3.7a)

≤
∣∣∣∣Φω

( ∑
h∈Ti∩gTi,i

αh(ei)aλg

)∣∣∣∣+ ∣∣∣∣Φω

( ∑
h∈Ti\gTi,i

αh(ei)aλg

)∣∣∣∣(3.7b)

+ Φω

(
1−

∑
h∈Ti,i

αh(ei)

)
∥aλg∥(3.7c)

≤
∣∣∣∣Φω

( ∑
h∈Ti∩gTi,i

αh(e
1/2
i )aλgαg−1h(e

1/2
i )

)∣∣∣∣(3.7d)
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+
∑

h∈Ti\gTi,i

Φω(αh(ei)))∥aλg∥+ ε(3.7e)

≤ 0 +

∣∣∣∣ ∑
1≤j≤k

∑
h∈Ti\gTi,i

τj,ω(αh(ei))

∣∣∣∣+ ε(3.7f)

≤
∑

1≤j≤k

∑
h∈Ti,i

|Ti \ gTi|
|Ti|

τj,ω((αh(ei)) + ε(3.7g)

≤ ε
∑

1≤j≤k

τj,ω

( ∑
h∈Ti,i

αh(ei)

)
+ ε ≤ (k + 1)ε.(3.7h)

The estimation in (3.7g) used the fact that∑
1≤j≤k

τj((αh(a))

is independent of h, since τ → τ ◦αh permutes the set of extreme tracial
states. Since ε is arbitrary, this shows that Φω(aλg) = 0, and therefore,
Φ(aλg) = 0. �

Corollary 3.6. Let α ∈ ActG(A) be an action with the weak tracial
Rokhlin property. Then, the canonical embedding

A −→ Aoα G

induces a bijection between Tα(A) and T(Aoα G).

Proof. Let r be the map from T(Aoα G) to Tα(A) induced by the
canonical embedding A → A oα G. Let s be the map from Tα(A) to
T(Aoα G), defined by

(3.8) s(τ)
(∑

agλg

)
= τ(a1) for all τ ∈ Tα(A).

It is easy to check that r ◦ s is the identity map. In order to prove that
s ◦ r is the identity map, it suffices to show that, for any trace Φ in
T(AoαG), g ̸= 1, we have Φ(aλg) = 0. We repeat the same argument
as in Proposition 3.5 except for the last three inequalities (3.7f), (3.7g)
and (3.7h). Note that Φ is now a trace on T(A oα G), not merely a
trace on T(A oαg Z); we dropped the assumption that A has finitely
many extremal tracial states. Let τ = r(Φ) ∈ Tα(A), and, adopting
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the same notation as in Proposition 3.5 yields the following estimation:∑
h∈Ti\gTi,i

Φω(αh(ei))) =
∑

h∈Ti\gTi,i

τω(αh(ei))

=
∑

h∈Ti,i

|Ti \ gTi|
|Ti|

τω(αh(ei)) + ε

≤ετω
( ∑

h∈Ti,i

αh(ei)

)
≤ ε.

Hence, Φω(aλg) < 2ε. Since ε is arbitrary, we have Φ(aλg) = 0. �

We can now reestablish a Rokhlin-type lemma for outer actions on
the hyperfinite II1 factor R (as was discussed in [20, Chapter 6] for
actions of more general von Neumann algebras. The formulation is
slightly different; our projections are exactly permuted by the action
but do not sum up exactly to 1). Let pω : R

ω → Rω/JR, where JR is
the trace-kernel defined in Section 1.

Proposition 3.7. Let G be a countable, discrete and amenable group.
Let R be the hyperfinite II1 factor. Let α : Gy R be any outer action.
Then, for any finite set K ∈ G and ε, ε1 > 0, there exist (K, ε)-
invariant sets T1, . . . , Tn in G and projections p1, . . . , pn ∈ Rω/JR ∩
pω(R)

′ such that

(1) αg(pi)αh(pj) = 0 for g ∈ Ti and h ∈ Tj such that g ̸= h or i ̸= j.
(2)

τω

(
1−

∑
g∈Ti
1≤i≤n

αg(pi)

)
< ε1.

Proof. Any two outer actions on the hyperfinite II1 are cocyclic
conjugate [20, Theorem 1.4]; hence, we need only check one of them.
Let Z be the Jiang-Su algebra. Let α be the Bernoulli shift on
⊗GZ ∼= Z. Let τ be the unique tracial state on Z. Then πτ (Z)

′′
is the

hyperfinite II1 factor R. The induced action on R, still denoted α, is
outer by Corollary 3.4 and Proposition 3.5. Let K ∈ G be any finite
set. Let ε, ε1 > 0. Since α has the weak tracial Rokhlin property, there
exist (K, ε)-invariant sets T1, . . . , Tn in G and positive contractions
e1, . . . , en ∈ Zω such that
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(1) αg(ei)αh(ej) = 0 for g ∈ Ti and h ∈ Tj such that g ̸= h or i ̸= j.
(2) Let

e =
∑
g∈Ti
1≤i≤n

(αg(ei)).

There is a representative (e(n))n∈N of e such that

(3.9) lim
n→ω

{dτ (1− e(n))} < ε1.

We can lift {αg(ei)}g∈Ti,i to mutually orthogonal positive contractions

{eg,i = (e
(n)
g,i )g∈Ti,i} using semiprojectivity of direct sums of C0((0, 1]).

