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CROSSING CHANGES, DELTA MOVES
AND SHARP MOVES ON WELDED KNOTS
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ABSTRACT. We prove that the crossing changes, Delta
moves and sharp moves are unknotting operations on welded
knots.

1. Introduction. Virtual knots [9] and welded knots [3] are two
extensions of classical knots in the Euclidian 3-space. In classical knot
theory, invariants and local moves play important roles from algebraic
and geometric viewpoints. Several algebraic invariants of classical knots
are extended to those of virtual or welded knots. For example, the
Jones polynomial is an invariant of a virtual knot but not that of a
welded knot, and the knot group and knot quandle are invariants of
both a virtual knot and a welded knot. As for local moves on virtual
knots, there are many results in relation to finite type invariants. In
particular, a replacement of a classical crossing with a virtual crossing
is used in [5].

In this paper, we consider three types of classical local moves, called
the crossing change, the Delta move and the sharp move, as shown
in Figure 1. These local moves are known as unknotting operations
for classical knots [10, 11]. On the other hand, the crossing change
on a virtual knot is not an unknotting operation, cf., [4, 6]. Since a
Delta and a sharp move are presented by crossing changes, neither of
the moves is an unknotting operation for virtual knots, cf., [17]. The
aim of this paper is to prove that the three local moves are unknotting
operations for welded knots in the following sense.
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Figure 1.

Theorem 1.1. For any diagram D of a welded knot K, there is a
diagram D′, such that

(i) D′ is obtained from D by the crossing changes at some classical
crossings, and

(ii) D′ presents the trivial welded knot.

Theorem 1.2. For any welded knot K, there is a finite sequence of
welded knots K = K0, K1, . . . ,Kn, such that

(i) Ki is obtained from Ki−1 by a Delta move, i = 1, 2, . . . , n, and
(ii) Kn is the trivial welded knot.

Theorem 1.3. For any welded knot K, there is a finite sequence of
welded knots K = K0, K1, . . . ,Kn, such that

(i) Ki is obtained from Ki−1 by a sharp move, i = 1, 2, . . . , n, and
(ii) Kn is the trivial welded knot.

This paper is organized as follows. In Section 2, we prove that any
descending diagram presents a trivial welded knot, which induces
Theorem 1.1. In Sections 3 and 4, we prove that a replacement of a
classical crossing with a welded crossing is accomplished by Delta moves
and sharp moves, respectively, which induces Theorems 1.2 and 1.3.

2. Crossing changes. A welded knot diagram is a circle immersed
in the plane R2 with transverse double points which are divided into
two classes called classical crossings and welded crossings. A classical
crossing has over-/under-information such that a small segment is
removed from one of the paths intersecting at the crossing, and a welded
crossing is indicated by putting a small circle on it. See Figure 2. A
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welded knot diagram is called trivial if it has no classical and welded
crossings, that is, it is an embedding of a circle in R2.

Figure 2.

We consider eight types of local moves on welded knot diagrams
called Reidemeister moves, as shown in Figure 3. The first three moves
C1–C3 are classical Reidemeister moves. The next three moves V1–
V3 are obtained from C1–C3 by replacing all of the classical crossings
with welded ones. The moves V4 and W are also obtained from
C3 by replacing two or one classical crossing(s) with welded one(s),
respectively. Here, the arc with two welded crossings passes the classical
crossing for V4, and the arc with two classical crossings passes over (not
under) the welded crossing for W.

Figure 3.

We say that two welded knot diagrams D and D′ are equiva-
lent if there is a finite sequence of welded knot diagrams D = D0,
D1, . . . , Dn = D′ such that Di is obtained from Di−1 by performing a
Reidemeister move C1–C3, V1–V4 or W on Di−1, i = 1, 2, . . . , n. A
welded knot is an equivalence class of welded knot diagrams under these
Reidemeister moves. A welded knot is called trivial if it is presented
by a trivial diagram.
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A Gauss diagram is the union of a circle and n signed and oriented
chords for some n ≥ 0 connecting n pairs of points on the circle.
Let D be a welded knot diagram with n classical crossings. The Gauss
diagram G = G(D) associated with D is defined to be the union of a
circle covering D and n chords connecting the preimages of classical
crossings. Each chord has the sign derived from that of the classical
crossing and is oriented from the over-crossing to the under-crossing.

