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ON THE STRUCTURE OF S2-IFICATIONS
OF COMPLETE LOCAL RINGS

SEAN SATHER-WAGSTAFF AND SANDRA SPIROFF

ABSTRACT. Motivated by work of Hochster and Huneke,
we investigate several constructions related to the S2-
ification T of a complete equidimensional local ring R: the
canonical module, the top local cohomology module, topolog-
ical spaces of the form Spec(R) − V (J), and the (finite sim-
ple) graph ΓR with vertex set Min(R) defined by Hochster
and Huneke. We generalize one of their results by show-
ing, e.g., that the number of connected components of ΓR is
equal to the maximum number of connected components of
Spec(R) − V (J) for all J of height 2. We further investigate
this graph by exhibiting a technique for showing that certain
graphs G can be realized in the form ΓR.

1. Introduction.

Remark 1.1. Throughout this paper, the term ring is short for
“commutative noetherian ring,” and graph is short for “finite simple
(undirected) graph.” In addition, k will be a field, and (R,m, k) will be
a local ring.

This project was motivated by [7], which explores the relation
between indecomposability of canonical and local cohomology modules
and connectedness properties of Spec(R). These ideas originate with
Faltings [4] and Hartshorne [6]. Also, see Eghbali and Schenzel [3] and
Schenzel [12].

Our interest in this subject comes from the connection with S2-
ifications of complete, equidimensional, local rings, where by equidi-
mensional we mean that dim(R/p) = dim(R) for every minimal prime
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p of R. (See Section 2 for S2-ification definition.) Specifically, in our
paper [11], we use [7, Proposition (3.9)] to show that a certain inte-
gral closure must be local. The utility of this construction has led us
to investigate its properties more carefully. In this paper, we focus on
the following construction (appropriately called the “Hochster-Huneke
graph” of R by Zhang [14]) and the subsequent result.

Definition 1.2 ([7, Definition (3.4)]). Assume that R is equidimen-
sional. We denote by ΓR the graph whose vertices are the minimal
primes of R, and whose edges are determined by the following rule: if
p, q are distinct minimal primes of R, then p and q are adjacent in ΓR

if and only if htR(p+ q) = 1.

Remark 1.3 ([7, Theorem (3.6)]). If R is complete and equidimen-
sional, then the following conditions are equivalent:

(a) the local cohomology module HdimR
m (R) is indecomposable;

(b) the canonical module of R is indecomposable;
(c) the S2-ification of R is local;
(d) for every ideal J of height at least two, Spec(R) − V (J) is

connected;
(e) the graph ΓR from Definition 1.2 is connected.

The main result of the current paper is a generalization of this fact,
which requires some notation and discussion.

Remark 1.4. Assume that R is complete. The Krull-Remak-Schmidt
theorem states that a finitely generated R-module decomposes uniquely
as a direct sum of indecomposable R-modules. By Matlis duality, the
same is true for artinian R-modules. For an R-module M which is
either finitely generated or artinian, let ζR(M) denote the number of
summands in a direct sum decomposition of M by indecomposable R-
modules. For a topological space or graph X, let β(X) denote the
number of connected components of X. For a ring S, let m-Spec(S)
denote the set of its maximal ideals.

Here, we provide our generalization of Remark 1.3, which extends a
case of a result of Eghbali and Schenzel [3, Theorem 5.5]. The proof
of Theorem 1.5 is given in Section 2.



STRUCTURE OF S2-IFICATIONS 949

Theorem 1.5. If R is complete and equidimensional, then the follow-
ing quantities are equal.

(a) ζR(H
dimR
m (R));

(b) ζR(ωR), where ωR is a canonical module for R;
(c) |m− Spec(T )|, where T is the S2-ification of R;
(d) max{β(Spec(R) − V (J)) | J is an ideal of R such that htR(J)

≥ 2};
(e) max{β(Spec(R) − V (J)) | J is an ideal of R such that htR(J)

= 2};
(f) β(ΓR).

It is worth noting that the quantity β(ΓR) arises in other contexts.
For instance, in [9, 14] it is shown that, if R is the completion of
the strict hensilization of the completion of an equicharacteristic local
ring A, then β(ΓR) equals the top “Lyubeznik number” λd,d(A).

Recently, there has been greater interest in understanding more
about the graph ΓR. For example, Holmes [8] studied the diameter
of ΓR. Along this line, it is natural to ask whether or not an arbitrary
graph G can be realized as ΓR for some complete local equidimensional
ring R. Toward this end, we introduce the notion of an admissible
labeling for G and prove the following.

Theorem 1.6. Let G be a graph.

