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CHERN-DIRAC BUNDLES ON
NON-KÄHLER HERMITIAN MANIFOLDS

FRANCESCO PEDICONI

ABSTRACT. We introduce the notions of Chern-Dirac
bundles and Chern-Dirac operators on Hermitian manifolds.
They are analogues of classical Dirac bundles and Dirac
operators, with the Levi-Civita connection replaced by the
Chern connection. We then show that the tensor product
of the canonical and the anticanonical spinor bundles, called
the V-spinor bundle, is a bigraded Chern-Dirac bundle with
spaces of harmonic sections isomorphic to the full Dolbeault
cohomology class. A similar construction establishes isomor-
phisms among other types of harmonic sections of the V-
spinor bundle and twisted cohomology.

1. Introduction. A Dirac bundle over a Riemannian manifold
(M, g) is a real or complex vector bundle

π : E −→M

endowed with a Riemannian or Hermitian metric h, a metric connection
D and a Clifford multiplication

c : CℓM −→ End(E),

i.e., a structure of the left CℓM -module with respect to which the multi-
plication by tangent vectors is fiber wise, skew-adjoint and covariantly
constant. For every such bundle, there is a distinguished operator,
called the Dirac operator, which plays a central role in many areas of
differential geometry and theoretical physics (see, e.g., [5, 8] for an in-
troduction to this topic). The most notable examples of Dirac bundles

are spinor bundles on the so-called spin or spinC manifolds.

One of the most important properties of Dirac operators is the fact
that they are first order, elliptic and formally self-adjoint operators,
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whose squares have the same principal symbol of the rough Lapla-
cian. On the basis of such properties, one may expect the existence
of Hodge-type theorems for Dirac operators, relating the null spaces of
these operators with appropriate cohomology groups of the manifold.
This expectation is, however, contradicted by Hitchin’s results in [7],
where it was shown that the dimensions of the null spaces of Dirac
operators cannot be expressed in purely topological terms. However,
in the special case of Kähler geometry, there exist such strong inter-
actions between Clifford multiplications and complex structures that
give rise to some notable isomorphisms between the null space of the
Dirac operators and certain cohomology groups of the manifold. More
precisely, given a compact Kähler 2n-manifold (M, g, J), the following
facts hold.

(i)M admits a canonical spinC spinor bundle which is isomorphic to

Λ0,·(T ∗M) and whose Dirac operator coincides with
√
2(∂+∂

∗
). From

this, one obtains that the space of harmonic spinors is isomorphic to
the Dolbeault cohomology class H0,·

∂̄
(M) (see, e.g., [5, subsection 3.4],

or [8, Appendix D]).

(ii) The complex Clifford bundle CℓCM := CℓM⊗RC of M always
carries a very rich algebraic structure, which has been systematically
studied by Michelsohn [10]. There, the author determined a natural

bigradation on CℓCM and, using Dirac operators, constructed a natural
elliptic cochain complex which defines the so-called Clifford cohomology
of the Kähler manifold.

The aim of this paper is to determine analogues of (i) and (ii)
in the more general setting of Hermitian geometry. This is indeed
achieved by making use of the Chern connection, instead of the Levi-
Civita connection. Following this idea, we first define the Chern-
Dirac bundles on an Hermitian (possibly non-Kähler) manifold and the
associated Chern-Dirac operators. They carry all the nice properties of
the usual Dirac bundle and Dirac operators, respectively, and they
are equal to them in the case where M is Kähler. Then, on any
Hermitian manifold (M, g, J), we explicitly construct a distinguished

Chern-Dirac bundle VM , naturally isomorphic to CℓCM , called the
V-spinor bundle. Further, in the same spirit of [10], we show that
VM is naturally bigraded and that the kernels of the Chern-Dirac
operators on V-spinors are naturally isomorphic to the De Rham and
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Dolbeault cohomology classes of M . Finally, using these new tools,
we obtain a spinorial characterization for the Bott-Chern, Aeppli and
twisted cohomologies. We also determine explicit expressions for the
squares of Chern-Dirac operators, which might be used to determine
useful Bochner-type theorems on non-Kähler Hermitian manifolds with
appropriate conditions on curvature and torsion. Although we proceed
in a similar way, our construction is very different from that given in
[10]. For the sake of clarity, we will often point out differences and
similarities with Michelsohn’s framework.

The paper is structured as follows. After the first two sections, where
some basic properties of Hermitian manifolds, spin groups and spinC

structures are recalled, in Section 4, we define Chern-Dirac bundles and
Chern-Dirac operators and prove their main properties. In Section 5,
we introduce the Chern-Dirac bundle of V-spinors and prove the main
results of this paper. In Section 6, applications of V-spinors in twisted
cohomology are given.

2. Preliminaries and notation. In this section, we briefly summa-
rize some basic notation and properties of spinC structures and spinors
over Hermitian manifolds. We refer to [5, subsection 3.4], for a more
detailed treatment of these tools. However, we stress the fact that we
are using the definition of Clifford algebra of [8], based on formula
(2.5). The sign convention used in [5] is opposite to ours, and this
causes differences in some formulas of this paper from those found in
that book.

2.1. Hermitian manifolds and Chern connections. Let (M, g, J)
be a 2n-dimensional Hermitian manifold, with the fundamental form
ω := g(J ·, ·). The J-holomorphic and J-antiholomorphic subbundles of
T CM are denoted by T 10M and T 01M , respectively. Analogously, the
corresponding dual subbundles of T ∗CM , determined by the J-action
on covectors (Jλ)(·) := −λ(J ·), are denoted by T ∗10M and T ∗01M ,
respectively. The bundle of (p, q)-forms is indicated by Λ p,q(T ∗M)
and the space of its global sections by Ω p,q(M). The decomposition
d = ∂ + ∂ is the usual expression of the exterior differential d as sum
of the classical ∂ and ∂ operators.

We denote by
π : SOg(M) −→M

the SO2n-bundle of oriented g-orthonormal frames, and by
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Ug,J(M) ⊂ SOg(M)

the Un-subbundle of (g, J)-unitary frames, that is, of the frames (ej)
satisfying the conditions g(ej , eℓ) = δjℓ and Je2j−1 = e2j . Further, for
each unitary frame (ej) ⊂ TxM , x ∈M , we denote by

(2.1)

(
ϵs :=

e2s−1 − ie2s√
2

, ϵs :=
e2s−1 + ie2s√

2

)
1≤s≤n

the complex frame given by the normalized holomorphic and anti-
holomorphic parts of the vectors es. We call it the associated normalized
complex frame.

Note that, given a unitary frame (ej) for TxM , the Kähler form
ωx = ωg,J |x is equal to

ωx = e1∧ e2 + · · ·+ e2n−1∧ e2n = i
(
ϵ1∧ ϵ1 + · · ·+ ϵn∧ ϵn

)
.

The Levi-Civita connection of (M, g) is the torsion-free so2n-valued
1-form ωLC on SOg(M), and its corresponding covariant derivative on
vector fields of M is denoted by DLC . Similarly, the Chern connection
of (M, g, J) is the un-valued connection form ωC on Ug,J(M), whose
associated covariant derivative DC on vector fields of M possesses
torsion satisfying T (J ·, ·) = T (·, J ·). The covariant derivatives of the
Levi-Civita and Chern connections are related by

(2.2) DC
XY = DLC

XY + S(X,Y ),

where S is the uniquely determined contorsion tensor of the Chern
connection. It is well known that the contorsion and the torsion of the
Chern connection are given by

(2.3)
S(X,Y, Z) = −1

2
dω(JX, Y, Z),

T (X,Y, Z) = −1

2
(dω(JX, Y, Z) + dω(X, JY, Z)),

and they are related by

(2.4)
T (X,Y ) = S(X,Y )− S(Y,X),

2S(X,Y, Z) = T (X,Y, Z)− T (Y, Z,X) + T (Z,X, Y ),

where S(X,Y, Z) := g(S(X,Y ), Z) and T (X,Y, Z) := g(T (X,Y ), Z).
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Finally, we recall that the Lee form of (M, g, J) is the 1-form

ϑ(X) := Tr(T (X, · )) =
∑
j

T (X, ej , ej),

where (ej) is an arbitrary choice of a (local) unitary frame field on M .
It can easily be verified that the fundamental form ω and the Lee form
ϑ are related by

ϑ = −Jd∗ω,

where d∗ is the adjoint of d with respect to g.

2.2. Complex spin representations and SpinCn. We recall that the
Clifford algebra Cℓn is the real associative algebra with unit generated
by n elements (ej) satisfying

(2.5) ej · ek + ek · ej = −2δjk, 1 ≤ j, k ≤ n.

As a vector space, Cℓn can be identified with Λ·(Rn) in such a way that

(2.6) v · w = v ∧ w − vyw for every v ∈ Rn, w ∈ Λ·(Rn).