We consider four types of moves on Gauss diagrams corresponding
to moves C1, C2, C3 and W on welded knot diagrams. We use the same
notation to indicate the moves on Gauss diagrams as those on welded
knot diagrams. The left and middle of Figure 4 show C1 and W on a
Gauss diagram, respectively, where ε and ε′ are any signs. A move C1
removes or adds a chord whose endpoints are adjacent to each other.
Such a chord is called trivial. Also, a move W changes the positions
of adjacent initial endpoints of two chords regardless of the signs. We
remark that a crossing change on a welded knot diagram corresponds
to the change of sign and orientation of the chord simultaneously. See
the right side of the figure.

Figure 4.

It is known that two welded knot diagrams D and D′ define the same
Gauss diagram G(D) = G(D′) if and only if D and D′ are related by
a finite sequence of virtual Reidemeister moves V1–V4 [5].

Lemma 2.1. Let x be a classical crossing of a welded knot diagram D.
We divide D into two closed paths by cutting D at x. Suppose that one
of the paths thus obtained contains no under-crossing except x. Let E be
the welded knot diagram obtained from D by replacing x with a welded
crossing. See the top of Figure 5. Then, D is related to E by a finite
sequence of C1, V1–V4 and W.

Proof. Let α be the closed path at x on D which contains no under-
crossings. Since the path on the Gauss diagrams G(D) corresponding
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to α contains no terminal endpoints of chords, we shrink the chord
corresponding to x to be trivial by applying W repeatedly. Then, the
chord is removed by C1 so that we obtain the Gauss diagram G(E)
of E. See the bottom of the figure. Therefore, D and E are related by
C1 and W up to V1–V4. �

Figure 5.

We say that a welded knot diagram D is descending if there is a base
point and an orientation of D such that, walking along D from the base
point with respect to the orientation, we meet the over-crossing for the
first time and the under-crossing for the second time at every classical
crossing.

Proposition 2.2. Any descending diagram D is related to the trivial
diagram by a finite sequence of C1, V1–V4 and W.

Proof. Let x be the classical crossing of D such that x is the first
under-crossing while walking along D from the base point according to
the orientation of D. Since x satisfies the condition in Lemma 2.1, we
can replace x with a welded crossing by C1, V1–V4 and W. Since the
diagram thus obtained is again descending, by repeating this process,D
is deformed into the diagram where all crossings are welded. Such a
welded knot diagram is related to the trivial one by V1–V4. �

Proof of Theorem 1.1. By Proposition 2.2, it is sufficient to perform
crossing changes on D so that the obtained diagram is descending. �



972 SHIN SATOH

Let c(K) denote the minimal number of classical crossings for all
diagrams of a welded knot K.

Lemma 2.3. Any non-trivial welded knot K satisfies c(K) ≥ 3.

Proof. If a Gauss diagram has at most two chords, then the chords
can be removed by C1 and W. �

For a welded knot diagram D, we denote by u(D) the minimal
number of classical crossings of D for which we perform the crossing
changes to obtain a diagram presenting the trivial welded knot. The
number u(D) is well defined by Theorem 1.1. The unknotting number
of a welded knot K is the minimal number of u(D) for all diagrams D
presenting K and denoted by u(K). The following is a generalization
of the well-known result for a classical knot, cf., [15].

Proposition 2.4. Any non-trivial welded knot K satisfies u(K) ≤
(c(K)− 1)/2.

Proof. Let D be a welded knot diagram of K with c(D) = c(K),
and x a classical crossing of D. From Lemma 2.3, we have c(D) ≥ 3.