(a) If G admits an admissible labeling, then there is a complete
local equidimensional ring R such that ΓR is graph-isomorphic to G.
Moreover, the ring R is of the form k[[X1, . . . , Xn]]/I, where I is gen-
erated by square-free monomials.

(b) Conversely, if I is a ideal of k[[X1, . . . , Xn]] generated by mono-
mials such that the quotient R = k[[X1, . . . , Xn]]/I is equidimensional,
then the graph ΓR admits an admissible labeling.

Admissible labelings and the proof of this result are the subject of
Section 3. In particular, see Definition 3.1 and the proof of Theorem 1.6.
Note that, after the initial posting of this result, a complete an-
swer to this question was given by Benedetti, Bolognese and Varbaro
[1, Corollary 3.6] using geometric techniques, in contrast with our
combinatorial techniques. See the end of Section 3 for more details.
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2. Connected components, maximal ideals and indecompos-
able summands.

Remark 2.1. Throughout this section, we assume that R, in addition
to being local, is complete and equidimensional. Let T be the S2-
ification (see Definition 2.2 or [7, Section 2]) of R and ωR the canonical
module of R, whence T ∼= HomR(ωR, ωR). Recall that the symbols ζ
and β are as described in Remark 1.4.

Definition 2.2 ([7, Discussion (2.3)]). If R has no embedded associ-
ated primes, then an R-subalgebra T of the total ring of quotients of
R is an S2-ification of R if:

(i) T is module finite over R;
(ii) T satisfies the Serre condition (S2) over R; and
(iii) Coker(R→ T ) has no prime ideal of R of height less than two

in its support.

When R is equidimensional, possibly with embedded associated primes,
then, by an S2-ification of R, we mean an S2-ification of R/j(R), where
j(R) is the largest ideal, which is a submodule of R of dimension smaller
than that of R.

This section is devoted to establishing the equivalent conditions in
Theorem 1.5. Note that, if dim(R) ≤ 1, then the quantities (a)–(f)
in Theorem 1.5 are all 1. Thus, we may take dim(R) ≥ 2, although
that assumption is unnecessary unless expressly stated. Some of the
equalities are consequences of results found in the existing literature.
To wit:

Proposition 2.3 ([3]). Under the assumptions in Remark 2.1, if
dim(R) ≥ 2, then

β(ΓR) = ζR(H
dimR
m (R)) = ζR(ωR) = |m- Spec(T )|.

Sketch of the proof. If any of the values in question is equal to one,
then they are all equal to one by Remark 1.3; thus, suppose that each
is at least two. Then, the statement follows as the special case I = m,
taking Q = (0) of [3, Theorem 5.5]. We provide an outline of the
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beginning of the argument for completeness in this particular case and
to set the notation used in the sequel.

Write ΓR = Γ1

⊔
· · ·

⊔
Γt, where the Γj are connected components

of the graph ΓR and t ≥ 2. For j = 1, . . . t, let Vj = {pj1, pj2, . . . , pjaj}
be the vertex set of Γj , that is, the set of (distinct) minimal primes
of R in the component Γj . In particular, we assume that aj = |Vj |
and Vi

∩
Vj = ∅ for i ̸= j. For each j, let Ij denote the intersection

of all pji-primary components of a minimal primary decomposition of
the zero ideal (0) of R, i.e., Ij =

∩aj

i=1 qji, where qji is pji-primary. Set

Jk =
∩k

j=1 Ij . For k = 2, . . . , t, there is an exact sequence

0 −→ R/Jk −→ R/Jk−1

⊕
R/Ik −→ R/(Jk−1 + Ik) −→ 0,

from which there is a long exact sequence of local cohomology modules:

· · ·HdimR−1
m (R/(Jk−1 + Ik)) −→ HdimR

m (R/Jk)

−→ HdimR
m (R/Jk−1 ⊕R/Ik) −→ HdimR

m (R/(Jk−1 + Ik)) · · · .

Let P be a prime ideal of R that contains Jk−1 + Ik. Since P ⊇ Ij for
some j < k, it follows that P ⊇ pji for some i. Likewise, P contains pkl
for some l, i.e., P ⊇ pkl + pji. Since ΓR is disconnected and j ̸= k, we
have htR(pkl + pji) ≥ 2. It follows that dimR/(Jk−1, Ik) < dimR− 1.
Consequently, the two modules, in the long exact sequence shown
above, bookending the middle pair, are both zero. As a result, for
each k = 2, . . . , n,

HdimR
m (R/Jk) ∼= HdimR

m (R/Jk−1)
⊕

HdimR
m (R/Ik).