The spin group is the subset

Spinn := {v1 · . . . · v2r : vj ∈ Rn, ∥vj∥ = 1},

equipped with the multiplication of Cℓn. If n ≥ 3, it is simply connec-
ted, and it is the universal covering of SOn by means of the map

τn : Spinn −→ SOn,

τn(v1 · . . . · v2r) := reflv1 ◦ . . . ◦ reflv2r ,

where reflv is the reflection of Rn with respect to v⊥. We denote by Sn
the space of complex n-spinors, by

· : Cℓn ⊗ Sn −→ Sn

the standard Clifford multiplication, and by

κn : Spinn −→ SU(Sn)

the spin representation of Spinn, where we consider Sn endowed with
a positive definite Hermitian scalar product which is invariant under
Clifford multiplication by vectors v ∈ Rn ⊂ Cℓn.
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Now, let CℓCn = Cℓn ⊗RC be the complex Clifford algebra. In the

even-dimensional case, CℓC2m is generated by complex vectors (ϵj , ϵj),
related with the generators (ej) by the formula (2.1), which verify

(2.7) ϵr · ϵs + ϵs · ϵr = ϵr · ϵs + ϵs · ϵr = 0, ϵr · ϵs + ϵs · ϵr = −2δrs.

Finally, we recall that the SpinC-group is the Lie group SpinCn
:= Spinn×Z2S

1. It is a 2-fold covering of SOn×S1 by means of the
map

(τn, ϱn) : Spin
C
n −→ SOn ×S1,

where

τn : SpinCn −→ SOn, τn([g, z]) := τn(g),

ϱn : SpinCn −→ S1, ϱn([g, z]) := z2,

and admits a representation on Sn, again denoted by κn, defined by

κn : SpinCn −→ SU(Sn), κn([g, z]) := zκn(g).(2.8)

2.3. spinC structures on Hermitian manifolds. Let (M, g) be an
oriented Riemannian manifold with oriented orthonormal frame bundle

π : SOg(M) −→M.

A spinC structure on (M, g) is a SpinCn-bundle π̂ : P →M together with
an equivariant bundle morphism ϖ : P→ SOg(M) such that π̂ = π ◦ϖ.

Given a spinC structure P, the corresponding spinor bundle is the
associated bundle SM := P×κn Sn. The space of its global sections is
indicated with S(M).

Most, but not all, orientable Riemannian manifolds admit a spinC

structure, see [8, page 393]. A crucial property of the subclass of

Hermitian manifolds is that all of them have two very natural spinC

structures. In fact, the homomorphisms

(2.9) f± : Un −→ SO2n ×S1, f±(A) := (ıUn(A), det(A)
±1)

where ıUn : Un ↩→ SO2n is the canonical immersion of Un into SO2n and

can be uniquely lifted to two group homomorphisms F± : Un → SpinC2n
in such a way that the diagram
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Spin C
2n

(τ2n,ϱ2n)

��
Un

f±
//

F±

66nnnnnnnnnnnnnn
SO2n ×S1

commutes.

Definition 2.1. Let (M, g, J) be an Hermitian 2n-manifold. Its

canonical spinC structure is the bundle

P↑(M) := Ug,J (M)×F+ SpinC2n .

Similarly, its anticanonical spinC structure is

P↓(M) := Ug,J(M)×F− SpinC2n .

If SM is a spinor bundle on (M, g, J) associated with a spinC

structure, it is known that the Kähler form ω = ωg,J acts on SM
by Clifford multiplication as a bundle endomorphism. Its eigenvalues
are the imaginary numbers (2k−n)i, 0 ≤ k ≤ n, and, in each fibre, the
corresponding eigenspaces

SkxM := {ψ ∈ SxM : ωx · ψ = (2k − n)i ψ},
0 ≤ k ≤ n, x ∈M,

have dimension
(
n
k

)
. It may also be directly verified that

(2.10)
S0xM = {ψ ∈ SxM : v · ψ = 0 for every v ∈ T 01

x M},
SnxM = {ψ ∈ SxM : v · ψ = 0 for every v ∈ T 10

x M}.

Furthermore, it is known that there exist Hermitian metrics on SM in-
variant under Clifford multiplication by tangent vectors. With respect
to one such metric, for every 0 ≤ k ≤ n, the maps
(2.11)

αk : Λ0,k(T ∗M)⊗ S0M −→ SkM, αk(µ⊗ ψ) :=
1

2k/2
µ · ψ,

βk : Λk,0(T ∗M)⊗ SnM −→ Sn−kM, βk(ν ⊗ ψ) :=
1

2k/2
ν · ψ
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are C-linear isometries, and their sums give rise to global isometries

α : Λ0,·(T ∗M)⊗ S0M
≃−→ SM

β : Λ·,0(T ∗M)⊗ SnM
≃−→ SM.

3. Chern-Dirac bundles.

3.1. Chern-Dirac bundles and partial Chern-Dirac operators.
Given an Hermitian 2n-manifold (M, g, J), we can always consider the

complex Clifford bundle over M , defined by CℓCM := Ug,J(M) ×Un

CℓC2n, where the group Un acts on CℓC2n in the standard way. It is
the complex analogue of the (real) Clifford bundles considered in [8,
subsection I.3]. In full analogy with the notion of the (real) Dirac
bundle, see e.g., [8, subsection I.5]), it is convenient to introduce the
following

Definition 3.1. A Chern-Dirac bundle over (M, g, J) is a complex
vector bundle π : E → M endowed with an Hermitian metric h, a
covariant derivative D which preserves the metric and a structure of
complex left CℓCM -modules

c : CℓCM −→ gl(E),

satisfying the conditions:

(i) for every v ∈ T CM , σ1, σ2 ∈ E,

(3.1) h(c(v)σ1, σ2) + h(σ1, c(v)σ2) = 0;

(ii) for every X ∈ X(M), for sections w of CℓCM and σ of E,

(3.2) DX(c(w)σ) = c
(
DC

Xw
)
σ + c(w)DXσ.

Note that, if M is Kähler, then DC = DLC and, consequently, any
Chern-Dirac bundle over M is a Dirac bundle in the usual sense.

The main results of this paper are based upon the following differ-
ential operators on Chern-Dirac bundles, which are natural analogues
of Dirac operators.

Definition 3.2. Let E be a Chern-Dirac bundle over (M, g, J). The

partial Chern-Dirac operators on section E are the maps /∂
′
and /∂

′′
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that transform any section σ of E into the sections defined for every
x ∈M by

(3.3)

/∂
′
σ|x :=

n∑
j=1

c(ϵj)Dϵjσ − 1

2

∑
r<s

c(ϵr · ϵs · Trs)σx,

/∂
′′
σ|x :=

n∑
j=1

c(ϵj)Dϵ̄jσ − 1

2

∑
r<s

c(ϵr · ϵs · Tr̄s̄)σx,

where (ϵj , ϵj) is the normalized complex basis (2.1) associated with a
unitary basis (ej) ⊂ TxM , T is the torsion of DC and Trs := T (ϵr, ϵs),
Tr̄s̄ := T (ϵr, ϵs). The sum of these operators gives what we call the
Chern-Dirac operator

(3.4) /D := /∂
′
+ /∂

′′
.

It can be directly verified that the formulas (3.3) define two global
operators on the entire manifold, i.e., they are coordinate invariant.
Indeed, if (e′j) and (ek) are unitary frames at x ∈ M with e′j = ekA

k
j ,

then the associated normalized complex frames are related by

(3.5) ϵ′j = ϵkα
k
j , ϵ′j = ϵkα

k
j

with αk
j := A2k−1

2j−1 − iA2k−1
2j . Since the complex coefficients αk

j verify∑
j α

k
j α

m
j = δkm, then

n∑
j=1

c(ϵ′j)Dϵ′j
σ − 1

2

∑
r<s

c(ϵ′r · ϵ′s · T (ϵ′r, ϵ′s))σx

=
n∑

j=1

αk
jα

h
j c(ϵk)Dϵhσ

− 1

2

∑
r<s

αℓ
r α

p
r α

m
s α

q
s c(ϵℓ · ϵm · T (ϵp, ϵq))σx

=
n∑

k=1

c(ϵk)Dϵkσ − 1

2

∑
ℓ<m

c(ϵℓ · ϵm · T (ϵℓ, ϵm))σx,

and analogously for /∂
′′
.

It follows from the definition that the Chern-Dirac operator /D is a
first-order elliptic operator. Moreover, it turns out that the operators
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(3.3) are formal adjoints of one another and, consequently, /D is formal
self-adjoint. In fact:

Proposition 3.3. Let E be a Chern-Dirac bundle over M and σ1, σ2
two sections of E. Then:

(3.6) h(/∂
′
σ1, σ2)− h(σ1, /∂

′′
σ2) = Div(V σ1,σ2),

where V σ1,σ2 is the unique complex vector field which satisfies

g(V σ1,σ2 , X) = −h(σ1, c(X10)σ2) for every X ∈ X(M).

Consequently, if σ1 and σ2 are compactly supported, then∫
M

h(/∂
′
σ1, σ2) d volg =

∫
M

h(σ1, /∂
′′
σ2) d volg .