Let
ẽ (n) =

∑
g∈Ti,i

(e
(n)
g,i ),

and set δn = ∥ẽ(n) − e(n)∥. Then, limn→ωδn = 0. Let

(3.10) hδn(x) = 1− 1

1− δn
(1− x− δn)+ for all x ∈ [0, 1].

Note that hδn ∈ C0((0, 1]) tends to the identity function as n→ ω. Let

f
(n)
g,i = hδn(e

(n)
g,i ), and set fg,i = (f

(n)
g,i )n∈N ∈ ℓ∞(N, A). Then, fg,i is a

representative of αg(ei). Let

f (n) =
∑

g∈Ti,i

(f
(n)
g,i ).

We have

(3.11) 1− f (n) = 1− hδn(ẽ
(n)) ≈ (1− ẽ (n) − δn)+ - 1− e(n).

The algebra Rω/JR is again a von Neumann algebra. For each i, let
pi be the support projection of pω(ei) ∈ Rω/JR. Since multiplication
is strongly continuous on bounded sets and Z is strongly dense in R,
we have pi ∈ Rω/JR ∩ pω(R)

′
and αg(pi)αh(pj) = 0 for g ∈ Ti and

h ∈ Tj such that g ̸= h or i ̸= j. Let p̃
(n)
g,i be the support projection of

f
(n)
g,i , and set p̃g,i = (p̃

(n)
g,i )n∈N. Since pω is strongly continuous, we see

that p̃g,i is a lift of αg(pi). Let

p(n) =
∑

g∈Ti,i

(p
(n)
g,i ).
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Since f (n)p(n) = f (n), an easy calculation shows that (1 − f (n))(1 −
p(n)) = 1 − p(n). If we let q(n) be the support projection of 1 − f (n),
then 1 − p(n) ≤ q(n). Using the fact that dτ (1 − f (n)) = τ(q(n)), we
have

�(3.12) lim
n→ω

τ(1− p(n)) ≤ lim
n→ω

dτ (1− f (n)) < ε1.

Theorem 3.8. Let A be a unital, simple, separable, infinite dimen-
sional C∗-algebra with finitely many extremal tracial states. Suppose
that A is either nuclear or has tracial rank 0. Let G be a countable
discrete amenable group. For a cocyclic action (α, u) of G on A, it is
strongly outer if and only if it has the weak tracial Rokhlin property.

Proof. If A is either nuclear or has tracial rank 0, then every
trace τ is uniformly amenable, see [2, Definition 3.2.1, Theorem 4.2.1,

Proposition 4.5]. The von Neumann algebra ϕτ (A)
′′
is hyperfinite by

[2, Theorem 3.2.2]. Since A is unital, simple and infinite-dimensional,

ϕτ (A)
′′

is the hyperfinite II1 factor. Now we see that the proof of
[19, Theorem 3.7] may be generalized to actions of discrete amenable
groups. The only change needed is to replace property (Q) by the
property in Proposition 3.7 and accordingly modify the estimations. �

Another type of example comes from product-type actions. We begin
with the next definition.

Definition 3.9. Let

A =

∞⊗
i=1

B(Hi),

where Hi is a finite-dimensional Hilbert space for each i. An action
α ∈ ActG(A) is called a product-type action if and only if, for each i,
there exists a unitary representation πi : G→ B(Hi), which induces an
inner action αi : g 7→ Ad(πi(g)), such that

α =
∞⊗
i=1

αi.

Definition 3.10. Let α ∈ ActG(A) be a product-type action on a
UHF-algebra A. A telescope of the action is a choice of an infinite
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sequence of positive integers 1 = n1 < n2 < · · · and a reexpression of
the action such that

A =
∞⊗
i=1

B(Ti)

where

Ti =

ni+1−1⊗
j=ni

Hj ,

and the action on B(Ti) is

ni+1−1⊗
j=ni

αj .

Theorem 3.11. Let α ∈ ActG(A) be a product-type action where G
is countable, discrete and amenable. Let Hi, πi and αi be defined as
in Definition 3.9. Let di be the dimension of Hi and χi the character
of πi. We will use the same notation if we perform a telescope to the
action. Define

χ : G 7−→ C

to be the characteristic function on 1G. Then, the action α has the
tracial Rokhlin property if and only if there exists a telescope such that,
for any n ∈ N, the infinite product

(3.13)
∏

n≤i<∞

1

di
χi = χ.

Proof. Any UHF algebra has tracial rank 0 and is monotracial. By
Theorem 3.8, that α has the tracial Rokhlin property is equivalent to
that α is strongly outer. In this case, α has the tracial Rokhlin property
if and only if α|H has tracial Rokhlin property for any cyclic subgroup
H ⊂ G. Let χH,i be the restriction of χi to the subgroup H, which is
exactly the character of the restricted action πi|H . We observe that∏

n≤i<∞

1

di
χi = χ
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if and only if

(3.14)
∏

n≤i<∞

1

di
χH,i = χ for all cyclic subgroups H ⊂ G.

