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CYCLICITY OF THE LEFT REGULAR
REPRESENTATION OF A

LOCALLY COMPACT GROUP

ZSOLT TANKO

ABSTRACT. We combine harmonic analysis and oper-
ator algebraic techniques to give a concise argument that
the left regular representation of a locally compact group is
cyclic if and only if the group is first countable, a result first
proved by Greenleaf and Moskowitz.

1. Let G be a locally compact group, and let λ and ρ denote the
(unitarily equivalent) left and right regular representations of G on
L2(G), respectively. The group von Neumann algebra V N(G) is the von
Neumann algebra generated in B(L2(G)) by λ(G). It is well known that
the commutant of V N(G) is the von Neumann algebra generated by
ρ(G). In [2], an operator algebraic argument viewing V N(G) as arising
from a left Hilbert algebra, in combination with a reduction argument
using the structure theory of locally compact groups, is used to show
that λ is cyclic when the group G is first countable. The converse,
left open in [2], was later established by the same authors in [3]. An
alternative proof of the characterization, exploiting the structure theory
of locally compact groups, is given in [5].

The purpose of this note is to give a new and more economical proof
of this equivalence, entirely avoiding the structure theory of locally
compact groups. Our argument shows, moreover, that these conditions
are equivalent to σ-finiteness of V N(G), the latter condition naturally
arising from our techniques. In the commutative case, it is well known
that σ-finiteness of L∞(G) characterizes σ-compactness of G, and it
is our hope that further development of the techniques we employ
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will yield natural characterizations of σ-finiteness of a general locally
compact quantum group.

Recall that the support of a normal state ω on a von Neumann
algebra M is the minimal projection Sω in M for which ⟨ω, Sω⟩ = 1 and
that ω is faithful if Sω = I, the identity in M ; equivalently, if ω takes
strictly positive values on strictly positive operators. We record some
elementary facts about these concepts. For a vector ξ in a Hilbert space,
let ωξ denote the vector functional implemented by ξ. The notation
⟨X⟩ denotes the norm closed linear span of X. For a von Neumann
algebra M on a Hilbert space H, M ′ denotes the commutant of M .

Lemma 1.1. Let H be a Hilbert space, let M be a von Neumann algebra
in B(H) and let ξ, η ∈ H be unit vectors. The following hold.

(1) The projection Sωξ
has range ⟨M ′ξ⟩;

(2) ⟨ωξ, Sωη ⟩ = 0 if and only if ξ is orthogonal to ⟨M ′η⟩;
(3) a projection P in M satisfies Pξ = ξ if and only if Sωξ

≤ P ;
(4) a normal state ω on M is faithful if and only if ⟨ω,U⟩ = ⟨ω, I⟩

implies U = I, for any unitary U in M .

Motivated by the following simple observation, we choose to charac-
terize cyclicity of the right regular representation.

Lemma 1.2. Let G be a locally compact group. A vector ξ ∈ L2(G) is
cyclic for ρ if and only if ωξ is faithful on V N(G).

Proof. For ξ ∈ L2(G), we have ⟨ρ(G)ξ⟩ = ⟨V N(G)′ξ⟩ since
span ρ(G) is strong operator topology dense in V N(G)′. Consequently,
the vector ξ is cyclic for ρ if and only if ⟨V N(G)′ξ⟩ = L2(G). Since Sωξ

has range ⟨V N(G)′ξ⟩, the latter assertion is exactly that Sωξ
= I. �

Let A(G) denote the Fourier algebra of a locally compact group G,
which is the predual of V N(G), and, for T ∈ V N(G) and u ∈ A(G),
define T ·̌u ∈ A(G) by

⟨T ·̌u, S⟩ = ⟨u, ŤS⟩, S ∈ V N(G),

where Ť is the image of T under the adjoint of the check map u 7→ ǔ
on A(G) (here, ǔ(s) = u(s−1)). See [1, page 213]. Proposition 3.17 of
[1] shows that, for u ∈ A(G) ∩ L2(G), we have T ·̌u = Tu, where the
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right hand side is the evaluation of the operator T at the vector u in
L2(G). This fact is necessary in the following lemma, which is key to
establishing the main result.