Proof. Let (ej) be a unitary frame field defined on some open subset
U ⊂ M and ϵj , ϵj the associated normalized complex vector fields
defined in (2.1). It may be directly verified that the vector field V σ1,σ2

takes values in T 01M . By the properties of Levi-Civita connection, this
implies that
(3.7)
Div(V σ1,σ2)

=
∑
j

(
g
(
DLC

ϵj V σ1,σ2 , ϵj
)
+ g

(
DLC

ϵ̄j V σ1,σ2 , ϵj
))

=
∑
j

(
− g

(
V σ1,σ2 , DLC

ϵj ϵj
)
+ ϵj

(
g(V σ1,σ2 , ϵj)

)
− g(V σ1,σ2 , DLC

ϵ̄j ϵj
))

=
∑
j

(
− ϵj

(
h(σ1, c(ϵj)σ2)

)
−Div(ϵj)h(σ1, c(ϵj)σ2)

)
.

On the other hand, we also have that

(3.8)
∑
j

DC
ϵ̄j ϵj =

∑
j

(
−Div(ϵj) + ϑ(ϵj)

)
ϵj .

Using (3.7) and (3.8), we obtain that

h(/∂
′
σ1, σ2) =

∑
j

h(c(ϵj)Dϵjσ1, σ2)−
1

2

∑
r<s

h(c(ϵr)c(ϵs)c(Trs)σ1, σ2)

=
∑
j

−h(Dϵjσ1, c(ϵj)σ2) +
1

2

∑
r<s

h(σ1,c(Tr̄s̄)c(ϵs)c(ϵr)σ1,σ2)
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=
∑
j

(−ϵj(h(σ1, c(ϵj)σ2)) + h(σ1, Dϵ̄j (c(ϵj)σ2)))

+
1

2

∑
r<s

h(σ1, c(Tr̄s̄)c(ϵs)c(ϵr)σ1, σ2)

=
∑
j

(
− ϵj(h(σ1, c(ϵj)σ2)) + h

(
σ1, c

(
DC

ϵ̄j ϵj
)
σ2

)
+ h(σ1, c(ϵj)Dϵ̄jσ2)

)
+

1

2

∑
r<s

h(σ1, c(Tr̄s̄)c(ϵs)c(ϵr)σ1, σ2)

(3.8)
=

∑
j

(−ϵj(h(σ1, c(ϵj)σ2))−Div(ϵj)h(σ1, c(ϵj)σ2)

+ ϑ(ϵj)h(σ1, c(ϵj)σ2)

+ h(σ1, c(ϵj)Dϵ̄jσ2)) +
1

2

∑
r<s

h(σ1, c(Tr̄s̄)c(ϵs)c(ϵr)σ1, σ2)

(3.7)
= Div(V σ1,σ2) +

∑
j

h(σ1, c(ϵj)Dϵ̄jσ2)

+
∑
j

ϑ(ϵj)h(σ1, c(ϵj)σ2)

+
1

2

∑
r<s

h(σ1, c(Tr̄s̄)c(ϵs)c(ϵr)σ1, σ2)

= Div(V σ1,σ2) +
∑
j

h(σ1, c(ϵj)Dϵ̄jσ2)

− 1

2

∑
r<s

h(σ1, c(ϵr)c(ϵs)c(Tr̄s̄)σ2)

= Div(V σ1,σ2) + h(σ1, /∂
′′
σ2),

so that (3.6) holds. The last assertion follows from Stokes’ theorem. �

3.2. Bochner-type formulas for Chern-Dirac operators. Let E
be a Chern-Dirac bundle over an Hermitian 2n-manifold (M, g, J). We

now determine Bochner-type formulas for the squares of /∂
′
, /∂

′′
and of

the Chern-Dirac operator /D. For this, we must introduce a few opera-
tors on sections of E, determined by the curvature and the torsion of
Chern connection.
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First, we consider the action of the curvature R of D on sections σ
of E

RXY σ := DXDY σ −DYDXσ −D[X,Y ]σ

for every X,Y ∈ X(M).

Second, for each section σ, we define
(3.9)

R2,0σ|x :=
∑
j<k

c(ϵj ·ϵk)Rϵjϵkσ, R0,2σ|x :=
∑
j<k

c(ϵj ·ϵk)Rϵjϵkσ,

R1,1σ|x :=
1

2

∑
j,k

(
c(ϵj ·ϵk)Rϵjϵkσ + c(ϵj ·ϵk)Rϵjϵkσ

)
,

Rσ := R2,0σ +R1,1σ +R0,2σ,

(3.10)

T1σ|x :=
∑
j<k
r<s

c
(
ϵj · ϵk · ϵr · ϵs · Tj̄k̄ · Trs + ϵj · ϵk · ϵr · ϵs · Tjk · Tr̄s̄

)
σ

T2σ|x :=
∑
j ̸=k

c
(
ϵj · (DC

ϵkT )j̄k̄ + ϵj · (DC
ϵ̄kT )jk

)
σ,

where (ϵj , ϵj) is the usual normalized complex frame (2.1) determined
by a unitary frame (ej) for TxM . Third, we define as Q the first order
differential operator on sections of E by

(3.11) Qσ|x :=
∑
j ̸=k

(c(ϵk · Tj̄k̄)Dϵjσ + c(ϵk · Tjk)Dϵ̄jσ).

A first Bochner-type formula is the following.

Theorem 3.4. On each Chern-Dirac bundle E over M , we have

(3.12) (/∂
′
)2 = R2,0, (/∂

′′
)2 = R0,2.

Proof. Consider the decompositions of partial Chern-Dirac operators
into sums of differential operators of order 1 and 0, namely,

(3.13) /∂
′
= A′ − 1

2
B′, /∂

′′
= A′′ − 1

2
B′′,
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where

A′ :=
∑
k

c(ϵk)Dϵk , B′ :=
∑
r<s

c(ϵr · ϵs · Trs),

A′′ :=
∑
j

c(ϵj)Dϵ̄j , B′′ :=
∑
r<s

c(ϵr · ϵs · Tr̄s̄).

Using (2.7) and standard properties of metric connections, with some
tedious but straightforward computations, we obtain that, for each
section σ of E:

(i) (A′)2σ = −
∑
j<k

c(ϵj · ϵk)DTjk
σ +R2,0σ;

(ii)

A′B′σ = −
∑
j<k
m

c(ϵj · ϵk · ϵm · T ([ϵj , ϵk], ϵm))σ

−
∑
j<k
m

c(ϵj · ϵk · ϵm · T (Tjk, ϵm))σ

+
∑
j<k
m

c(ϵj · ϵk · ϵm ·DC
ϵmTjk)σ

+
∑
j<k
m

c(ϵj · ϵk · ϵm · Tjk)Dϵmσ;

(iii) B′A′σ =
∑
j<k
m

c(ϵj · ϵk · Tjk · ϵm)Dϵmσ ;

(iv) (B′)2σ = −2
∑
j<k
m

c(ϵj · ϵk · ϵm · T (Tjk, ϵm))σ .

With similar computations, we may also obtain:

(3.14)
∑
j<k
m

c(ϵj · ϵk · ϵm · Tjk)Dϵmσ +
∑
j<k
m

c(ϵj · ϵk · Tjk · ϵm)Dϵmσ

= −2
∑
j<k

c(ϵj · ϵk)DTjk
σ.
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From (i)–(iv) and (3.14), it easily follows that

(/∂
′
)2σ=(A′)2σ − 1

2
(A′B′ +B′A′)σ +

1

4
(B′)2σ

=R2,0σ−
∑
j<k

c(ϵj · ϵk)DTjk
σ+

1

2

∑
j<k
m

c(ϵj · ϵk · ϵm · T ([ϵj ,ϵk], ϵm))σ

+
1

2

∑
j<k
m

c(ϵj · ϵk · ϵm · T (Tjk, ϵm))σ− 1

2

∑
j<k
m

c(ϵj · ϵk · ϵm ·DC
ϵmTjk)σ

− 1

2

∑
j<k
m

c(ϵj · ϵk · ϵm · Tjk)Dϵmσ−
1

2

∑
j<k
m

c(ϵj · ϵk · Tjk · ϵm)Dϵmσ

− 1

2

∑
j<k
m

c(ϵj · ϵk · ϵm · T (Tjk, ϵm))σ

=R2,0σ +
1

2

∑
j<k
m

c(ϵj · ϵk · ϵm · (T ([ϵj , ϵk], ϵm)−DC
ϵmTjk))σ

=R2,0σ+
1

2

∑
j<k<m

c
(
ϵj · ϵk · ϵm ·

(
T ([ϵj , ϵk], ϵm) + T ([ϵk, ϵm], ϵj)

+ T ([ϵm, ϵj ], ϵk)−DC
ϵmTjk −DC

ϵjTkm −DC
ϵkTmj

))
σ.