Since J1 = I1, Jk =
∩k

j=1 Ij and Jt = (0), we have

HdimR
m (R) ∼=

t⊕
k=1

HdimR
m (R/Ik),

so t = ζR(H
dimR
m (R)). By Matlis duality, a canonical module for R is

ωR
∼= HdimR

m (R)∨, and hence, t = ζR(ωR). The remainder of the proof
follows as in that of [3, Theorem 5.5]. �

Thus, it remains to show the equivalence of (d) and (e) in Theo-
rem 1.5 with the other quantities.
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Proposition 2.4. Under the assumptions of Remark 2.1, if J is an
ideal of R such that htR(J) ≥ 2, then β(Spec(R) − V (J)) ≤ |m-
Spec(T )|.

Proof. Set t := |m- Spec(T )|. Since t = 1 if and only if Spec(R) −
V (J) is connected for every ideal J of R such that htR(J) ≥ 2 by
Remark 1.3, assume that t ≥ 2. Let P be a prime ideal of T such
that P ⊇ JT . Then, htT (P ) ≥ htT (JT ) = htR(J) ≥ 2, by [7, Pro-
position (3.5)(b)]. Since T decomposes as a product of local rings
T = T1 × · · · × Tt by [7, Remark (2.2)(k)], there exist unique i and
Pi ∈ Spec(Ti) such that

P = T1 × · · · × Ti−1 × Pi × Ti+1 × · · · × Tt.

In other words, there is a containment-respecting bijection

Spec(T ) �
t⊔

i=1

Spec(Ti).

It is straightforward to show that, under this bijection, P ∈ V (JT )
if and only if Pi ∈ V (JTi), that is, there is another containment-
respecting bijection

Spec(T )− V (JT ) �
t⊔

i=1

(Spec(Ti)− V (JTi)).

It follows that these bijections are homeomorphisms for the topologies
induced by the Zariski topologies.

Next, if Pi ∈ V (JTi), then, taking P as above, we have P ⊇ JT , and
htTi(Pi) = htT (P ) ≥ 2. Consequently, htTi(JTi) ≥ 2. Moreover, for
each i, the set Spec(Ti)−V (JTi) is non-empty since htTi(JTi) ≥ 2. The
implication of this is that each space Spec(Ti)−V (JTi) is connected. In
order to be specific, the ring Ti satisfies the assumptions of Remark 2.1
as well as the (S2) condition; thus, Ti is its own S2-ification, and, since
it is local, the equivalent conditions of Remark 1.3 apply. From this,
we conclude that β(Spec(T )− V (JT )) = t.

We claim that β(Spec(R) − V (J)) ≤ t. Recall that, if X → Y is
a continuous and surjective map of topological spaces, then β(X) ≥
β(Y ). Apply this to the map

f : Spec(T )− V (JT ) −→ Spec(R)− V (J),
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which is induced from the map

F : Spec(T ) −→ Spec(R).

The latter map is given by contraction and is onto since R → T is
an integral extension. The map f is well-defined, due to the fact that
F−1(V (J)) = V (JT ), as well as surjective since F is surjective. �

The next result is the last component necessary for establishing the
equivalent conditions in Theorem 1.5.

Proposition 2.5. Under the assumptions of Remark 2.1, if dim(R) ≥
2, then there is an ideal I of R such that htR(I) = 2 and β(Spec(R)−
V (I)) = β(ΓR).

Proof. Set t = β(ΓR), and, as above, assume that t ≥ 2. As (with
the same notation) in the proof of Proposition 2.3, write

ΓR = Γ1

⊔
· · ·

⊔
Γt,

where the Γi are connected components of the graph ΓR. For all pairs
of distinct integers i, j ∈ {1, . . . , t}, set

ri =

ai∩
j=1

pij , sij = ri + rj , J =
∩
i ̸=j

sij .

Set V ◦(ri) equal to the set of primes of R containing ri but not J , i.e.,

V ◦(ri) = V (ri)− V (J) = (Spec(R)− V (J))
∩
V (ri).

Since
∩

i ri is the intersection of all the minimal primes of R, we have

Spec(R)− V (J) = V ◦(r1)
∪

· · ·
∪
V ◦(rt).

If P ∈ V ◦(ri)
∩
V ◦(rj) for some i ̸= j, then P ⊇ sij ⊇ J , a contradic-

tion to the definition of V ◦(ri). Therefore, the union is disjoint.