We choose a pair of points p1 and p2 on the over-path at x from one
side of x to the other. Let Si, i = 1, 2, be the set of classical crossings
of D such that crossing changes are performed at Si on D to obtain the
descending diagram with the base point pi and the orientation from pi
to pj , j ̸= i. Since S1 ∩ S2 = ∅ and |S1| + |S2| = c(D) − 1, it follows
from Proposition 2.2 that

u(K) ≤ u(D) ≤ c(D)− 1

2
=

c(K)− 1

2
. �

3. Delta moves.

Proposition 3.1. Let x be a classical crossing of a welded knot
diagram D and E the welded knot diagram obtained from D by the
crossing change at x. Then, D and E are related by a finite sequence
of Reidemeister moves and Delta moves.
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Proof. Fix an orientation of D. Then, D is regarded as a band sum
of a positive or negative Hopf link diagram H as shown in Figure 6.
This replacement is realized by C2. We remark that each band is on
the left hand side of the attaching arc on E.

Figure 6.

We slide the attaching arcs of the bands along E so that they are
adjacent to each other on E. In the top row of Figure 7, an attaching
arc passes a crossing of E while making a pair of classical or welded
crossings. In the bottom of the figure, an attaching arc passes an in-
tersection of E and a band while making a quadruple of classical or
welded crossings. The deformations are accomplished by C2 and V2.

Figure 7.

The Hopf link diagram H can slide anywhere between the bands.
In Figure 8, H passes an intersection of E and a band by performing
C2, C3, V2 and V4. The case that H passes an intersection between
bands is similarly proved by replacing the horizontal segment of E in
the figure with a band.

A banded Reidemeister move is a local deformation obtained from
an original Reidemeister move as in Figure 3 by replacing some strings
with bands. It is easy to see that any banded Reidemeister move except
C1 is accomplished by some original Reidemeister moves. In order to
proceed with the proof of Proposition 3.1, we prepare the following
classical deformations.
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Figure 8.

Lemma 3.2 ([18]). For a band sum of E and H, we have the follow-
ing.

(i) A banded Reidemeister move C1 is realized by classical Reide-
meister moves and a Delta move up to a slide of H.

(ii) A crossing change between E and a band or between bands is
realized by classical Reidemeister moves and a Delta move up to a slide
of H.

Proof. We slide H near the portion where the modification will be
applied. Then a banded C1 move and a crossing change between E and
a band are accomplished by classical Reidemeister moves and Delta
moves as shown in Figure 9. A crossing change between bands is sim-
ilarly proved by duplicating the horizontal segment of E in the fig-
ure. �

Figure 9.

Now, we continue the proof. From Lemma 3.2 (ii), we perform cross-
ing changes so that the union of two bands are descending, that is,
walking from one attaching arc on E to the other, we meet:
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(i) a pair of over-crossings at every classical intersection between E
and a band, and

(ii) a quadruple of over-crossings for the first time and a quadruple
of under-crossings for the second time at every classical intersection
between bands.

See the left side of Figure 10.

Figure 10.

We use the same technique as in the proof of Lemma 2.1 for the cores
of the bands. By performing banded Reidemeister moves C1 and W
by Lemma 3.2 (i), all classical intersections between bands are replaced
with welded ones as shown in the middle of the figure. Since one of
the classical crossings of H satisfies the condition in Lemma 2.1, we
perform a welding of the crossing and the inverse of another so that H
becomes unlinked. See the right hand side of the figure. Since the
bands are removed by C2 and V2, D is equivalent to E up to Delta
moves. This completes the proof of Proposition 3.1. �

The outline of the proof of Proposition 3.1 is similar to that for the
classical case due to Murakami and Nakanishi [11]. The difference is
that a band as shown in Figure 10 may have several welded crossings.