Here, the second term vanishes due to the first Bianchi identity. Indeed,

DC
ϵjTkm +DC

ϵmTjk +DC
ϵkTmj =

(
DC

ϵjT
)
(ϵk, ϵm) +

(
DC

ϵkT
)
(ϵm, ϵj)

+
(
DC

ϵmT
)
(ϵj , ϵk) + T (DC

ϵj ϵk, ϵm) + T (ϵk, D
C
ϵj ϵm) + T (DC

ϵkϵm, ϵj)

+ T (ϵm, D
C
ϵkϵj) + T (DC

ϵmϵj , ϵk) + T (ϵj , D
C
ϵmϵk)

= −T (Tjk, ϵm)− T (Tkm, ϵj)− T (Tmj , ϵk) + T (DC
ϵj ϵk −DC

ϵkϵj , ϵm)

+ T (DC
ϵkϵm −DC

ϵmϵk, ϵj) + T (DC
ϵmϵj −DC

ϵj ϵm, ϵk)

= T ([ϵj , ϵk], ϵm) + T ([ϵk, ϵm], ϵj) + T ([ϵm, ϵj ], ϵk).

This proves that (/∂
′
)2 = R2,0. The identity (/∂

′′
)2 = R0,2 is similarly

proven. �

A formula for the square of the Chern-Dirac operator is given as
follows.
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Theorem 3.5. The Chern-Dirac operator of E verifies

(3.15) /D
2
= ∆+Q+R+

1

4
T1 −

1

2
T2,

where ∆ is the rough Laplacian of D defined locally by

∆σ := −
2n∑
j=1

(DejDejσ −DDC
ej

ejσ),

and Q, R, T1 and T2 are the operators defined in (3.9)–(3.11).

Proof. As in the previous proof, (ej) is a locally defined unitary
frame field and (ϵj , ϵj) the corresponding normalized complex frame
field. Consider the decompositions of /D into a sum of differential
operators of order 1 and 0, respectively, namely,

(3.16) /D = A− 1

2
B,

where

A :=
∑
k

c(ek)Dek ,

B :=
∑
r<s

c(er · es · Teres).

Then, with computations very similar to those of the previous proof,
we obtain

(i) A2σ = ∆σ +Rσ −
∑
j<k

c(ej · ek)DTejek
σ ;

(ii) (AB +BA)σ

= −
∑
j<k
m

c(ej · ek · em · T ([ej , ek], em))σ

−
∑
j<k
m

c(ej · ek · em · T (Tejek , em))σ

+
∑
j<k
m

c
(
em · ej · ek ·DC

emTejek
)
σ−2

∑
j<k

c(ej · ek)DTejek
σ

+
∑
r,s

c
(
es · T (DC

erer, es)
)
σ − 2

∑
r,s

c(es · Teres)Derσ;



1270 FRANCESCO PEDICONI

(iii)
B2σ =

∑
j<k
r<s

c(ej · ek · er · es · Tejek · Teres)σ

− 2
∑
j<k
m

c(ϵj · ϵk · ϵm · T (Tjk, ϵm))σ.

Combining (i), (ii) and (iii), we have

/D
2
σ = A2σ − 1

2
(AB +BA)σ +

1

4
B2σ

= ∆σ +Rσ +
1

2

∑
j<k
m

c(ej · ek · em · T ([ej , ek], em))σ

− 1

2

∑
j<k
m

c
(
em · ej · ek ·DC

emTejek
)
σ

− 1

2

∑
r,s

c
(
es · T (DC

erer, es)
)
σ +

∑
r,s

c(es · Teres)Derσ

+
1

4

∑
j<k
r<s

c(ej · ek · er · es · Tejek · Teres)σ

= ∆σ +Rσ +
1

2

∑
r,s

c
(
es ·

(
DC

erTeres + T ([er, es], er)

− T (DC
erer, es)

))
σ +Qσ +

1

4
T1σ

= ∆σ +Rσ +Qσ +
1

4
T1σ +

1

2

∑
r,s

c
(
es · (DC

erT )eres
)
σ

= ∆σ +Rσ +Qσ +
1

4
T1σ − 1

2
T2σ. �

Formula (3.15) contains the first-order term Q, and hence, is difficult
to handle. For this reason, it is convenient to define a new covariant

derivative D̂ on E by

D̂Xσ := DXσ − 1

2

∑
j

c
(
ej · T (X, ej)

)
σ.

With straightforward computation, it can be directly verified that the
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rough Laplacian ∆̂ of D̂, defined locally by

∆̂σ := −
2n∑
j=1

(
D̂ej D̂ejσ − D̂DC

ej
ejσ

)
,

satisfies

∆̂ = ∆+Q− 1

2
T2 +

1

4

∑
j,k,m

c(ej · ek · Tem,ej · Tem,ek),

and thus, we obtain the following.

Theorem 3.6. The Chern-Dirac operator of E verifies

(3.17) /D
2
= ∆̂ +R− 1

2
P − 1

8
|T |2,

where P is defined by

P :=
∑

j<k<r<s

(g(Tej ,ek , Ter,es) + g(Tej ,es , Tek,er )

+ g(Tej ,er , Tek,es))c(ej · ek · er · es)

and
|T |2 =

∑
j,k,r

T (ej , ek, er)
2.

Moreover, if the complex dimension of M is n = 2, then P = 0 and
|T |2 = 2|ϑ|2. Thus, we obtain the following.

Corollary 3.7. The Chern-Dirac operator over a complex surface veri-
fies

(3.18) /D
2
= ∆̂ +R− 1

4
|ϑ|2.

Following the same arguments of classical Bochner type theorems,
Theorems 3.4 and 3.6 can be used to determine vanishing properties for

solutions of equations of the form /∂
′
σ = 0 or /Dσ = 0, provided that

appropriate conditions on curvature and torsion are imposed. Here, we
do not investigate such possibilities.

In the following sections, we prove the existence of some important
Chern-Dirac bundles, canonically associated with any Hermitian man-
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ifold (not necessarily Kähler), to which all results determined so far
immediately apply.

4. V-spinors and cohomology of Hermitian manifolds.

4.1. Canonical and anticanonical spinor bundle on Hermitian
manifolds. Let (M, g, J) be an Hermitian 2n-manifold. We indicate
with S↑M and S↓M the spinor bundles on M associated with the
canonical and anticanonical spinC structures, respectively. In these
cases, it can be directly verified that the eigen-subbundles S↑0M and
S↓nM are trivial line bundles. Hence, we may fix:

(a) two nowhere vanishing global sections

(4.1) ψ0 :M −→ S↑0M, φ0 :M −→ S↓nM ;

(b) two Hermitian metrics h↑, h↓ on S↑M , S↓M , respectively, which
are invariant under the Clifford multiplication by tangent vectors
and such that

(4.2) h↑(ψ0, ψ0) = 1 = h↓(φ0, φ0).

Tensoring with sections ψ0 and φ0, we may identify Λ0,q(T ∗M) ≃
Λ0,q(T ∗M)⊗ S↑0M and Λp,0(T ∗M) ≃ Λp,0(T ∗M)⊗ S↓nM , so that the
maps (2.11) determine isometries

(4.3)
α↑k : Λ0,k(T ∗M) ≃ Λ0,k(T ∗M)⊗ S↑0M −→ S↑kM,

β↓k : Λk,0(T ∗M) ≃ Λk,0(T ∗M)⊗ S↓nM −→ S↓n−kM.

Moreover, from (2.5), (2.6) and (2.10), the following useful lemma can
be immediately proven.

Lemma 4.1. Let λ be a 1-form. Then, for every ν ∈ Ωp,0(M) and µ ∈
Ω0,q(M), we have

(4.4)
λ · µ · ψ0 = (λ01 ∧ µ) · ψ0 − 2

(
(λ♯)01yµ

)
· ψ0,

λ · ν · φ0 = (λ10 ∧ ν) · φ0 − 2
(
(λ♯)10y ν

)
· φ0.

Considering the action of the Kähler form ω on the dual bundle
S↑∗M given by

(ω · L)(ψ) := −L(ω · ψ),
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we obtain a corresponding split

S↑∗M = S↑∗0M ⊕ · · · ⊕ S↑∗nM.

Note that the C-linear maps

δk : S↓n−kM −→ S↑∗kM, δk(φ) := h↑(α↑k((β↓k)−1(φ)), ·)

are actually isometries. Moreover, if φ = ν · φ0 ∈ S↓n−kM and ψ =
µ · ψ0 ∈ S↑kM , then we have that

(4.5) φ(ψ) := δk(φ)(ψ) = h↑(ν · ψ0, µ · ψ0) = g(ν, µ).

From now on, we tacitly use such maps to identify S↓M ≃ S↑∗M .

Denote by S↑(M) and S↓(M) the spaces of global sections of S↑M
and S↑M , respectively. Since the unitary frame bundle Ug,J (M) is a

Un-reduction of both P↓(M) and P↑(M) (see Definition 2.1), we obtain
the following.

Proposition 4.2. The Hermitian bundles (S↑M,h↑), (S↓M,h↓) are
Chern-Dirac bundles with respect to the action of the Chern connection
of M and the standard Clifford multiplication, which are isometric to
Λ0,·(T ∗M) and Λ·,0(T ∗M), respectively, by the maps (4.3).