Next, we note that htR(J) ≥ 2 since htR(J) = min{htR(sij) | 1 ≤
i < j ≤ t}, and, if htR(sij) ≤ 1, then it follows that htR(pik + pjl) ≤ 1
for some minimal primes of R in the disjoint components Vi and Vj ,
respectively, a contradiction. Each V ◦(ri) is closed in Spec(R)− V (J)
by definition of the topology of Spec(R)−V (J), which is induced by the



954 SEAN SATHER-WAGSTAFF AND SANDRA SPIROFF

Zariski topology on Spec(R). In addition, V ◦(ri) is non-empty since
pim ∈ V ◦(ri) for m = 1, . . . , ai.

If htR(J) = 2, then J has the desired properties, i.e., take I = J .
Thus, assume that htR(sij) ≥ 3 for each pair i ̸= j. Write

√
s12 =

m∩
ℓ=1

Qℓ,

where each Qℓ is a prime such that htR(Qℓ) ≥ 3. Let q be a height
two prime in Q1 that contains a minimal prime, say p1j . Then, r1 ⊆ q.
Consider the ideals

t12 = q
∩( m∩

ℓ=2

Qℓ

)
and

J∗ = t12
∩( ∩

{i,j}≠{1,2}

sij

)
.

Using V ∗(ri) = (Spec(R)−V (J∗))
∩
V (ri) as in the previous paragraph,

we see that, by construction, the height of J∗ is exactly two. In this
case, J∗ has the desired properties; take I = J∗. �

This completes the proof of Theorem 1.5.

The result below is a corollary to Proposition 2.5 in the case where
dim(R) = 2. In the statement, we have the Lyubeznik number

λ0,1(A) = dimk(HomQ(k,H
n−1
I (Q))),

where Q is an n-dimensional regular local ring and I is an ideal of Q
such that A ∼= Q/I. See [13, 14] for more details.

Corollary 2.6. Under the assumptions of Remark 2.1, if dim(R) = 2,
then β(Spec◦(R)) = β(ΓR), where Spec◦(R) = Spec(R) − {m} is the
punctured spectrum of R. Moreover, if R is the completion of the
strict Hensilization of a complete equicharacteristic local ring A, then
β(ΓR) = λ0,1(A) + 1.

Proof. Since dim(R) = 2, the condition htR(I) = 2 is equivalent to√
I = m. The second statement follows from [13, Proposition 3.1] and

[14]. �
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3. Graph labeling and realizing graphs as ΓR. We introduce
labeling for graphs G which provides a method for constructing rings R
such that ΓR is graph-isomorphic to G. Intuitively, the labeling works
as follows. Each vertex in the vertex set V of G is assigned a distinct
address consisting of s distinct numbers, from a set of size n, such that
two vertices are adjacent if and only if their addresses differ by exactly

one number. Set [n] = {1, . . . , n}, and let
(
[n]
s

)
denote the set of subsets

of [n] with cardinality s. More precisely, we have the following:

Definition 3.1. An admissible labeling of G is an injective function

ϕ : V ↩→
(
[n]
s

)
, for some choice of n and s, satisfying the following con-

ditions:

(1) ϕ(v1)
∪
· · ·

∪
ϕ(vd) = [n], where V = {v1, . . . , vd}; and

(2) for all vertices v and w, we have v adjacent to w inG if and only if
|ϕ(v)

∩
ϕ(w)| = s−1, that is, if and only if |ϕ(v)

∪
ϕ(w)| = s+1.

Remark 3.2. The graphs that admit admissible labelings are precisely
the graphs isomorphic to induced subgraphs of Johnson graphs studied
in [10].

As the terminology suggests, we visualize admissible labelings by
placing labels on the vertices of a graph, as in Figure 1.

.

.12

.56

.45.34

.23

.12

.15

.45.34

.23

.1

.2

.3.4

.5

.1234

.2348

.1247.1346

.1235

.(1) .(2) .(3) .(4)

Figure 1.

Lemma 3.3.

(1) If G has an admissible labeling ϕ : V ↩→
(
[n]
s

)
, then each induced

subgraph G′ has an admissible labeling ϕ′ : V ′ ↩→
(
[n′]
s

)
for some n′ ≤ n.

(2) G has an admissible labeling ϕ : V ↩→
(
[n]
1

)
if and only if G is

complete.
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Proof.

(1) Let V ′ be the vertex set for G′, and reorder the elements of [n]
to assume that

∪
v∈V ′ ϕ(v) is of the form [n′] for some n′ ≤ n. Define

ϕ′ : V ′ ↩→
(
[n′]
s

)
by the formula ϕ′(v) := ϕ(v). Since two vertices in V ′

are adjacent in G′ if and only if they are adjacent in G, it readily follows
by definition that ϕ′ is an admissible labeling of G′.

