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A NOTE ON SUMS OF ROOTS

TIMOTHY FERDINANDS AND ANNETTE PILKINGTON

ABSTRACT. In this paper, we look at properties of roots
which can be written as sums of roots in crystallographic
root systems. We derive properties of the poset associated to
such a sum consisting of the subsums which are themselves
roots.

1. Introduction. Bourbaki [1, Chapter VI] discussed basic prop-
erties of crystallographic root systems of finite Weyl groups which are
of fundamental importance in Lie theory. In particular, it was shown
that, given a set of positive roots α1, α2, . . . , αn, in a crystallographic
root system Φ such that α1+α2+ · · ·+αn is a root, we can find a per-
mutation π of the indices 1, . . . , n, such that απ(1)+απ(2)+ · · ·+απ(i) is
a root for 1 ≤ i ≤ n. In this paper, we include a generalization of this
result due to Dyer, and we examine the structure of a poset associated
to such a set of roots.

If Φ is a crystallographic root system and α1, α2, . . . , αn ∈ Φ has
the property that α1 + α2 + · · ·+ αn ∈ Φ, we can define an associated
poset. Let αI =

∑
i∈I αi for I ⊆ [n] = {1, 2, . . . , n}. The set

C = {I ⊆ [n] | αI ∈ Φ}

forms a poset under the containment partial order. In this paper, we
show that, for a given i with 1 ≤ i ≤ n, the cardinality of the set
{I ∈ C | |I| = i} is always greater than or equal to n − i + 1, and C
is a graded poset. Furthermore, given any k ∈ [n] and any 1 ≤ i ≤ n,
there is at least one I ∈ C with |I| = i and k ∈ I. We show that, when
the root system Φ is of type An, the poset C is a lattice, but give a
counterexample to show that, this is not the case in general.
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2. Notation and definitions.

Definition 2.1. Let V be a finite-dimensional vector space over R with
a positive definite, symmetric bilinear form (−|−) : V × V → R. Let
Φ be a subset of V . Then, Φ is said to be a root system in V if the
following conditions are satisfied:

(1) Φ is finite, does not contain 0, and spans V .
(2) For all α ∈ Φ, the reflection sα : V → V , defined by sα(v) = v−

(α | α∨)α, where

α∨ =
2α

(α | α)
,

leaves Φ stable.
(3) For α, ϕ ∈ Φ, (ϕ | α∨) ∈ Z.

This type of root system is frequently referred to as a crystallographic
root system.

We can choose a system Φ+ of positive roots for Φ as in Bourbaki [1,
Theorem 3]. Then, Φ = Φ+∪Φ− is a disjoint union where −Φ+ = Φ−.
If α, β ∈ Φ such that β = cα, where c ∈ R, then c ∈ {±1,±1/2,±2}
[1, Proposition 8]. If a root α ∈ Φ is such that 1/2α /∈ Φ, then α is
called an indivisible root.

Definition 2.2. A root system Φ is reduced if every root of the system
is indivisible.

We let Φ′ = Φ ∪ {0}. If Φ is reduced, Φ′ is the set of weights of
the adjoint representation of the corresponding semisimple complex Lie
algebra. The set {i ∈ Z | 1 ≤ i ≤ n} will be denoted by [n]. For π ∈ Sn,
the permutations of [n], and I ⊆ [n], let π(I) denote {π(j) | j ∈ I}. If
αi ∈ Φ′ for i ∈ [n] and I ⊆ [n], we let αI =

∑
i∈I αi (here, α∅ = 0).

3. Sums of roots. If α ∈ Φ and β ∈ Φ′, we will refer to the set
{β + kα | k ∈ Z} ∩ Φ′ as a root string. We have the following results
on root strings from Bourbaki [1] and from Dyer (unpublished).

Lemma 3.1 ([1, Chapter VI, Propositions 8, 9 and Theorem 1]). Let
α ∈ Φ and β ∈ Φ′.
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(i) {k ∈ Z | β + kα ∈ Φ′} = [−q, p] for some p, q ≥ 0, p, q ∈ Z,
with p− q = −⟨β, α∨⟩.

(ii) If ⟨β, α∨⟩ > 0, then β − α ∈ Φ′ and, if ⟨β, α∨⟩ < 0, then
β + α ∈ Φ′.

Proposition 3.2 ([1, Chapter VI, Proposition 19]). Let {βi}1≤i≤n be
a sequence of positive roots such that β[n] is a root. Then, there exists
a permutation π ∈ Sn such that βπ([i]) is a root for 1 ≤ i ≤ n.

A version of the following lemma involving more restrictive hypothe-
ses is applied in [3] to give an elementary proof, independent of the
theory of semisimple Lie algebras, of a lemma of Oshima on parabolic
subgroup orbits on finite root systems. The main result of this paper,
Theorem 3.7, extends part (ii) of Lemma 3.3 from a set of three roots to
a set of n roots. It would be interesting to have a proof of Theorem 3.7
in the case where Φ is reduced using semisimple complex Lie algebras,
similar to that stated in [3, Remark 4.2(2)] for the case n = 3.