Proof. From the very definition of P↑(M), it follows that

S↑M = Ug,J(M)×(κ2n◦F+) S2n,

and thus, the Chern connection ωC on Ug,J(M) defines a covariant
derivative of the sections of S↑M by

(4.6) DC
Xψ := d Cψ(X̂) = dψ(X̂) + (κ2n ◦ F+)∗

(
ω C (X̂)

)
ψ,

where:

(a) ψ ∈ S↑(M) is identified with a function ψ : Ug,J(M)→S2n such
that

ψ(uA) = κ2n
(
F+(A

−1)
)
ψ(u) for every A ∈ Un;

(b) X̂ is the horizontal lift of X on TUg,J(M) determined by the
connection form ωC ;

(c) d C is the exterior covariant derivative on Ug,J (M) determined
by ωC .
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Using (4.6) and the fact that the differential of F+ is merely

(F+)∗ : un −→ so2n ⊕ iR, (F+)∗(A) = (τ2n)
−1
∗ (A) +

1

2
Tr(A),

we get that

DC
X

(
Y · ψ

)
=

(
DC

XY
)
· ψ + Y ·DC

Xψ

for every X,Y ∈ X(M), ψ ∈ S↑(M).

Since the representation κ2n of SpinC
2n is unitary, it follows thatDC h↑ =

0 and, furthermore, it may be verified that (3.1) holds. The same ar-
guments, mutatis mutandis, determine a covariant derivative DC on
spinors φ ∈ S↓(M) which fulfill the necessary conditions. �

4.2. A fundamental example of Chern-Dirac bundle: The V-
spinors. Given an Hermitian 2n-manifold (M, g, J), with canonical
and anticanonical spinor bundles S↑M , S↓M , we define as the V-spinor
bundle of M the vector bundle

VM := S↓M ⊗ S↑M.

Note that VM is equipped with the Hermitian metric ȟ := h↓ ⊗ h↑,
where h↓ and h↑ are defined in (4.2), and with the bigradation given
by the subbundles

V p,qM := S↓n−pM ⊗ S↑qM ≃ S↑∗pM ⊗ S↑qM, 0 ≤ p, q ≤ n.

In addition, note that, since S↑0M and S↓nM are trivial, the subbundles
V ·,0M and V 0,·M are isomorphic to S↓M and S↑M , respectively, so that
VM can be considered as a bundle which naturally includes both the
canonical and anticanonical spinor bundle. Let us denote the space of
global sections of VM by V(M).

From the proof of Proposition 4.2, we obtain that the Chern connec-
tion defines a covariant derivative along the vector fields of M of the
sections of VM :

DC : X(M)⊗V(M) −→ V(M).

Let φ0 and ψ0 be the global sections in (4.1), satisfying (4.2), and
ξ0 the distinguished section ξ0 := φ0 ⊗ ψ0 ∈ V(M). Clearly, ξ0 is
a nowhere vanishing global section of V 0,0M such that ȟ(ξ0, ξ0) = 1.
Note that the action of DC on S↑0(M) ≃ C∞(M ;C) coincides with
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the Chern covariant derivative of the trivial holomorphic Hermitian
line bundle

(
S↑0M, h↑|S↑0M⊗S↑0M , ψ

0
)
and therefore corresponds to the

trivial covariant derivative on this bundle. The same holds on S↓n(M)
≃ C∞(M ;C). Thus, it follows that the action of DC on sections of
V 0,0M is trivial as well.

Interest in the bundle of V-spinors comes from the fact that there
are two structures of complex left CℓCM -modules on VM which makes
it a Chern-Dirac bundle isomorphic with the bundle of complex forms
of M . In order to see this, let

(4.7) ·L, ·R : CℓCM ⊗ VM −→ VM

be the unique C-linear operations which transform each pair, given by
an element w ∈ CℓCx M and a homogeneous decomposable V-spinor
φ⊗ψ ∈ V p,q

x M at some x ∈M , into the V-spinors

w ·L (φ⊗ ψ) := (w · φ)⊗ ψ, w ·R (φ⊗ ψ) := (−1)pφ⊗ (w · ψ).

As mentioned above, the following properties hold.

Proposition 4.3.

(i) The bundle VM is a Chern-Dirac bundle with respect to (4.7).
(ii) There exists an isometry ς : Λ·(T ∗CM)→VM such that DC

X ◦
ς = ς ◦DC

X for every X ∈ X(M).

Proof. The first claim follows directly from Proposition 4.2. For the
second one, let

ȷ p,q : (Λp,0(T ∗M)⊗ S↓nM)⊗ (Λ0,q(T ∗M)⊗ S↑0M)

−→ Λ p,q(T ∗M)⊗ V 0,0M

be the vector bundle isomorphism which transforms decomposable ele-
ments into

(ȷ p,q)x
(
(ν ⊗ φ0

x)⊗ (µ⊗ ψ0
x)
)
:= (ν ∧ µ)⊗ ξ0x, x ∈M.

Also, let

(4.8) ς p,q : Λ p,q(T ∗M) ≃ Λ p,q(T ∗M)⊗ V 0,0M −→ V p,qM,

ς p,q :=
(
β↓p ⊗ α↑q) ◦ (ȷ p,q)−1,
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where α↑q and β↓p are the isometries defined in (4.3). By construction,
each isomorphism ς p,q is actually an isometry of Hermitian bundles,
and they all combine into a global isometry

ς : Λ·(T ∗CM) ≃ Λ·(T ∗CM)⊗ V 0,0M −→ VM.

The fact that DC
X ◦ ς = ς ◦DC

X follows from the previously mentioned
property DCψ0 = DCφ0 = 0 yields that, for every η = ν∧µ ∈ Ω p,q(M)
and X ∈ X(M), we have

DC
Xς

p,q(η) =
1

2(p+q)/2
DC

X

(
(ν · φ0)⊗ (µ · ψ0)

)
=

1

2(p+q)/2

(
(DC

Xν · φ0)⊗ (µ · ψ0) + (ν · φ0)⊗ (DC
Xµ · ψ0)

)
=

(
β↓p ⊗ α↑q)((DC

Xν ⊗ φ0)⊗ (µ⊗ ψ0) + (ν ⊗ φ0)

⊗ (DC
Xµ⊗ ψ0)

)
=

(
β↓p ⊗ α↑q)((ȷ p,q)−1

(
(DC

Xν ∧ µ)⊗ ξ0+(ν ∧DC
Xµ)⊗ ξ0

))
= ς p,q

(
DC

Xη
)
,

and this completes the proof. �
The components ς p,q of the isometry ς defined in (4.8) play an

important role in the following discussion. It is therefore convenient
to introduce the notation

·̂ |Λ p,q(T∗M)⊗V 0,0M :=
((

· |Λp,0(T∗M)⊗S↓nM

)
⊗
(
· |Λ0,q(T∗M)⊗S↑0M

))
◦ (ȷ p,q)−1,

which allows setting the map ς p,q as

(4.9) ς p,q(η) =
1

2(p+q)/2
η ·̂ ξ0 for every η ∈ Ω p,q(M).

4.3. The algebraic structure of V-spinors. Let (M, g, J) be an

Hermitian 2n-manifold and CℓCM its complex Clifford bundle. Since
CℓC2n ≃ gl(S2n) = M2n(C), there exists a C-linear isomorphism

(4.10) χ : VM −→ CℓCM ≃ gl(S↑M),

which maps each decomposable V-spinor φ⊗ψ ∈ VM into the unique
element w := χ(φ⊗ψ) ∈ CℓCM , defined by the condition

w · ψ′ = φ(ψ′)ψ for every ψ′ ∈ S↑M.
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This gives rise to the following C-linear isomorphism between Λ·(T ∗CM)

and CℓCM :

(4.11) χ ◦ ς : Λ·(T ∗CM) −→ CℓCM.

The reader should nonetheless be aware that such a map is in gen-

eral different from the canonical isomorphism CℓCM ≃ Λ·(TCM)
g
≃

Λ·(T ∗CM) described in (2.6). Furthermore, the isomorphism (4.11)

induces a bigradation on CℓCM , defined by

(4.12) Cℓ p,qM := χ(V p,qM) = (χ◦ς)(Λ p,q(T ∗M)),

which is different from that considered by Michelsohn in [10, Sec-
tion 2.B].

We can finally define a structure of bundles of algebras on VM by
setting

ξ1 · ξ2 := χ−1(χ(ξ1) · χ(ξ2)) for every ξ1, ξ2 ∈ VM.

Note that, if ξ1 = φ1⊗ψ1 and ξ2 = φ2⊗ψ2 are homogeneous decompos-
able V-spinors, with φj = νj · φ0 ∈ S↓n−pjM and ψj = µj · ψ0 ∈ S↑qjM ,
from (4.5) and (4.8) it follows that such a product is merely

ξ1 · ξ2 = (φ1 ⊗ ψ1) · (φ2 ⊗ ψ2) = φ1(ψ2)(φ2 ⊗ ψ1)

= 2(p2+q1)/2g(ν1, µ2) ς(ν2 ∧ µ1).

4.4. Partial Chern-Dirac operators on V-spinors. Let (M, g, J)
be an Hermitian 2n-manifold. The main result of this section consists
in the proof that the partial Chern-Dirac operators on VM correspond

to the standard operators ∂, ∂∗ and ∂
∗
, ∂ on differential forms.