(2) The proof is straightforward. �

Proof of Theorem 1.6. Set Q = k[[X1, . . . , Xn]]. For each subset

A = {i1, . . . , is} in

(
[n]

s

)
,

set PA = (Xi1 , . . . , Xis)Q.

(a) Let ϕ : V ↩→
(
[n]
s

)
be an admissible labeling of G. Define

I =
∩
v∈V

Pϕ(v),

and set R = Q/I. For instance, denote graph (1) from Figure 1 as
G(1); then, the vertices of G(1) are labeled 12, 23, 34, 45, 56. Thus, the
ideal I in this case is
(3.1)

I = (X1, X2)Q
∩

(X2, X3)Q
∩

(X3, X4)Q
∩

(X4, X5)Q
∩

(X5, X6)Q.

In general, since I is defined as an intersection of square-free monomial
ideals PA of Q, it follows that I is also a square-free monomial ideal
of Q. Since the prime ideals PA in this intersection are all generated
by the same number of variables, namely, s, there is no non-trivial
containment between these primes; hence, the minimal primes of R
are exactly the ideals of the form Pϕ(v)R with v ∈ V . Moreover, this
implies that R is equidimensional with dim(R) = n− s.

In order to show that ΓR is isomorphic to G, further note that the
sum of two minimal primes

p = (Xi1 , . . . , Xis)R

and
q = (Xj1 , . . . , Xjs)R
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has height one if and only if the sets {i1, . . . , is} and {j1, . . . , js} differ
by exactly one element. For instance, using the ideal (3.1), the sum
(X1, X2)R + (X2, X3)R = (X1, X2, X3)R has height one in R = Q/I;
thus, the vertices (X1, X2)R and (X2, X3)R of ΓR are adjacent in ΓR,
just as the vertices of G(1) labeled 12 and 23 are adjacent in G(1). On
the other hand, the sum

(X1, X2)R+ (X3, X4)R = (X1, X2, X3, X4)R

has height two in R; thus, the vertices (X1, X2)R and (X3, X4)R are not
adjacent in ΓR, just as the vertices labeled 12 and 34 are not adjacent
in G(1).

(b) Conversely, let I be a monomial ideal of Q such that the quotient
R = Q/I is equidimensional of dimension n − s. Then, the minimal
primes of R are all of the form

(Xi1 , . . . , Xis)R = PAR,

where A = {i1, . . . , is} ∈
(
[n]
s

)
. As in the proof of (a), the sum of two

such primes
p = (Xi1 , . . . , Xis)R

and
q = (Xj1 , . . . , Xjs)R

has height one if and only if the subscript sets {i1, . . . , is} and
{j1, . . . , js} differ by exactly one element. From the definition of an
admissible labeling, it follows that the subscript sets define an admis-

sible labeling of ΓR. Specifically, the function ϕ : V ↩→
(
[n]
s

)
is defined

as
ϕ((Xi1 , . . . , Xis)R) = {i1, . . . , is}. �

Example 3.4. The constructive proof of Theorem 1.6 shows how to
obtain rings with Hochster-Huneke graphs isomorphic to those given in
Figure 1. Moreover, given a positive integer n:

(1) for n ≥ 3, for the ring

R =
k[[X1, . . . , Xn]]

(X1, X2)
∩
(X2, X3)

∩
· · ·

∩
(Xn−1, Xn)

∩
(Xn, X1)

,

the graph ΓR is Cn, the cycle graph with n vertices, which has girth n
and diameter ⌊n/2⌋.
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(2) For R = k[[X1, . . . , Xn]]/(X1 · · ·Xn), we have ΓR=Kn, the com-
plete graph on n vertices.

The path Pn may be similarly realized, as well as the specific star graph
Figure 1 (4); for more general star graphs, see Proposition 3.7.

The next two results give bounds on the numbers n, d = |V | and s
from Definition 3.1. Prior to the proofs, we recall that, for a connected
graph G with vertex set V , a spanning tree of G is a tree T that is a
subgraph of G with vertex set V , and that every connected graph has
a spanning tree.

Proposition 3.5. Let G be a graph with d = |V | and an admis-

sible labeling ϕ : V ↩→
(
[n]
s

)
. Let v1, . . . , vm be vertices in G such

that the subgraph of G induced by v1, . . . , vm is connected. Then,
|ϕ(v1)

∪
· · ·

∪
ϕ(vm)| ≤ s + m − 1. In particular, if G is connected,

then n ≤ s+ d− 1.
Proof. Induct on m. If m = 1, then |ϕ(v1)| = s = s+1− 1, and the

base case is established. Now, assume the claim is true for lists of m
vertices, and consider vertices v1, . . . , vm, vm+1 such that the induced
subgraph G′ of G is connected. Let T be a spanning tree of G′. Since T
is a tree, we may reorder the vertices (if necessary) in order to assume
that the subgraph of T induced by v1, . . . , vm is also connected, and
vm+1 is adjacent to v1 in T . (For instance, let vm+1 be a leaf adjacent
to v1.)