Proof of Theorem 1.2. From Proposition 2.2, it is sufficient to per-
form crossing changes on D so that the obtained diagram is descend-
ing. Such crossing changes are accomplished by Reidemeister and Delta
moves by Proposition 3.1. �

In classical knot theory, a single Delta move necessarily changes the
knot type [14]. On the other hand, there is a pair of diagrams of the
same welded knot which are related by a single Delta move. The two
diagrams as shown in Figure 11 present the trivial welded knot.
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Figure 11.

By a similar argument to the proof of Proposition 3.1, any welded
link diagram is transformed into one such that all self-crossings of the
same component are welded by a finite sequence of Reidemeister moves
and Delta moves. It is known [11] that two classical links are related
by a finite sequence of classical Reidemeister and Delta moves if and
only if their pairwise linking numbers coincide.

Question 3.3. Can we detect whether two welded links are related by
Reidemeister moves and Delta moves by some algebraic invariants?

4. Sharp moves.

Proposition 4.1. Let x be a classical crossing of a welded knot
diagram D and E the welded knot diagram obtained from D by the
crossing change at x. Then, D and E are related by a finite sequence
of Reidemeister moves and sharp moves.

Proof. The proof follows that of Proposition 3.1. It is sufficient to
prove the following which is analogous to Lemma 3.2. �

Lemma 4.2. For a band sum of E and H, we have the following.

(i) A banded Reidemeister move C1 is realized by classical Reide-
meister moves and sharp moves up to a slide of H.

(ii) A crossing change between E and a band or between bands is
realized by classical Reidemeister moves sharp move up to a slide of H.

Proof. We consider four types of local moves: a pass move [2, 7], a
t4 move, a t4 move [16] and a Γ move [7, 8], as shown in Figure 12.
It is well known that:
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• a pass move is realized by classical Reidemeister moves and
sharp moves [11];

• a t4 move is realized by classical Reidemeister moves and a
sharp move, cf., [12];

• a t4 move is realized by classical Reidemeister moves and a pass
move (and, hence, sharp moves); and

• a Γ move is realized by classical Reidemeister moves and a pass
move (and, hence, sharp moves) [7].

Figure 12.

Now, we slide H near the portion where the modification will be
applied. Then a banded C1 move and a crossing change between E
and a band are accomplished by classical Reidemeister moves and sharp
moves, as shown in Figure 13. A crossing change between bands is ex-
actly the same as a pass move. �

Proof of Theorem 1.3. From Proposition 2.2, it is sufficient to per-
form crossing changes on D so that the diagram thus obtained is de-
scending. Such crossing changes are accomplished by Reidemeister and
sharp moves by Proposition 4.1. �

In classical knot theory, a single sharp move necessarily changes the
knot type [10]. On the other hand, there is a pair of diagrams of the
same welded knot which are related by a single sharp move. The two
diagrams as shown in Figure 14 present the trivial welded knot.

By a similar argument to the proof of Proposition 4.1, any welded
link diagram is transformed into one such that all the self-crossings of
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Figure 13.

Figure 14.

the same component are welded by a finite sequence of Reidemeister
and sharp moves. The necessary and sufficient conditions are known for
classical links to be related by classical Reidemeister moves and sharp
moves in terms of their linking numbers [11].

Question 4.3. Can we detect whether two welded links are related by
Reidemeister moves and sharp moves by some algebraic invariants?

Remark 4.4. After this work was finished, Yasuhara pointed out
that, by combining the results due to Aida [1] and Nakanishi [13],
a Delta move is given by a finite sequence of sharp moves. Therefore,
Theorem 1.3 immediately follows Theorem 1.2.

Remark 4.5. In classical category, it is known that any classical knot
is equivalent to the trivial or trefoil knot up to pass moves with respect
to the Arf invariant [7]. On the other hand, in welded category, we
can prove that any welded knot is equivalent to the trivial knot up to
pass moves. The author and Akira Yasuhara are preparing a paper
containing this result.
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