We indicate by /∂ ′(L), /∂ ′′(L) and /∂ ′(R), /∂ ′′(R) the partial Chern-Dirac
operators on sections of VM determined in (3.3) using the Clifford
multiplications c = ·L and c = ·R, respectively. In full analogy with
[10, Theorem 4.1], we prove the following.

Theorem 4.4. The operators /∂ ′(L) and /∂ ′′(L) (respectively, /∂ ′(R) and
/∂ ′′(R)) are formal adjoints of each other and squares satisfy

(4.13) (/∂ ′(L))2 = 0 = (/∂ ′′(L))2, (/∂ ′(R))2 = 0 = (/∂ ′′(R))2.
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Moreover, the cochain complexes

V0,q(M)
/∂ ′(L)

−−−−−→ V1,q(M)
/∂ ′(L)

−−−−−→ · · ·
/∂ ′(L)

−−−−−→ Vn,q(M),

Vp,0(M)
/∂ ′′(R)

−−−−−→ Vp,1(M)
/∂ ′′(R)

−−−−−→ · · ·
/∂ ′′(R)

−−−−−→ Vp,n(M),

(4.14)

are elliptic.

Proof. The first claim follows directly from Proposition 3.3, while
(4.13) follows from (3.12) and properties of the curvature of the Chern
connection. In order to prove that /∂ ′(L)

(
Vp,q(M)

)
⊂ Vp+1,q(M),

consider a unitary frame field defined in an open subset U ⊂ M and
the associated normalized complex frame (ϵj , ϵj) defined in (2.1). It
may be directly verified that

(i)
∑
j

ω · ϵj =
∑
j

(ϵj · ω − 2i ϵj) ,

(ii)
∑
r<s

ω · ϵr · ϵs · Trs =
∑
r<s

(ϵr · ϵs · Trs · ω − 2i ϵr · ϵs · Trs).

Now, set a homogeneous section ξ ∈ Vp,q(M). Since DCω = 0, from
(i) and (ii), we obtain:

ω ·L /∂ ′(L)ξ =
∑
j

(ω · ϵj) ·L DC
ϵjξ −

1

2

∑
r<s

(ω · ϵr · ϵs · Trs) ·L ξ

= (n− 2p− 2) i
∑
j

ϵj ·L DC
ϵjξ

− 1

2
(n− 2p− 2) i

∑
r<s

(ϵr · ϵs · Trs) ·L ξ

= (n− 2(p+ 1)) i /∂ ′(L)ξ,

and then it is immediate to verify that ω ·R /∂ ′(L)ξ = (−1)p+1(2q
− n)i /∂ ′(L)ξ. The inclusion /∂ ′′(R)

(
Vp,q(M)

)
⊂ Vp,q+1(M) can be

similarly shown. It remains to prove that equations (4.14) are elliptic.
In order to see this, consider a real covector λ ∈ TM , and observe that
the principal symbols of the four partial Chern-Dirac operators are

σ(/∂ ′(L))(λ) = (λ♯)10·L, σ(/∂ ′′(L))(λ) = (λ♯)01·L,

σ(/∂ ′′(R))(λ) = (λ♯)01·R, σ(/∂ ′(R))(λ) = (λ♯)10 ·R .
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Ellipticity now follows from the relation

(λ♯)10 · (λ♯)01 + (λ♯)01 · (λ♯)10 = −g(λ, λ),

and this completes the proof. �

The next theorem establishes a crucial relation between the partial
Chern-Dirac operators on V-spinors and the standard operators ∂, ∂∗

and ∂
∗
, ∂ on differential forms. It can immediately be seen that this

relation is much simpler than the analogous result on the operators D,
D, considered by Michelsohn for Clifford bundles on Kähler manifolds
(see [10, Proposition 5.1]).

Theorem 4.5. Let ς : Λ·(T ∗CM)→VM be the isometry defined in
Proposition 4.3. Then, the partial Chern-Dirac operators verify

ς−1 ◦ /∂ ′(L) ◦ ς =
√
2∂, ς−1 ◦ /∂ ′′(L) ◦ ς =

√
2∂∗,

ς−1 ◦ /∂ ′(R) ◦ ς =
√
2∂̄∗, ς−1 ◦ /∂ ′′(R) ◦ ς =

√
2∂̄.

For the proof, we need a preparatory lemma.

Lemma 4.6. Let x ∈M and η ∈ Ωp,q(M). Then:

∂η|x =
∑
j

(
ϵj ∧DC

ϵjη + ϵj(T ) ∧
(
ϵjyη

))
,

∂η|x =
∑
j

(
ϵj ∧DC

ϵ̄jη + ϵj(T ) ∧
(
ϵjyη

))
,

∂∗η|x = −
∑
j

ϵjyDC
ϵ̄jη −

∑
r<s

ϵryϵsy((Tr̄s̄)♭ ∧ η),

∂
∗
η|x = −

∑
j

ϵjyDC
ϵjη −

∑
r<s

ϵryϵsy((Trs)♭ ∧ η),

where (ϵj , ϵj) is the standard normalized complex frame (2.1) deter-
mined by a unitary basis for TxM .

Proof. Since S = DC −DLC , the contorsion tensor acts in a natural
manner on forms. In addition, it can be proven by induction that its
action is such that

SX

(
Ωp,q(M)

)
⊂ Ωp+1,q−1(M) ⊕ Ωp,q(M) ⊕ Ωp−1,q+1(M),
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0 ≤ p, q ≤ n, for every X ∈ X(M). From standard properties of the
Levi-Civita connection and (2.2), given a unitary basis (ej) ⊂ TxM , we
obtain

dη|x =

2n∑
s=1

(
es ∧DLC

es η
)

=
∑
j

(
ϵj ∧DC

ϵjη + ϵj ∧DC
ϵ̄jη − ϵj ∧ Sϵjη − ϵj ∧ S ϵ̄jη

)
,

and thus,

∂η|x =
(
dη|x

)p+1,q

=
∑
j

(
ϵj ∧DC

ϵjη − ϵj ∧
(
Sϵjη

)p,q − ϵj ∧
(
S ϵ̄jη

)p+1,q−1)
,

∂η|x =
(
dη|x

)p,q+1

=
∑
j

(
ϵj ∧DC

ϵ̄jη − ϵj ∧
(
Sϵjη

)p−1,q+1 − ϵj ∧
(
S ϵ̄jη

)p,q)
.

Furthermore, it can be directly checked that∑
j

(
− ϵj ∧

(
Sϵjη

)p,q − ϵj ∧
(
S ϵ̄jη

)p+1,q−1)
=

∑
j

ϵj(T ) ∧
(
ϵjyη

)
,

∑
j

(
− ϵj ∧

(
Sϵjη

)p−1,q+1 − ϵj ∧
(
S ϵ̄jη

)p,q)
=

∑
j

ϵj(T ) ∧
(
ϵjyη

)
.

The remaining identities can be proven in a similar manner. �

We may now proceed with the proof of Theorem 4.5.

Proof of Theorem 4.5. Consider a unitary frame field (ej) : U ⊂
M→Ug,J(M), the normalized complex vectors ϵj , ϵj defined in (2.1)
and a form η = ν ∧ µ ∈ Ωp,q(M). Then, using notation (4.9), from
(4.4) and Lemma 4.6, it follows that

/∂ ′(L)(η ·̂ ξ0) =
∑
j

ϵj ·L DC
ϵj (η ·̂ ξ0)− 1

2

∑
r<s

(ϵr · ϵs · Trs) ·L (η ·̂ ξ0)

=
∑
j

(
ϵj ·L

(
(DC

ϵjν ∧ µ) ·̂ ξ0
)
+ ϵj ·L

(
(ν ∧DC

ϵjµ) ·̂ ξ0
))
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− 1

2

∑
r<s

(ϵr · ϵs · Trs) ·L (η ·̂ ξ0)

=
∑
j

(
(ϵj ·DC

ϵjν · φ0)⊗ (µ · ψ0)

+ (ϵj · ν · φ0)⊗ (DC
ϵjµ · ψ0)

)
− 1

2

∑
r<s
m

Trsm(ϵr · ϵs · ϵm · ν · φ0)⊗ (µ · ψ0)

=
∑
j

((
(ϵj ∧DC

ϵjν) · φ0
)
⊗ (µ · ψ0)

+
(
(ϵj ∧ ν) · φ0

)
⊗ (DC

ϵjµ · ψ0)
)

+
∑
r<s
m

Trsm
(
(ϵr ∧ ϵs ∧ (ϵmyν)) · φ0

)
⊗ (µ · ψ0)

=
∑
j

(ϵj ∧DC
ϵjη) ·̂ ξ0 +

∑
r<s
m

Trsm (ϵr ∧ ϵs ∧ (ϵmyη)) ·̂ ξ0

= ∂η ·̂ ξ0.

Thus, we obtain:

(
ς−1 ◦ /∂ ′(L) ◦ ς

)
(η) =

1

2p+q/2
ς−1

(
∂η ·̂ ξ0

)
=

2(p+q+1)/2

2(p+q)/2
∂η =

√
2∂η.