The inclusion-exclusion principle implies that∣∣∣ϕ(v1)∪ · · ·
∪
ϕ(vm+1)

∣∣∣ = ∣∣∣ϕ(v1)∪ · · ·
∪
ϕ(vm)

∣∣∣+ |ϕ(vm+1)|

−
∣∣∣(ϕ(v1)∪ · · ·

∪
ϕ(vm)

)∩
ϕ(vm+1)

∣∣∣.
By the induction hypothesis, the first term on the right-hand side of
this equation is less than or equal to s +m − 1. The second term on
the right may be rewritten as∣∣∣(ϕ(v1)∩ϕ(vm+1)

)∪
· · ·

∪(
ϕ(vm)

∩
ϕ(vm+1)

)∣∣∣,
which is greater than or equal to s − 1 since vm+1 is adjacent to v1,
and hence, |ϕ(v1)

∩
ϕ(vm+1)| = s− 1. Therefore, as desired, we have∣∣∣ϕ(v1)∪ · · ·

∪
ϕ(vm+1)

∣∣∣ ≤ (s+m−1) + s− (s−1) = s+(m+1)−1.

The last statement is from the equality ϕ(v1)
∪
· · ·

∪
ϕ(vd) = [n]. �
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Proposition 3.6. Let G be a graph with d = |V | and an admissible
labeling ϕ : V ↩→

(
[n]
s

)
. Let v1, . . . , vm be vertices in G such that the

subgraph of G induced by v1, . . . , vm is connected. Then,∣∣∣ϕ(v1)∩ · · ·
∩
ϕ(vm)

∣∣∣ ≥ s−m+ 1.

In particular, if G is connected, then∣∣∣ϕ(v1)∩ · · ·
∩
ϕ(vd)

∣∣∣ ≥ s− d+ 1.

Proof. Induct on m. If m = 1, then |ϕ(v1)| = s = s− 1+ 1, and the
base case is established. Now assume the claim is true for lists of m
vertices, and consider vertices v1, . . . , vm, vm+1 such that the induced
subgraph G′ of G is connected. Let T be a spanning tree of G′, and,
as in the previous proof, assume that the subgraph of T induced by
v1, . . . , vm is also connected and vm+1 is adjacent to v1 in T . The
inclusion-exclusion principle yields:

(3.2)
∣∣∣(ϕ(v1)∩ · · ·

∩
ϕ(vm)

)∪
ϕ(vm+1)

∣∣∣
=

∣∣∣ϕ(v1)∩ · · ·
∩
ϕ(vm)

∣∣∣+ |ϕ(vm+1)|

−
∣∣∣(ϕ(v1)∩ · · ·

∩
ϕ(vm)

)∩
ϕ(vm+1)

∣∣∣.
By the induction hypothesis, the first term on the right-hand side of
this equation is greater than or equal to s−m+ 1. The left-hand side
may be rewritten as:∣∣∣(ϕ(v1)∪ϕ(vm+1)

)∩
· · ·

∩(
ϕ(vm)

∪
ϕ(vm+1)

)∣∣∣
≤

∣∣∣ϕ(v1)∪ϕ(vm+1)
∣∣∣ = s+ 1.

Therefore, equation (3.2) implies that

s+ 1 ≥
∣∣∣(ϕ(v1)∩ · · ·

∩
ϕ(vm)

)∪
ϕ(vm+1)

∣∣∣
≥ (s−m+ 1) + s−

∣∣∣ϕ(v1)∩ · · ·
∩
ϕ(vm)

∩
ϕ(vm+1)

∣∣∣,
and thus, |ϕ(v1)

∩
· · ·

∩
ϕ(vm)

∩
ϕ(vm+1)| ≥ s− (m+ 1) + 1. �

Our next result shows that the bounds from Propositions 3.5 and
3.6 are sharp; the star graph in Figure 1 provides a specific example.



960 SEAN SATHER-WAGSTAFF AND SANDRA SPIROFF

Proposition 3.7. Let G be the star graph on d ≥ 2 vertices, i.e., the
complete bipartite graph K1,d−1. Then, G has an admissible labeling

ϕ : V −→
(
[2(d− 1)]

d− 1

)
such that ϕ(v1)

∩
· · ·

∩
ϕ(vd) = ∅. Furthermore, any admissible labeling

ψ : V ↩→
(
[n]
s

)
of G has s ≥ d − 1, n = s + d − 1 ≥ 2(d − 1) and

|ϕ(v1)
∩
· · ·

∩
ϕ(vd)| = s− d+ 1.