Hence, the theorem is proven if we can show that it is true for any cyclic
group G. If G is finite, then it is proven in [29]. If G is infinite, Let x be
a generator, and let Ui be the unitary in B(Hi) such that πi(x) = AdUi.
Let Sk,l be a sequence consisting of eigenvalues of ⊗l

i=kUi, repeated as
often as multiplicity is indicated. Kishimoto has shown that, in the case
of an infinite cyclic group acting on UHF algebra, the tracial Rokhlin
property coincides with the Rokhlin property [12, Theorem 1.3]. He
also showed [12, Lemma 5.2] that the product-type action α has the
Rokhlin property if and only {Sk,l}∞l=k is uniformly distributed for any
k ∈ N. Now fix some k ∈ N. For any sequence S = (λ1, λ2, . . . , λn)
in T, we let µS be the measure on T such that µS = (1/n)

∑
i δλi ,

where δλi
is the Dirac measure concentrated at the point λi ∈ T. By

definition, {Sk,l}∞l=k is uniformly distributed if and only if

(3.15) lim
l→∞

µSk,l
(f) =

∫
T
f dµ for all f ∈ C(T),

where µ is the normalized Haar measure. Now it is not difficult to see
that

(3.16)
∏

k≤i<l

1

di
χi(n) = µ(Sk,l)(z

n) for all n ∈ Z,

where zn ∈ C(T) stands for the function z → zn. Hence,

(3.17)
∏

k≤i<∞

1

di
χi = χ

is equivalent to

(3.18) lim
l→∞

µSk,l
(zn) = δ(n, 0) =

∫
T
zn dµ for all n ∈ Z,

and therefore, further equivalent to {Sk,l}∞l=k being uniformly dis-
tributed, since any continuous function in C(T) can be uniformly ap-
proximated by finite linear combinations of the functions zn. �

Another example is derived from actions on non-commutative tori.
Let θ be a nondegenerate anti-symmetric bicharacter on Zd. We iden-
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tify it with its matrix under the canonical basis of Zd. Then, the
associated non-commutative tori Aθ is a simple, unitalAT algebra with
a unique trace. Aθ is generated by unitaries {Ux | x ∈ Zd}, subject to
the relation

(3.19) UyUx = exp(πi⟨x, θy⟩)Ux+y for all x, y ∈ Zd.

For any T ∈ Md(Z), the map

Ux −→ UTx

gives rise to an endomorphism αT of Aθ if and only if (T tθT − θ)/2 ∈
Md(Z) (This relation is automatically satisfied for d = 2.) It is an
automorphism if and only if T is invertible. Let

(3.20) Gθ = {T ∈ GLn(Z) | 1
2 (T

tθT − θ) ∈ Md(Z)}.

Proposition 3.12. Let θ be a non-degenerate anti-symmetric bichar-
acter on Zd. Let G be any amenable subgroup of Gθ. Then, the action
α ∈ ActG(Aθ), defined by T → αT , is strongly outer, and hence has
the tracial Rokhlin property.

Proof. Let τ be the unique trace state on Aθ. By [5, Lemma 5.10],
for each T ∈ G \ {e}, the automorphism αT is not weakly inner.
Hence, α is strongly outer. �

If we can find one example of actions with (weak) tracial Rokhlin
property, we can actually find many by forming inner tensors. More
specifically, we have the following:

Proposition 3.13. Let α ∈ ActG(A) be an action with the weak tracial
Rokhlin property, and let β ∈ ActG(B) be arbitrary, where A,B are
both simple and unital. Then, the inner tensor of these two actions
γ = α ⊗ β ∈ ActG(A ⊗min B) has the weak tracial Rokhlin property.
If α has the tracial Rokhlin property, then γ has the tracial Rokhlin
property.

Proof. Let K ⊂ G be any finite subset and ε > 0 arbitrary. Since α
has the weak tracial Rokhlin property, we can find (K, ε)-invariant
subsets T1, . . . , Tn of G with the property stated in the definition of
weak tracial Rokhlin property. Let x ∈ A⊗minB be a non-zero positive
element.
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We first show that there is a non-zero positive element d ∈ A such
that d ⊗ 1 - x. By Kirchberg’s slice lemma ([10, Lemma 2.7] or [28,
Lemma 4.1.9]), there are non-zero positive elements a ∈ A+ and b ∈ B+

and some z ∈ A⊗min B such that zz∗ = a⊗ b and z∗z ∈ Her(x). This,
in particular, shows that a ⊗ b - x. Since B is simple and unital, we
can find elements s1, s2, . . . , sn in B such that∑

i

sibs
∗
i = 1.

By [11, Proposition 4.10], we can find a non-zero positive contraction
d ∈ A such that d⊕n - a. Hence,

(3.21)
d⊗ 1 =

∑
i

(1⊗ si)(d⊗ b)(1⊗ si)
∗

- (d⊗ b)⊕n ∼ d⊕n ⊗ b - a⊗ b - x.

Since α has the weak tracial Rokhlin property, there exist positive
contractions fi ∈ Aω such that:

(1) αg(fi)αh(fj) = 0 for any g ∈ Ti, h ∈ Tj such that (g, i) ̸= (h, j).
(2) With

e =
∑
g∈Ti
1≤i≤n

αg(fi),

1− e-p.w.d.

Now consider the positive contractions fi ⊗ 1. It is clear that fi ⊗ 1
∈ (A⊗min B)ω, and:

(1) γg(fi⊗1)γh(fj ⊗1) = (αg(fi)αh(fj))⊗1 = 0 for any g ∈ Ti, h ∈
Tj such that (g, i) ̸= (h, j).

(2) With

ẽ =
∑
gi∈Ti
1≤i≤n

γg(fi ⊗ 1),

we have

(3.22) 1− ẽ-p.w.d⊗ 1 - x.