Proceeding in a similar manner, we obtain

/∂ ′′(L)(η ·̂ ξ0) =
∑
j

ϵj ·L DC
ϵ̄j (η ·̂ ξ0)− 1

2

∑
r<s

(ϵr · ϵs · Tr̄s̄) ·L (η ·̂ ξ0)

=

n∑
j=1

(
ϵj ·L

(
(DC

ϵ̄jν ∧ µ) ·̂ ξ0
)
+ ϵj ·L

(
(ν ∧DC

ϵ̄jµ) ·̂ ξ0
))

− 1

2

∑
r<s

(ϵr · ϵs · Tr̄s̄) ·L (η ·̂ ξ0)

=
n∑

j=1

(
(ϵj ·DC

ϵ̄jν · φ0)⊗ (µ · ψ0)

+ (ϵj · ν · φ0)⊗ (DC
ϵ̄jµ · ψ0)

)
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− 1

2

∑
r<s
m

Tr̄s̄m (ϵr · ϵs · ϵm · ν · φ0)⊗ (µ · ψ0)

=

n∑
j=1

((
− 2(ϵjyDC

ϵ̄jν) · φ0
)
⊗ (µ · ψ0)

+
(
− 2(ϵjyν) · φ0

)
⊗ (DC

ϵ̄jµ · ψ0)
)

+
∑
r<s
m

Tr̄s̄m
(
− 2(ϵryϵsy(ϵm ∧ ν)) · φ0

)
⊗ (µ · ψ0)

=
∑
j

(
− 2(ϵjyDC

ϵ̄jη) ·̂ ξ0
)

+
∑
r<s
m

Tr̄s̄m
(
− 2(ϵryϵsy(ϵm ∧ η)) ·̂ ξ0

)
= 2

(
−
∑
j

ϵjyDC
ϵ̄jη −

∑
r<s

ϵryϵsy
(
(Tr̄s̄)

♭ ∧ η
))

·̂ ξ0

= 2∂∗η ·̂ ξ0,

and thus,(
ς−1 ◦ /∂ ′′(L)◦ ς

)
(η)=

1

2(p+q)/2
ς−1

(
2∂∗η ·̂ ξ0

)
=2

2(p+q−1)/2

2(p+q)/2
∂∗η=

√
2∂∗η.

The remaining two cases are perfectly analogous. �

4.5. Harmonic V-spinors. Now, assume that (M, g, J) is a compact
Hermitian 2n-manifold, and consider the Chern-Dirac operators on
VM determined by (3.4) using the Clifford multiplications c = ·L and
c = ·R, i.e.,

(4.15) /D
(L)

= /∂ ′(L) + /∂ ′′(L), /D
(R)

= /∂ ′(R) + /∂ ′′(R),

called left Chern-Dirac operator and right Chern-Dirac operator on V-
spinors, respectively. As we pointed out in Section 4, they are both
first order elliptic operators and, since M is compact, they are also
self-adjoint. We denote by total-harmonic V-spinors the sections of

VM which are in the kernel of /D
(L)

+ /D
(R)

and right- (respectively,
left-)harmonic V-spinors the sections of VM which are in the kernel of

/D
(R)

(respectively, /D
(L)

). From Theorem 4.5, we obtain the following
isomorphism between spaces of harmonic V-spinors and cohomology
groups.



CHERN-DIRAC BUNDLES 1283

Theorem 4.7. Let (M, g, J) be a compact Hermitian 2n-manifold.
Then:

ker
(
/D
(L)

+ /D
(R)) ≃ 2n⊕

k=0

Hk
d (M ;C), ker /D

(R) ≃
n⊕

p,q=0

Hp,q

∂̄
(M),

where Hk
d (M ;C) and Hp,q

∂̄
(M) are the usual De Rham and Dolbeault

cohomology groups of M .

Proof. Since, for every 0 ≤ k ≤ 2n, the spaces d
(
Ωk−1(M ;C)

)
and

d∗
(
Ωk+1(M ;C)

)
are orthogonal, from Theorem 4.5 and standard Hodge

theory, it follows that

ker
(
/D
(L)

+ /D
(R)) ς≃

{
η ∈ Ω·(M ;C) : dη + d∗η = 0

}
=

2n⊕
k=0

{
η ∈ Ωk(M ;C) : dη = d∗η = 0

}
≃

2n⊕
k=0

Hk
d (M ;C).

The proof of the second isomorphism is similar. �

Remark 4.8. We recall that the canonical spinor bundle of M is
naturally included in VM (see subsection 4.2). Due to this, Theorem
4.7 can be considered as a generalization of the well-known isomorphism
between harmonic spinors and cohomology classes H0,·

∂̄
(M) on compact

Kähler manifolds [7, Theorem 2.1].

We conclude this section by showing how the partial Chern-Dirac op-
erators on V-spinors can be used to provide a spinorial characterization
for the Bott-Chern and Aeppli cohomologies

(4.16) H ·,·
BC(M) :=

ker ∂ ∩ ker ∂

Im ∂∂
, H ·,·

A (M) :=
ker ∂∂

Im ∂ + Im ∂
.

We recall that both cohomologies coincide with the usual Dolbeault
cohomology in the Kähler case, and they are an important tool in
studies of non-Kähler Hermitian manifolds. For an introduction, see
e.g., [2, 3].
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There is a Hodge theory for these two cohomologies. In fact, they
satisfy

(4.17) H ·,·
BC(M) ≃ ker∆BC , H ·,·

A (M) ≃ ker∆A,

where ∆BC and ∆A are the fourth order elliptic self-adjoint operators,
defined by

∆BC :=
(
∂∂

)(
∂∂

)∗
+
(
∂∂

)∗(
∂∂

)
+
(
∂
∗
∂
)(
∂
∗
∂
)∗

+
(
∂
∗
∂
)∗(

∂
∗
∂
)
+ ∂

∗
∂ + ∂∗∂,

∆A :=
(
∂∂∗

)(
∂∂∗

)∗
+
(
∂∂∗

)∗(
∂∂∗

)
+
(
∂∂

)(
∂∂

)∗
+
(
∂∂

)∗(
∂∂

)
+ ∂∂

∗
+ ∂∂∗.

Due to the fact that, for every complex form η, we have

(4.18)
∆BCη = 0 if and only if ∂η = ∂η = ∂

∗
∂∗η = 0,

∆Aη = 0 if and only if ∂∗η = ∂
∗
η = ∂∂η = 0,

it is natural to consider the operators

/DBC , /DA : V(M) −→ V(M),

/DBC := /∂ ′(L) + /∂ ′′(R) + /∂ ′(R) ◦ /∂ ′′(L),

/DA := /∂ ′′(L) + /∂ ′(R) + /∂ ′(L) ◦ /∂ ′′(R),

which we call the Bott-Chern-Dirac operator and the Aeppli-Dirac op-
erator on V-spinors, respectively. From (4.17), (4.18) and Theorem 4.5,
the following becomes obvious.

Proposition 4.9. Let (M, g, J) be a compact Hermitian 2n-manifold.
Then, for every 0 ≤ p, q ≤ n, the kernels of /DBC and /DA satisfy

Hp,q
BC(M) ≃ ker /DBC ∩Vp,q(M),

Hp,q
A (M) ≃ ker /DA ∩Vp,q(M),

and thus, there exist injective homomorphisms

n⊕
p,q=0

Hp,q
BC(M) ↩→ ker /DBC ,

n⊕
p,q=0

Hp,q
A (M) ↩→ ker /DA.
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5. Twisted cohomology of Hermitian manifolds andV-spinors.

5.1. Twisted V-spinor bundle with respect to an Hermitian
bundle. Let (M, g, J) be an Hermitian 2n-manifold, and let E be a
Chern-Dirac bundle over M with Clifford multiplication

c : CℓCM −→ gl(E),

Hermitian metric h and covariant derivative D. Also, let
(
W,hW

)
be an

Hermitian bundle over M , endowed with a metric covariant derivative
DW . We can trivially extend c to the tensor product bundle E⊗W by

(5.1) c(w)(σ⊗ s) := (c(w)σ)⊗ s

and define

(5.2) h̃ := h⊗hW, D̃ := D⊗ IdW +IdE ⊗DW .

With straightforward computation, the following can immediately be
verified.

Proposition 5.1. The tensor product bundle (E⊗W, h̃, D̃) is a Chern-
Dirac bundle with respect to the Clifford multiplication (5.1).

We now focus on the case in which E = VM . We call VM ⊗W
the W -twisted V-spinor bundle. It is naturally endowed with the four
twisted partial Chern-Dirac operators

(5.3) /̃∂ ′(L), /̃∂ ′′(L), /̃∂ ′(R), /̃∂ ′′(R),

defined in (3.3). On the other hand, we recall that the covariant deriva-
tive DW defines the exterior derivative dW : Ωk(M ;W ) → Ωk+1(M ;W )
on W -valued differential forms

(5.4)(
dWζ

)
(X1, . . ., Xk+1) :=

∑
j

(−1)j+1DW
Xj

(
ζ(X1, . . ., X̂j , . . ., Xk+1)

)
+
∑
r<s

(−1)r+sζ([Xr, Xs], X1, . . ., X̂r, . . ., X̂s, . . ., Xk+1).