Proof. By definition, G has a vertex vd with degree d − 1, and all
other vertices v1, . . . , vd−1 have degree one. (Note that vd is uniquely
determined unless d = 2.) Define

ϕ : V −→
(
[2(d− 1)]

d− 1

)
as follows:

ϕ(vd) = {1, . . . , d− 1}

and
ϕ(vi) = {1, . . . , d− 1} − {i}

∪
{d− 1 + i}

for i = 1, . . . , d − 1. It is straightforward to verify that, for i < j < d,
we have

ϕ(vi)
∩
ϕ(vd) = {1, . . . , d− 1} − {i},

and similarly,

ϕ(vi)
∩
ϕ(vj) = {1, . . . , d− 1} − {i, j}.

Moreover,

ϕ(v1)
∪

· · ·
∪
ϕ(vd) = {1, . . . , 2(d− 1)} = [2(d− 1)];

thus, ϕ is an admissible labeling of G. From the explicit description of
ϕ, it may be verified that ϕ(v1)

∩
· · ·

∩
ϕ(vd) = ∅.

Now, suppose that ψ : V ↩→
(
[n]
s

)
is an admissible labeling. We claim

that the elements of [n] can be reordered such that

ψ(vi) = (ψ(vd)− {i})
∪

{s+ i}

for i = 1, . . . , d − 1. In order to prove this, begin by reordering the
elements of [n] to assume that ψ(vd) = {1, . . . , s}. Consider the edge
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v1vd. Since |ψ(v1)
∩
ψ(vd)| = s− 1, it follows that

ψ(v1) = (ψ(vd)− {a})
∪

{b}

for some a ∈ [s] and some b ∈ [n] − [s]. Thus, the elements of [n] can
be reordered to assume that

ψ(v1) = (ψ(vd)− {1})
∪

{s+ 1} = {2, . . . , s, s+ 1}.

Next, consider the edge v2vd. As with the previous edge, ψ(v2) =
(ψ(vd)−{p})

∪
{q} for some p ∈ [s] and some q ∈ [n]−[s]. If p = 1, then

2, . . . , s ∈ ψ(v1)
∩
ψ(v2); however, v1 is not adjacent to v2. Therefore,

|ψ(v1)
∩
ψ(v2)| ≤ s − 2, a contradiction. It follows that 2 ≤ p ≤ s;

hence, the set {2, . . . , s} can be reordered to assume that p = 2. Sim-
ilarly, q > s + 1; thus, the set {s + 2, . . . , n} can be reordered to
assume that q = s + 2. Continue in this manner for the edges vivd
with i = 3, . . . , d− 1 to complete the proof of the claim.

Consequently, we must have 1, . . . , d − 1 ∈ [s]. It follows that s ≥
d − 1, establishing the first conclusion of our result. For the second
conclusion, note that the sets ψ(vd), ψ(v1), ψ(v2), . . . , and ψ(vd−1) are
{1, . . . , s}, {2, . . . , s, s + 1}, {1, 3, . . . , s, s + 2}, . . . , and {1, 2, . . . , d −
2, d, . . . , s, s + d − 1}, respectively. From this description, the largest
integer which occurs in any set ψ(vp) is s+d−1. Since

∪
p ψ(vp) = [n],

it follows that the largest number n in this set is s + d − 1. For the
final conclusion, use the preceding description to observe that

ϕ(v1)
∩

· · ·
∩
ϕ(vd) = {d, . . . , s},

which has cardinality s− d+ 1, as desired. �
We conclude with some connections between our results and those

from [1]. Some classes of graphs that have admissible labelings are
cycles and complete graphs (by Example 3.4), totally disconnected
graphs (straightforward), and trees (by induction on the number of
vertices). On the other hand, not every graph has an admissible la-
beling as is shown in Figure 2. Before this, we provide an explicit
characterization of the graphs that have admissible labelings.

Definition 3.8. Let ∆ be a pure simplicial complex. The dual graph of
∆ has vertices equal to the facets F1, . . . , Fd of ∆ such that distinct Fi

and Fj are adjacent in the dual graph, provided that their intersection
contains a face of one smaller dimension.
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Theorem 3.9. A graph G has an admissible labeling if and only if it
is isomorphic to the dual graph of a pure simplicial complex.