Hence, γ = α ⊗ β has the weak tracial Rokhlin property. If α has
the tracial Rokhlin property, then we can require fi to have non-zero
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projections; then, fi ⊗ 1 also contain projections, and the above proof
shows that γ has the tracial Rokhlin property. �

Remark 3.14. Let G be any countable, discrete amenable group. It
admits at least one action on Z with the weak tracial Rokhlin property
(Corollary 3.4). We then obtain many actions with the weak tracial
Rokhlin property on any Z-stable C∗-algebra A, by Proposition 3.13.
Following the same argument as in [25], we can actually show that the
set of actions with the weak tracial Rokhlin property is Gδ-dense in
ActG(A), where ActG(A) is endowed with the topology of pointwise
convergence. In particular, by Theorem 2.7, if A is simple with tracial
rank 0, then actions with the tracial Rokhlin property form a Gδ-dense
subset of ActG(A).

In the next two sections, we generalize the results in [23], from which
we adapt our ideas.

4. The Murray–von Neumann semigroup. For a C∗-algebra A,
we let V(A) be the Murray-von Neumann semigroup of A. We say
that V(A) has strict comparison if, for any p, q ∈ V (A), we have
that τ(p) < τ(q) for any τ ∈ T(A) implies p . q. Note that
such a C∗-algebra is said to satisfy Blackadar’s second fundamental
comparability question, which states in different literature that the
order of projections is determined by traces. We say that V(A) is
almost divisible if, for any p ∈ V(A) and any n ∈ N, there is some
q ∈ V(A) such that nq ≤ p ≤ (n + 1)q. Note that, if A is simple
infinite-dimensional with real rank 0, then V(A) is almost divisible, by
[23, Lemma 2.3].

Lemma 4.1. Let A be a unital simple separable C∗-algebra with
property (SP). Suppose that V(A) has strict comparison and is almost
divisible. Let (α, u) : G y A be a cocycle action with the tracial
Rokhlin property. Then, for every finite subset F ⊂ A oα,u G, every
ε > 0, and every nonzero z ∈ (A o(α,u) G)+, there exist some
finite subset K of G and (K, ε)-invariant subsets T1, T2, . . . , Tn of G,
projections f1, . . . , fn ∈ A and an embedding

ϕ :
⊕
i

M|Ti| ⊗ fiAfi −→ Aoα,u G,

whose image shall be called D, such that



TRACIAL ROKHLIN PROPERTY FOR C∗-ALGEBRAS 1331

(1) there is a gi ∈ Ti for each i such that ϕ(e
(i)
gi,gi ⊗ a) = αgi(a) for

any a ∈ fiAfi.
(2) ϕ(eg,g ⊗ fi) ∈ A for any g ∈ Ti and 1 ≤ i ≤ n.

(3) ∥ϕ(e(i)g,h ⊗ a)− λgaλ
∗
h∥ ≤ ε∥a∥ for any g, h ∈ Ti and a ∈ fiAfi.

(4) Let

T̃i =
∩
g∈K

gTi ∩ Ti.

Let
p =

∑
g∈T̃i
1≤i≤n

ϕ(e(i)g,g).

We have

(4.1) pb ⊂ε D and bp ⊂ε D for any b ∈ F.

(5) With p defined as in (4), 1− p - z.

Proof. We first choose two nonzero orthogonal positive elements
z0, z1 ∈ A+ such that z0⊕z1 - z according to [7, Lemma 5.1]. Since A
has property (SP), we may assume that z0 and z1 are projections. Let
η = Minτ∈T (A) τ(z0) > 0. Let ε0 = Min{(η/2), ε}. Without loss of
generality, assume that there is a symmetric finite set K ⊂ G such that
elements of F are all of the form∑

g∈K

agλg,

where ag are elements of A and λg are the canonical unitaries imple-
menting the action. By Definition 2.1, we can find (K, ε0)-invariant
subsets T1, T2, . . . , Tn of G and central projections qi ∈ A∞, such that

(1) αg(qi)αh(qj) = 0 for g ∈ Ti and h ∈ Tj such that (g, i) ̸= (h, j).
(2) 1−

∑
g∈T αg(q)-p.w.z1.

For 1 ≤ i ≤ n, let {e(i)g,h} be the standard matrix units of M|Ti|. By
the universal property of finite dimensional C∗-algebras, there is an
embedding

(4.2) ψ :
⊕

1≤i≤n

M|Ti| −→ (Aoα,u G)
∞
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such that ψ(e
(i)
g,h) = λgqiλ

∗
h. Using semiprojectivity of M , we can lift

ψ to a sequence of embeddings

ψk :
⊕
i

M|Ti| −→ (Aoα,u G).

We may further assume that ψk(e
(i)
g,g) ∈ A for g ∈ Ti by the standard

perturbation argument, see [15, Lemma 2.5.7].

Now, fix some gi ∈ Ti for each i. Let qi,k = λ∗giψk(e
(i)
gi,gi)λgi ∈ A.

We see that (qi,k)k∈N is a representative of qi. Let

(4.3)
F0 =

{
αg(ah) |

∑
h∈K

ahλh ∈ F, g ∈ ∪iTi

}
∪ {αk(ug,h) | g, h, k ∈ ∪i(Ti ∪ T−1

i )}.

Let L = Max{∥a∥ | a ∈ F0}. Define

(4.4) δ = Min

{
1

2
,

ε

|K|(
∑

i |Ti|)(L+ 5)
,
ε

2

}
We can find a large enough k such that:

(1′) letting e
(i)
g = ψk(e

(i)
g,g) ∈ A, we have ∥[eg, a]∥ < δ for any g ∈ T

and any a ∈ F0.