This exterior derivative splits into the sum dW= ∂W+ ∂
W
, with

∂W : Ωp,q(M ;W ) −→ Ωp+1,q(M ;W ),
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∂
W

: Ωp,q(M ;W ) −→ Ωp,q+1(M ;W ).

Finally, consider the extension of the isometry ς : Λ·(T ∗CM) → VM
defined in Proposition 4.3 to

ς
W

: Λ·(T ∗CM)⊗W −→ VM ⊗W,(5.5)

ς
W

:= ς ⊗ IdW .

In order to have simple notation for ςW, for each decomposable element
η⊗ s ∈ Λ·(T ∗CM)⊗W , it is convenient to define

(η⊗ s) ·̂ ξ0 := (η ·̂ ξ0)⊗ s

so that we can simply write

ςW(ζ) =
1

2(p+q)/2
ζ ·̂ ξ0 for every ζ ∈ Ωp,q(M ;W ).

In analogy with Theorem 4.5, we have the following important
identities for the W -twisted Chern-Dirac operators.

Theorem 5.2. Let ςW : Λ·(T ∗CM)⊗W → VM ⊗W be the isometry
(5.5). Then, the partial Chern-Dirac operators (5.3) verify

(ςW )−1 ◦ /̃∂ ′(L) ◦ ςW =
√
2∂W , (ςW )−1 ◦ /̃∂ ′′(L) ◦ ςW =

√
2∂W∗,

(ςW)−1 ◦ /̃∂ ′(R) ◦ ςW =
√
2 ∂

W∗
, (ςW )−1 ◦ /̃∂ ′′(R) ◦ ςW =

√
2 ∂

W
.

Proof. Consider a unitary frame field (ej) : U ⊂ M → Ug,J(M),
the associated normalized complex vectors ϵj , ϵj and a decomposable
element ζ = η⊗ s ∈ Ωp,q(M ;W ). Following the same arguments of the
proof of Theorem 4.5, we have

/̃∂ ′(L)((η ·̂ ξ0)⊗ s) =
∑
j

ϵj ·L D̃ϵj ((η ·̂ ξ0)⊗ s)

− 1

2

∑
r<s

(ϵr · ϵs · Trs) ·L ((η ·̂ ξ0)⊗ s)

=
∑
j

(ϵj ·L (DC
ϵjη ·̂ ξ0))⊗ s

− 1

2

∑
r<s

((ϵr · ϵs · Trs) ·L (η ·̂ ξ0))⊗ s
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+
∑
j

(ϵj ·L (η ·̂ ξ0))⊗DW
ϵjs

= (∂η ·̂ ξ0)⊗ s+
∑
j

((ϵj ∧ η) ·̂ ξ0)⊗DW
ϵjs

=

(
∂η⊗ s+

∑
j

(ϵj ∧ η)⊗DW
ϵjs

)
·̂ ξ0

= ∂W(η⊗ s) ·̂ ξ0.

Hence,

((ςW)−1◦ /̃∂ ′(L) ◦ ςW)(η⊗ s) =
2(p+q+1)/2

2(p+q)/2
∂W(η⊗ s) =

√
2∂W(η⊗ s).

Proceeding in a similar manner, we obtain

/̃∂ ′′(L)((η ·̂ ξ0)⊗ s) =
∑
j

ϵj ·L D̃ϵ̄j ((η ·̂ ξ0)⊗ s)

− 1

2

∑
r<s

(ϵr · ϵs · Tr̄s̄) ·L ((η ·̂ ξ0)⊗ s)

=
∑
j

(
ϵj ·L (DC

ϵ̄jη ·̂ ξ0)
)
⊗ s

− 1

2

∑
r<s

((ϵr · ϵs · Tr̄s̄) ·L (η ·̂ ξ0))⊗ s

+
∑
j

(
ϵj ·L (η ·̂ ξ0)

)
⊗DW

ϵ̄js

= 2(∂∗η ·̂ ξ0)⊗ s+
∑
j

(
− 2(ϵjyη) ·̂ ξ0

)
⊗DW

ϵ̄js

= 2

(
∂∗η⊗ s−

∑
j

(ϵjyη)⊗DW
ϵ̄js

)
·̂ ξ0

= 2 ∂W∗(η⊗ s) ·̂ ξ0

and thus,(
(ςW )−1 ◦ /̃∂ ′′(L) ◦ ςW

)
(η⊗ s) = 2

2(p+q−1)/2

2(p+q)/2
∂W∗(η⊗ s)

=
√
2∂W∗(η⊗ s).
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The remaining two cases are perfectly analogous. �

Finally, if we consider the twisted left Chern-Dirac operator and the
twisted right Chern-Dirac operator, namely, the operators

(5.6) /̃D
(L)

= /̃∂ ′(L) + /̃∂ ′′(L), /̃D
(R)

= /̃∂ ′(R) + /̃∂ ′′(R),

by the same line of arguments in Theorem 4.7, we obtain

Theorem 5.3. Let (M, g, J) be a compact Hermitian 2n-manifold and
W an Hermitian bundle over M endowed with a fixed metric covariant
derivative DW. Then:

ker
(
/̃D
(L)

+ /̃D
(R)

)
≃

2n⊕
k=0

Hk
dW(M ;W ),

ker /̃D
(R) ≃

n⊕
p,q=0

Hp,q

∂̄W (M ;W ),

where Hk
dW(M ;W ) and Hp,q

∂̄W(M ;W ) are the W -valued De Rham and
Dolbeault cohomology groups.

5.2. θ-twisted V-spinor bundles. The results of the previous sec-
tion have immediate applications to the case of twisted cohomology
groups H ·

dθ
(M ;C) and H ·,·

∂̄θ
(M) of Hermitian manifolds [4].

Let (M, g, J) be an Hermitian 2n-manifold with a fixed closed 1-form
θ. Consider the trivial complex line bundle Lθ on M endowed with the
flat covariant derivative Dθ, defined for every global section s of Lθ by

Dθs := ds+ θ ⊗ s.

Fixing an open covering {Uj} of M such that θ|Uj = dfj , we obtain a

holomorphic trivialization {(Uj , e
−fj )} of Lθ, with transition functions

efj−fk on Uj ∩ Uk, with respect to which s0 = (Uj , e
fj ) is a parallel

nowhere vanishing section. This gives rise to an Hermitian metric hθ

on Lθ with hθ(s0, s0) = 1 so that Dθ is metric with respect to hθ.

Definition 5.4. The θ-twisted V-spinor bundle is the tensor product
bundle

VθM := VM ⊗ L−θ
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endowed with the Hermitian metric ȟθ := ȟ ⊗ hθ and the covariant

derivative D̃θ := DC ⊗ IdLθ
+IdVM ⊗Dθ (see subsection 5.1 for the

definitions of ȟ and DC).

From Proposition 5.1, VθM is a Chern-Dirac bundle. The corre-

sponding twisted partial Chern-Dirac operators /∂
′(L)
θ , /∂

′′(L)
θ , /∂

′(R)
θ ,

/∂
′′(R)
θ are called θ-twisted partial Chern-Dirac operators. Their sums

/D
(L)
θ = /∂

(L)
θ + /∂

′′(L)
θ , /D

(R)
θ = /∂

′(L)
θ + /∂

′′(L)
θ

are called the θ-twisted left Chern-Dirac operator and the θ-twisted
right Chern-Dirac operator. By means of the isomorphism between
the De Rham complex of differential forms with values in L−θ and the
Lichnerowicz-Novikov complex

· · · dθ−→ Ωk−1(M ;C) dθ−→ Ωk−1(M ;C) dθ−→ · · ·,
dθ := d− θ∧,

from Theorems 5.2 and 5.3, we immediately obtain the following.

Theorem 5.5. Let (M, g, J) be an Hermitian 2n-manifold and

ςL−θ : Λ·(T ∗CM)⊗L−θ −→ VθM

the isometry defined in (5.5) with W = Lθ. Then, the θ-twisted partial
Chern-Dirac operators satisfy

(ςLθ )−1 ◦ /∂
′(L)
θ ◦ ςL−θ =

√
2∂θ,

(ςLθ )−1 ◦ /∂
′′(L)
θ ◦ ςL−θ =

√
2∂∗θ ,

(ςLθ )−1 ◦ /∂
′(R)
θ ◦ ςL−θ =

√
2 ∂

∗
θ,

(ςLθ )−1 ◦ /∂
′′(R)
θ ◦ ςL−θ =

√
2 ∂θ.

In particular, if M is compact, then

ker ( /D
(L)
θ + /D

(R)
θ ) ≃

2n⊕
k=0

Hk
dθ
(M ;C),

ker /D
(R)
θ ≃

n⊕
p,q=0

Hp,q

∂̄θ
(M),
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where Hk
dθ
(M ;C) and Hp,q

∂̄θ
(M) are the θ-twisted De Rham and Dol-

beault cohomology groups of M .
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Università di Firenze, Dipartimento di Matematica e Informatica “Ulisse

Dini,” Viale Morgagni 67/A, 50134 Firenze, Italy
Email address: francesco.pediconi@unifi.it