Proof. For the forward implication, assume that G has an admissible
labeling. Theorem 1.6 (a) implies that there is an equidimensional ideal
I of S = k[[X1, . . . , Xn]] generated by square-free monomials such that
the quotient R = S/I has a Hochster-Huneke graph isomorphic to G.
The standard correspondence between square-free monomial ideals and
simplicial complexes provides a pure simplicial complex ∆ such that I
is the Stanley-Reisner ideal, of ∆ in S. From [2, Lemma 2.7], we
conclude that the dual graph of ∆ is isomorphic to ΓR

∼= G.

Conversely, assume that G is isomorphic to the dual graph of a
pure simplicial complex ∆ on a vertex set with n elements. Set S =
k[[X1, . . . , Xn]], let I be the Stanley-Reisner ideal of ∆ in S and set
R = S/I. Again, by [2, Lemma 2.7], we conclude that the dual graph
G of ∆ is isomorphic to ΓR; therefore, Theorem 1.6 (b) implies that G
has an admissible labeling. �

The graphs [1, Proposition 3.5] in Figure 2 do not have admissible
labelings.

.

.A .B .C

.D.E.F

.G1
.G2

.G3
.G4

Figure 2.

We show that G4 does not admit a labeling since a similar argument
works for the other graphs. From Proposition 3.6, assume that the size s
of the labelings is at most five. Suppose that there is an admissible
labeling ψ with s = 5 since any redundancy can eventually be deleted.

Let ψ(A) = {1, 2, 3, 4, 5} and ψ(F ) = {1, 2, 3, 4, 6}. There are essen-
tially two choices of label for B:

{1, 2, 3, 4, 7} or {a, b, c, 5, 6},
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where a, b, c ∈ {1, 2, 3, 4}. Moreover, the same two types of choices also
exist for E. Thus, there are two cases to consider, namely, whether B
and E take the same type of label or different types. However, in the
former case, the labels for B and E will differ by only a single digit, a
contradiction to the fact that the vertices are not adjacent. Thus, B
and E must have labels of different types. Without loss of generality,
assume that ψ(B) = {1, 2, 3, 4, 7} and that ψ(E) contains the digits 5
and 6. By symmetry of the choices regarding subsets of {1, 2, 3, 4}, we
may assume that ψ(E) = {1, 2, 3, 5, 6}. We obtain a contradiction via
the vertex C.

The label ψ(C) must include the digits 6 and 7 for, if the label for
C includes any 4-tuple from the set {1, 2, 3, 4, 5}, then C would be
adjacent to A. However, the remaining three digits of the label must
come from the set {1, 2, 3} since ψ(C) must share exactly four digits
with both ψ(B) and ψ(E). Note that each of the four possibilities
of {1, 2, 3, 6, 7}, {1, 2, 4, 6, 7}, {1, 3, 4, 6, 7} and {2, 3, 4, 6, 7} for ψ(C)
forces an edge between F and C, a contradiction.

Remark 3.10. The result [1, Corollary 3.6] shows that every graph is
the Hochster-Huneke graph of a complete equidimensional local ring.
This is proven by using the dual graph of a complex projective curve
C, which has vertices equal to the irreducible components C1, . . . , Cd

of C such that distinct Ci and Cj are adjacent in the dual graph,
provided that their intersection is non-trivial. Using projective line
configurations and blowing-up, the authors showed that, for every con-
nected graph G, there is a projective curve C with dual graph iso-
morphic to G; furthermore, localizing the homogeneous coordinate ring
of C at the irrelevant maximal ideal and then completing yields a local
ring R such that ΓR

∼= G.

Given that every graph can be realized from this process, it is natural
to ask which complex projective curves yield graphs with admissible
labelings. We answer this question in our final result below.

Definition 3.11. Let C be a complex projective curve with irreducible
components C1, . . . , Cd. An admissible labeling of C is an injective
function

ϕ : {C1, . . . , Cd} ↩→
(
[n]

s

)
,
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for some choice of n and s, satisfying the following conditions:

(1) ϕ(C1)
∪
· · ·

∪
ϕ(Cd) = [n]; and

(2) two distinct components Ci and Cj intersect if and only if

|ϕ(Ci)
∩
ϕ(Cj)| = s− 1,

that is, if and only if

|ϕ(Ci)
∪
ϕ(Cj)| = s+ 1.

(Compare this with Definition 3.1.)

Proposition 3.12. Let C be a complex projective curve with dual
graph G. Then, C has an admissible labeling if and only if G has an
admissible labeling.

Proof. The proof follows directly from the relevant definitions that
an admissible labeling of C yields an admissible labeling of G, and vice
versa. �
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