(2′) Letting fi = qi,k, we have ∥ψk(e
(i)
g,h) − λgfiλ

∗
h∥ < δ for any

g ∈ T .
(3′) With

e =
∑
g∈Ti
1≤i≤k

e(i)g ,

we have 1− e - z1.

The last condition comes from the fact that if two projections are close
enough, then they are unitarily equivalent.

We now define an embedding

ϕ :
⊕
i

M|Ti| ⊗ fiAfi −→ Aoα,u G

by

(4.5) ϕ(e
(i)
g,h ⊗ a) = ψk(e

(i)
g,gi)αgi(a)ψk(e

(i)
gi,h

),
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and extend linearly. Let D = ϕ(⊕iM|Ti| ⊗ fiAfi) be the image of ϕ.

Let T̃i = ∩g∈KgTi
∩
Ti and

(4.6) p = ϕ

( ∑
g∈T̃i
1≤i≤n

(e(i)g,g ⊗ fi)

)
=
∑
g∈T̃i
1≤i≤n

e(i)g .

We now verify the conditions required in this lemma. Conditions (1)
and (2) follow from the definition.

For condition (3), we have the following estimation:

ϕ(e
(i)
g,h ⊗ a) = 2δ∥a∥λgfiλ

∗
giαgi(a)λgifλ

∗
h

= λgfiafiλ
∗
h = λgaλ

∗
h.

Hence, ∥ϕ(e(i)g,h ⊗ a) − λgaλ
∗
h∥ ≤ 2δ∥a∥ ≤ ε∥a∥. In addition, for

condition (3), we write

(4.7) 1− p =

(
1−

∑
g∈Ti,i

e(i)g

)
+

∑
g∈Ti\T̃i,i

e(i)g .

For g ∈ Ti, we have ∥e(i)g −αg(fi)∥ < δ < 1, which implies that the two
projections are unitarily equivalent in A. Hence, for any α-invariant

trace τ and any g, h ∈ Ti, we have τ(e
(i)
g ) = τ(αg(fi)) = τ(fi) = τ(e

(i)
h ).

Therefore,

(4.8) τ

( ∑
g∈Ti\T̃i,i

e(i)g

)
= ε0τ

( ∑
g∈Ti,i

e(i)g

)
≤ ε0 < τ(z0).

For condition (4), let

b =
∑
h∈K

bhλh ∈ F.
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We have:

pb =
∑
g∈T̃i
1≤i≤n
h∈K

e(i)g bhλh = δ|K|(
∑

i |T̃i|)L

∑
g∈T̃i
1≤i≤n
h∈K

λgfiλ
∗
gbhλh

=
∑
g∈T̃i
1≤i≤n
h∈K

λgfiλg−1u(g, g−1)bhλ
∗
g−1u(g−1, h)u(g−1h, hg−1)λ∗h−1g

= δ1

∑
g∈T̃i
1≤i≤n
h∈K

λgfiαg−1(u(g, g−1)bh)u(g
−1, h)u(g−1h, hg−1)fiλ

∗
h−1g

= δ2ϕ

(∑
g,i,h

eg,h−1g ⊗ fiαg−1(u(g, g−1)bh)u(g
−1, h)u(g−1h, hg−1)fi

)
,

where

δ1 = 4δ|K|
(∑

i

|T̃i|
)

and δ2 = 2δ|K|
(∑

i

|T̃i|
)
L.

This yields pb ⊂ε D. The proof that bp ⊂ε D is similar.

By [23, Proposition 2.4] (although stated for real rank 0 C∗- algebra,
all that is needed is for V(A) to be almost divisible, and the same proof
works for cocyclic actions), we have∑

g∈Ti\T̃i,i

e(i)g - z0 in Aoα G.

Hence,

�(4.9) 1− p =

(
1−

∑
g∈Ti,i

e(i)g

)
+

∑
g∈Ti\T̃i,i

e(i)g - z1 ⊕ z0 - z.

In the next theorem, we assume that A has sufficiently many projec-
tions. Any real rank 0 C∗-algebra will satisfy the requirement stated
in the theorem.

Theorem 4.2. Let A be a unital, simple, separable C∗-algebra with
the property that, for any positive element x ∈M∞(A) and any ε > 0,
there exists a projection p ∈ M∞(A) such that (x − ε)+ - p - x.
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Suppose that V(A) has strict comparison and is almost divisible. Let
(α, u) : G y A be an action with the tracial Rokhlin property. Then,
V(Aoα,u G) has strict comparison.

Proof. Let r and s be projections such that τ(p) < τ(q) for any τ ∈
T(A). Let

(4.10) ε = min
τ∈T(A)

{τ(r)− τ(s)} > 0.

Let δ = ε/3. By Lemma 4.1, there exist a finite subset K of G and
(K, δ)-invariant subsets T1, T2, . . . , Tn of G, projections f1, . . . , fn ∈ A,
and an embedding

ϕ :
⊕
i

M|Ti| ⊗ fiAfi −→ Aoα G,

whose image is called D such that

(1) there is a gi ∈ Ti for each i such that ϕ(e
(i)
gi,gi ⊗ a) = αgi(a) for

any a ∈ fiAfi.
(2) There is a projection p ∈ D such that

(4.11) pr, ps ⊂δ D and rp, sp ⊂δ D.

(3) Using the same p as in (2) τ(1− p) < ε/3 for any τ ∈ T(A).