Lemma 3.3 ([3]). Let α1, α2, . . . , αn ∈ Φ′ be such that α[n] ∈ Φ′.
Then:

(i) there exists a permutation π ∈ Sn such that απ([i]) ∈ Φ′ for
1 ≤ i ≤ n.

(ii) Suppose that n = 3 and α1 + α2 ∈ Φ, but α2 + α3 /∈ Φ′. Then,
α1 + α3 ∈ Φ′.

(iii) Assume that αI ̸= 0 if ∅ ( I ⊆ [n] and αi+αj /∈ Φ for any i, j
with 2 ≤ i < j ≤ n. Then, αI ∈ Φ for all I ⊆ [n] with 1 ∈ I.

Note 3.4. If αi ∈ Φ+ for all i ∈ [n], then, for ∅ ̸= I ⊆ [n], αI ∈
Φ′ ⇔ αI ∈ Φ+.

Proof. The proof is trivial if n ≤ 2. If n ≥ 2, we use induction on n.

(i)

Case 1. α = α[n] ̸= 0. Here, (α, α) =
∑

i∈[n](α, αi) > 0; thus, there

exists an i ∈ [n] with (α, αi) > 0. Without loss of generality, we may
assume that i = n. Then, (α, αn) > 0, which implies that ⟨α, α∨

n⟩ > 0,
which, in turn, implies that α[n−1] = α−αn ∈ Φ′. By induction, there
exists a σ̂ ∈ Sn−1 such that ασ̂([i]) ∈ Φ′ for i ∈ [n− 1]. We can extend
σ̂ to σ ∈ Sn with σ(n) = n. Then, ασ([i]) ∈ Φ′ for i ∈ [n].
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Case 2. α[n] = 0. In this case, α[n−1] = −αn ∈ Φ′. By induction,
there exists a σ̂ ∈ Sn−1 with ασ̂([i]) ∈ Φ′ for i ∈ [n− 1]. We can extend
σ̂ to σ ∈ Sn with σ(n) = n. Then, ασ([i]) ∈ Φ′ for i ∈ [n].

(ii) Suppose that α1+α2 ∈ Φ, α2+α3 /∈ Φ′ and α1+α3 /∈ Φ′. Since
α2 ∈ Φ′ and α2 + α3 /∈ Φ′, α3 ̸= 0; thus, α3 ∈ Φ. Hence, α3 + α2 /∈ Φ′,
α2 ̸= 0 and α2 ∈ Φ. By symmetry, α1 ∈ Φ also. Since α2 + α3 /∈ Φ′,
we must have ⟨α2, α

∨
3 ⟩ ≥ 0, and similarly, we must have ⟨α1, α

∨
3 ⟩ ≥ 0.

Since α1+α2+α3 ∈ Φ′, −α2 ∈ Φ and (α1+α2+α3)+ (−α2) /∈ Φ′, we
must have ⟨α1+α2+α3,−α∨

2 ⟩ ≥ 0. Similarly, ⟨α1+α2+α3,−α∨
1 ⟩ ≥ 0.

Thus, we have
(α2, α3) ≥ 0, (α1, α3) ≥ 0,

(α1 + α2 + α3, α2) ≤ 0, (α1 + α2 + α3, α1) ≤ 0.

Hence,

(α1 + α2, α2) ≤ −(α3, α2) ≤ 0

and

(α1 + α2, α1) ≤ −(α3, α1) ≤ 0.

Therefore, we have

(α1 + α2, α1 + α2) = (α1 + α2, α1) + (α1 + α2, α2) ≤ 0,

which implies that α1 + α2 = 0 and contradicts the assumption that
α1 + α2 ̸= 0, thus proving (ii).

Note 3.5. In a root system of type A1 × A1, say Φ = {±α,±β}, α+
(−α)+β ∈ Φ′, α+(−α) = 0 ∈ Φ′; however, α+β /∈ Φ′ and −α+β /∈ Φ′.
Thus, result (ii) fails if we assume that α1 + α2 ∈ Φ′.

(iii) We will use induction on n. If n ≤ 2, the result is trivial.
Suppose that n ≥ 3. By (i), there is a σ ∈ Sn such that ασ([i]) ∈ Φ′

for all i ∈ [n]. By the assumption that αI ̸= 0 for I ̸= ∅, we have
αI ∈ Φ′ ⇔ αI ∈ Φ for I ̸= ∅. Thus, ασ(1), ασ(2) and ασ(1) + ασ(2)