Lemma 1.3. Let G be a locally compact group. Every nonzero projec-
tion in V N(G) has a nonzero continuous function in its range.

Proof. Let P ∈ V N(G) be a nonzero projection, and choose a unit
vector ξ in its range. Since positive functions span Cc(G), which is in
turn dense in L2(G), we may find a positive f ∈ Cc(G) of norm one
in L2(G) that is not orthogonal to ⟨ρ(G)ξ⟩ so that ⟨ωf , Sωξ

⟩ ̸= 0 by
Lemma 1.1. The function ωf in A(G) is positive definite and pointwise
positive so that ω̌f = ωf and is in A(G) ∩ L2(G) since f has compact
support, whence

Sωξ
(ωf )(e) = (Sωξ

·̌ωf )(e) = ⟨Sωξ
·̌ωf , λ(e)⟩ = ⟨ωf , ˇSωξ

⟩
= ⟨ω̌f , Sωξ

⟩ = ⟨ωf , Sωξ
⟩ ̸= 0.

Thus, Sωξ
(ωf ) = Sωη ·̌ωf is nonzero and in A(G), hence continuous,

and is in the range of P since Sωξ
≤ P , by Lemma 1.1. �

Theorem 1.4. Let G be a locally compact group. The following are
equivalent :

(1) G is first countable;
(2) VN(G) is σ-finite;
(3) the left (equivalently, right) regular representation is cyclic.

Proof. Suppose that (1) holds. Let (Un)
∞
n=1 be a countable neigh-

borhood base at the identity in G, and define ωn = |Un|−1ωχUn
. We

show that the normal state ω =
∑∞

n=1 2
−nωn is faithful. Let T be a

positive operator in V N(G) with ⟨ω, T ⟩ = 0, and let P be the range
projection of T so that ⟨ω, P ⟩ = 0 (see, e.g., [4, Remark 7.2.5]).
Given any vector η in the range of T , we have Sωη ≤ P , and thus,
0 ≤ ⟨ωn, Sωη ⟩ ≤ ⟨ωn, P ⟩ ≤ ⟨ω, P ⟩ = 0, implying that η is orthogonal to
⟨ρ(G)χUn⟩ for each n ≥ 1. If η is continuous, then

η(s) = lim
n

|Uns|−1

∫
Uns

η = lim
n

|Uns|−1⟨η | ρ(s−1)χUn⟩∆(s)1/2 = 0
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for every s ∈ G. Thus, P = 0 by Lemma 1.3; hence, T = 0 and ω is
faithful, so (2) holds.

Normal states on V N(G), being positive definite functions in A(G),
are vector states so that statements (2) and (3) are equivalent by
Lemma 1.2.

We provide the argument of [6] establishing that (2) implies (1).
Suppose that (2) holds, and let ω be a faithful normal state on V N(G).
Fix a compact neighborhood K of the identity in G, and let V be any
open neighborhood of the identity contained in K. We show that the
sets Un = {s ∈ K : |ω(s)− 1| < 1/n} form a neighborhood base at the
identity, for which it suffices to establish that Un is contained in V for
some n ≥ 1. For any s ∈ G with ω(s) = 1, Lemma 1.1 entails that
s = e since ω(s) = ⟨ω, λ(s)⟩. Compactness of K \ V then implies that
ϵ = inf{|ω(s) − 1| : s ∈ K \ V } is strictly positive. Choosing N ≥ 1
with 1/N < ϵ, if s ∈ UN , then s ∈ K and |ω(s)− 1| < ϵ together imply
that s ∈ V . Thus, UN ⊂ V , as required. �
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