Let x ∈ D be a positive element such that ∥x − prp∥ < δ. Since D
is isomorphic to the finite direct sum of matrix algebras over A, there
is a projection r̃ ∈ D such that (x − 2δ)+ - r̃ - (x − δ)+ in D. We
estimate that r̃ - (x − δ)+ - prp - r. Let r0 = r̃ ⊕ (1 − p). By [26,
Lemma 1.8], we have

r ≈ (r − δ)+ - (prp− δ)+ ⊕ (1− p)(4.12)

- (x− 2δ)+ ⊕ (1− p) - r0.

For any τ ∈ T(Aoα,u G), we have τ(r) > τ(r0)− ε/3. Similarly, there
is a projection s0 ∈ D such that s0 - s and τ(s0) > τ(s)− ε/3 for any
τ ∈ T(Aoα,u G). Let

d =
⊕
i

di, e =
⊕
i

ei

be projections in ⊕iM|Ti| ⊗ fiAfi such that r̃ = ϕ(d) and s0 = ϕ(e).

Each M|Ti|⊗fiAfi is simple; hence, di - diag{e(i)gi,gi ⊗fi, . . . e
(i)
gi,gi ⊗fi}
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in Mki(M|Ti| ⊗ fiAfi) for some ki ∈ N. Let
(4.13)

f = diag{e(1)g1,g1 ⊗ f1, . . . e
(1)
g1,g1 ⊗ f1, . . . , e

(n)
gn,gn ⊗ fn, . . . e

(n)
gn,gn ⊗ fn}

Let
k =

∑
i

ki|Ti|.

Define
ι :
⊕
i

M|Ti| ⊗ fiAfi −→Mk(A)

by

(4.14) (a1, a2, . . . , an) 7−→ diag{a1, a2, . . . , an, 0, 0, . . .}.

Then, we have ι(d) - f in fMk(A)f . Let d̃ ∈ fMk(A)f be a projection

such that ι(d) ≈ d̃. Since ϕ(e
(i)
gi,gi ⊗ a) = αgi(a) for any a ∈ fiAfi, we

can see that, for any element a ∈ ⊕iM|Ti| ⊗ fiAfi, we have ϕ(a) ≈ ι(a)

in M∞(Aoα,u G). Let r1 = d̃⊕ (1− p) ∈Mk+1(A). We have

(4.15) r1 ≈ ι(d)⊕ (1− p) ≈ ϕ(d)⊕ (1− p) = r0.

Similarly, there is a projection s1 ∈Ml(A) such that s1 ≈ s0. Let τ be
any α-invariant trace on A, which derives from a trace ω on Aoα,u G
by Corollary 3.6. We can compute

(4.16) ω(s1)−ω(r1) = ω(s0)−ω(r0) > ω(s)− ε/3− (ω(r)+ ε/3) > 0.

By [23, Proposition 2.4], we have r1 - s1. Hence,

�(4.17) r - r0 ≈ r1 - s1 ≈ s0 - s.

5. Real and stable rank of the crossed product. The next
lemma states that any single self-adjoint element of the crossed product
may be tracially approximated by subalgebras with real rank 0. It is
weaker than the tracial approximation formulated in [6, Definition 2.2];
however, it is good enough to deduce that the crossed product has real
rank 0, at least when we know the crossed product has strict comparison
for projections.

Lemma 5.1. Let A be a simple infinite-dimensional C∗-algebra with
real rank 0 which has strict comparison for projections. Let (α, u) :
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Gy A be a cocyclic action with the tracial Rokhlin property, where G
is a countable discrete amenable group. Then, for any self-adjoint
element a ∈ A oα,u G, any ε > 0 and any nonzero positive element
z ∈ Aoα,u G, there is a C∗-subalgebra D of Aoα,u G with real rank 0
and a projection p ∈ D such that :

(1) ∥pa− ap∥ < ε.
(2) pap ∈ εD.
(3) 1− p - z.

Proof. Let a, ε and z be given as in this lemma. Without loss
of generality, assume that ∥a∥ ≤ 1. Choose two nonzero orthogonal
projections z0 and z1 in A such that z0 + z1 - z. Let η = Min{τ(z0) |
τ ∈ T(A)}. In addition, let

(5.1) δ = Min

{
ε

4
,
1− η

2
,

ηε

4 + (3 + η)ε

}
.

By Lemma 4.1, there exist projections fi ∈ A, finite subsets T̃i ⊂
Ti ⊂ G with |T̃i|/|Ti| > 1− δ, an embedding

ϕ :
⊕
i

M|Ti| ⊗ fiAfi −→ Aoα G,

whose image is called D, and a projection q ∈ D such that the following
hold.

(1) Letting e
(i)
g = ϕ(e

(i)
g,g ⊗ fi), for g ∈ Ti, we have e

(i)
g ∈ A.

(2) q =
∑

g∈T̃i,i
e
(i)
g .

(3) There exist d1 and d2 in D such that ∥qa − d1∥ < δ and
∥aq − d2∥ < δ.

(4) 1− q - z1.

We can write

(5.2)
a = qa+ (1− q)aq + (1− q)a(1− q)

= 2δd1 + (1− q) d2 + (1− q)a(1− q).

Let d = d1 + (1 − q) d2 and d = (d+ d∗)/2. Then d is a self-adjoint
element in D such that ∥a− (d+ (1− q)a(1− q))∥ < 2δ. Let c = ⊕ici
be a self-adjoint element in ⊕iM|Ti| ⊗ fiAfi such that d = ϕ(c). Let N
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be an integer such that 2/ε ≤ N ≤ 2/ε+1. By our choice of δ, we have

(5.3) (2N + 1)|Ti \ T̃i| ≤ (4/ε+ 3)
δ

1− δ
|T̃i| ≤ η|T̃i|.

Choose a subset Si ⊂ T̃i such that |Si| = (2N + 1)|Ti \ T̃i|. Let

ri =
∑
g∈Si

e(i)g,g ⊗ fi,

qi =
∑
g∈T̃i

e(i)g,g ⊗ fi

and

ei =
∑
g∈Ti

e(i)g,g ⊗ fi.

In addition, let e = ϕ(⊕iei). Note that q = ϕ(⊕iqi). By [23, Lemma
4.4], there is a projection si in M|T̃i| ⊗ fiAfi such that

(5.4) ei − qi ≤ si - ri, ∥sici − cisi∥ <
1

N
≤ ε

2
.

Let s = ϕ(⊕isi) ≥ e− q. We have ∥sϕ(c)−ϕ(c)s∥ < ε/2. Let p = e− s
≤ q. For condition (1), we have:

∥pa− ap∥ = ∥p(a− ((1− q)a(1− q))− (a− (1− q)a(1− q))p∥

≤ 2δ + ∥pd− dp∥ = 2δ +
ε

2
≤ ε.

Since p ≤ q, we have pap = pqaqp ∈ εD, which proves condition (2).

Finally, for any τ ∈ T (Aoα G), we have

(5.5) τ(s) = τ(ϕ(⊕isi)) ≤ ητ(ϕ(⊕iqi)) ≤ τ(z0).

By [23, Proposition 2.4], this shows that s - z0. Hence,

�(5.6) 1− p = (1− e) + s ≤ (1− q)⊕ s - z1 ⊕ z0 - z.

Proposition 5.2. Let A be a unital, simple C∗-algebra with strict
comparison for projections. Suppose that, for any self-adjoint element
a ∈ A, any ε > 0 and any nonzero positive element z ∈ A, there is a
unital C∗-subalgebra D of A with real rank 0 and 1D = p such that :
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(1) ∥pa− ap∥ < ε,
(2) pap ∈ εD,
(3) 1− p - z.

Then, A has real rank 0.

Proof. Let a be a self-adjoint element in A and ε > 0 be given.
Without loss of generality, assume that ∥a∥ = 1. Assume that a is not
invertible; otherwise, there is nothing to prove. Let ε0 = ε/(26). Let

g : [−1, 1] −→ [0, 1]

be a continuous function such that

(5.7) supp g = [−ε0, ε0] and g(0) = 1.

Let

(5.8) ε1 = Min{ε0, 14 Min{τ(g(a)) | τ ∈ T(A)}} > 0.

Choose δ > 0 such that, whenever a, b are normal elements with norm
≤ 1 and ∥a−b∥ < δ, then ∥g(a)−g(b)∥ ≤ ε1, according to [15, Lemma
2.5.11]. We further require that δ ≤ ε1. Since A has strict comparison,
we can find a C∗-subalgebra D of A with real rank 0 and a projection
p ∈ D such that:

(1) ∥pa− ap∥ < δ/2.
(2) There is some self-adjoint element d ∈ D such that ∥pap−d∥ < δ.
(3) τ(1− p) < δ/2 for any τ ∈ T(A).

Replacing d by pdp, we may assume that d ∈ pDp. We may also
assume that ∥d∥ ≤ 1. Since pDp has real rank 0 for a corner of
real rank 0 C∗-algebra, there is a projection r ∈ g(d)Dg(d) such that
∥rg(d)r− g(d)∥ < δ. In the following, we shall show that 1− p - r ≤ p
and, for any projection s ≤ r, we have ∥sa∥ < ε, ∥as∥ < ε. The choice
of δ shows that

(5.9) g(a) = ε1g(pap+ (1− p)a(1− p)) = g(pap) + g((1− p)a(1− p))

and g(pap) = ε1g(d). Hence, for any τ ∈ T(A), we can compute:

τ(r) ≥ τ(rg(d)r) ≥ τ(g(d))− δ ≥ τ(g(pap))− ε1 − ε1

≥ τ(g(a))− τ(g((1− p)a(1− p)))− 3ε1

≥ τ(g(a))− τ(1− p)− 3ε1 > τ(1− p).
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Since A has strict comparison, this shows that 1− p - r.

Next, since r ∈ g(d)Dg(d), we have

(5.10) ∥rd∥ = lim
n→∞

∥rg(d)1/nd∥ ≤ ε0.

Hence, for any projection s ≤ r, ∥sd∥ = ∥srd∥ ≤ ε0. Similarly, ∥ds∥
≤ ε0. Now, combining the facts that ∥pa−pa∥ < δ/2 < ε0 and ∥pap−d∥
< ε0, we obtain

(5.11)
∥sa∥ = ∥s(pap) + spa(1− p) + s(1− p)a∥

≤ (∥sd∥+ ε0) + ε0 ≤ ε,

and similarly, ∥as∥ < ε. Now, since 1−p - r, let v be a partial isometry
such that vv∗ = 1 − p and v∗v = s ≤ r ≤ p. Using the decomposition
1 = (p− s)⊕ s⊕ (1− p), we may write a in matrix form:

a =

(p− s)a(p− s) (p− s)as (p− s)a(1− p)
sa(p− s) sas sa(1− p)

(1− p)a(p− s) (1− p)as (1− p)a(1− p)

 .

Further, (p− s)a(p− s) = ε0(p− s) d(p− s) ∈ (p− s)D(p− s). Since
(p−s)D(p−s) has real rank 0, there is an invertible self-adjoint element
d1 ∈ (p− s)D(p− s) such that ∥(p− s) d(p− s)− d1∥ < ε0. Hence,

a = 23ε0

(p− s) d(p− s) 0 0
0 0 0
0 0 (1− p)a(1− p)


= 2ε0

d1 0 0
0 0 ε0v

∗

0 ε0v (1− p)a(1− p)

 .

The last matrix corresponds to an invertible self-adjoint element a0
in A. By our choice of ε0, we have ∥a− a0∥ < ε. �

Combining Theorem 4.2, Lemma 5.1 and Proposition 5.2, we get the
following.

Theorem 5.3. Let A be a simple unital C∗-algebra with real rank 0
and containing strict comparison for projections. Let (α, u) : Gy A be
a cocyclic action with the tracial Rokhlin property. Then, A oα G has
real rank 0.
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Now, let us turn to the case of stable rank 1. We first see that
[23, Lemma 5.2] may be generalized to actions of general amenable
groups since its proof depends only upon [23, Lemma 2.5, Lemma 2.6]
and some other lemmas unrelated to the crossed product. We could
use Lemma 4.1 to replace the first one, and [23, Lemma 2.6] could be
generalized to actions of amenable groups with the same proof. Hence,
we have the following.

Lemma 5.4. Let A be a simple C∗-algebra with real rank 0 and strict
comparison for projections. Let (α, u) : G y A be a cocyclic action
with the tracial Rokhlin property. Then, for any nonzero projections
p1, . . . , pn ∈ Aoα,uG and arbitrary elements a1, . . . , am ∈ Aoα,uG, any
ε > 0, there exist a unital subalgebra A0 ⊂ Aoα,uG, stably isomorphic
to A, a projection p ∈ A0 and subprojections r1, . . . , rn of p such that :

(1) pa ∈ εA0, ap ∈ εA0.
(2) pkrk = εrk for any k.
(3) 1− p - rk for any k.

Proposition 5.5. Let A be a unital, simple stably finite C∗-algebra
with property (SP). If, for any x ∈ A, any ε > 0 and any projection
p1, . . . , pn, there is a unital simple subalgebra D with stable rank 1 and
property (SP), a projection p ∈ D and subprojections r1, . . . , rn of p
such that :

(1) pxp ∈ εD,
(2) rkpk = εrk,
(3) 1− p - rk,

then, A has stable rank 1.

Proof. Let x be an arbitrary element of A, and let ε > 0 be given.
Without loss of generality, assume that ∥x∥ = 1. Since A is stably
finite, every one-sided invertible element is two-sided invertible; hence,
by [27, Theorem 3.3 (a)], we may assume that x is a two-sided zero
divisor. Since A has property (SP), we can find nonzero projections e
and f such that ex = xf = 0. Let ε0 = ε/11. We can then find a
unital simple subalgebra D with stable rank 1 and property (SP), a
projection p ∈ D and subprojections e0 and f0 of p such that

(5.12) e0e = ε0e0, f0f = ε0f0.
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Consider x0 = (1− e0)x(1− f0). Then,

(5.13) x0 = 2ε0(1− e0e)x(1− ff0) = x.

Since D is a simple C∗-algebra with property (SP), there is a nonzero
projection r ≤ e0 and r - f0. Since D has stable rank 1, there exists
some unitary u such that uru∗ ≤ f0. Hence, r(x0u) = (x0u)r = 0.

Next, we shall approximate x1 = x0u by an invertible element. To
this end, we find a unital subalgebra D1 of A with stable rank 1, a
projection p ∈ D1 and subprojection r1 of p, and an element d ∈ D1

such that

(5.14) px1p = ε0d, r1r = ε0r1 and 1− p - r1.

Choose a partial isometry v such that vv∗ = 1−p and v∗v = s ≤ r1 ≤ p.
According to the decomposition 1 = (1−p)⊕(p−s)⊕s, we can write x1
in matrix form:(1− p)x1(1− p) (1− p)x1(p− s) (1− p)x1s

(p− s)x1(1− p) (p− s)x1(p− s) (p− s)x1s
sx1(1− p) sx1(p− s) sx1s

 .

Since (p− s)D1(p− s) has stable rank 1, there is an invertible element
d1 ∈ (p− s)D1(p− s) such that

(5.15) d1 = ε0(p− s) d(p− s) = ε0(p− s)x1(p− s).

We also have sx1 = sr1x1 = ε0sr1rx1 = 0, and similarly, x1s = ε00.
Therefore,

(5.16) x1 = 7ε0

a b 0
c d1 0
0 0 0

 = 2ε0

 a b ε0
c d1 0
ε0 0 0

 .

We call the last matrix x2, which is invertible. Then

(5.17) ∥x− x2u
∗∥ ≤ ∥x− x0∥+ ∥(x0u− x2)u

∗∥ < 11ε0 < ε.

Hence, A has stable rank 1. �

Combining Lemma 5.4 and Proposition 5.5, we obtain:

Theorem 5.6. Let A be a simple unital C∗-algebra with real rank 0,
stable rank 1 and with strict comparison for projections. Let (α, u) : Gy



TRACIAL ROKHLIN PROPERTY FOR C∗-ALGEBRAS 1343

A be a cocyclic action with the tracial Rokhlin property. Then, Aoα,uG
has stable rank 1.
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