are in Φ. By the assumption of (iii), either σ(1) = 1 or σ(2) = 1. Let
σ̃ ∈ Sn denote the permutation σ(1, 2) (first, apply the transposition
(1,2), followed by σ). Then, ασ̃([i]) = ασ([i]) for i ≥ 3. Thus, we may
assume that σ(1) = 1. By reindexing α2, α3, . . . , αn, we may assume
that σ is the identity permutation.
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We claim that α1 + αi ∈ Φ for i ∈ [n] \ [1]. This is true for i = 2.
Set β1 = α1 + α2, βi = αi+1 for i ∈ [n − 1] \ [1]. Since β[n−1] ∈ Φ
and βi + βj /∈ Φ for 2 ≤ i < j ≤ n − 1, induction gives βI′ ∈ Φ for
all I ′ ⊆ [n − 1] with 1 ∈ I ′. Equivalently, αI ∈ Φ for all I ⊆ [n] with
[2] ⊆ I. In particular, for any j ∈ [n] \ [2], α1 + α2 + αj ∈ Φ. Since
α1 + α2 ∈ Φ but α2 + αj /∈ Φ, by (ii), this implies α1 + αj ∈ Φ for
j ∈ [n] \ [2], proving our claim.

Now, we fix a j ∈ [n] \ [2] such that α1 + αj ∈ Φ. Let γ1 = α1 + αj ,
γi = αi for i ∈ [j − 1] \ [1] and γi = αi+1 for i ∈ [n − 1] \ [j − 1].
Since γ[n−1] ∈ Φ and γp + γq /∈ Φ if 2 ≤ p < q ≤ n, induction gives
γI′ ∈ Φ if I ′ ⊆ [n − 1] with 1 ∈ I ′, that is, αI ∈ Φ if {1, j} ⊆ I. We
have now shown that αI ∈ Φ for all I ⊆ [n] such that either [2] ⊆ I or
{1, j} ⊆ I, j ∈ [n] \ [2]. Since α1 ∈ Φ, this gives αI ∈ Φ for all I ⊆ [n]
with 1 ∈ I. �

We now turn our attention to the poset associated to a root, which
can be expressed as a sum of roots in a crystallographic root system.

Definition 3.6. Let Φ denote a crystallographic root system, and let
{α1, α2, . . . , αn} ⊆ Φ with α[n] ∈ Φ. The poset associated to the sum
α[n] is the set

C = {I ⊆ [n] | αI ∈ Φ′}

ordered by inclusion. For i ≥ 1, Ci denotes the subset of elements of C
with cardinality i, Ci = {I ∈ C | |I| = i}) and ci denotes its cardinality,
ci = |Ci|.

Theorem 3.7. Let Φ denote a crystallographic root system. Let
α1, α2, . . . , αn ∈ Φ with α[n] ∈ Φ be such that αI ̸= 0 if I ⊆ [n] and
I ̸= ∅. Let ci be defined as above. Then, for i ≥ 1, ci ≥ n − i + 1.
Furthermore, given any k ∈ [n], there exists at least one I ∈ Ci such
that k ∈ I.

Note 3.8. The assumption that αI ̸= 0 if I ⊆ [n] and I ̸= ∅ holds for
α1, α2, . . . , αn ∈ Φ+.

Proof. We use induction on n. Let us assume that, if 0 < j < n and
α1, α2, . . . , αj ∈ Φ with α[j] ∈ Φ, then, for i ∈ [j], the cardinality of
the set {I ⊆ [j] | |I| = i and αI ∈ Φ} is ≥ j − i + 1 and, given any
k ∈ [j], there exists at least one I ⊆ [j] with |I| = i, αI ∈ Φ and k ∈ I.
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Clearly, this is true for j = 1 and 2. It is also true for j = 3 by Lemma
3.3 (ii). We may assume that the roots α1, α2, . . . , αn are ordered in a
manner such that α[i] ∈ Φ for 1 ≤ i ≤ n.

Assume that n > 3. For i = n, the set I = [n] has the property that
α[n] ∈ Φ; hence, ci ≥ 1 as desired, and, trivially, k ∈ I for all k ∈ [n].
Thus, we can limit our attention to the case 0 < i ≤ n−1. We fix such
an i. Since α[n−1] ∈ Φ, we have by induction that

#({I ⊆ [n− 1] | |I| = i and αI ∈ Φ}) ≥ (n− 1)− i+ 1 = n− i

and that, for each k with 1 ≤ k ≤ n − 1, there exists at least one
I ⊆ [n − 1] with |I| = i, αI ∈ Φ and k ∈ I. Therefore, it suffices to
show that there is at least one I ⊆ [n] with |I| = i, n ∈ I and αI ∈ Φ.

We have α[n] = α[n−2]+αn−1+αn ∈ Φ. If α[n−2]+αn ∈ Φ, then, by
induction, there exists an I ⊆ {1, 2, . . . , n−2, n} such that n ∈ I, |I| = i
and αI ∈ Φ. If α[n−2]+αn /∈ Φ, then, by Lemma 3.3 (ii) above, we have
αn−1 +αn ∈ Φ. Therefore, α[n] = α[n−3] +αn−2 + (αn−1 +αn) ∈ Φ. If
α[n−3]+(αn−1+αn) ∈ Φ, then we can use induction to find I ⊆ [n] such
that αI ∈ Φ, |I| = i and n ∈ I. Otherwise, according to Lemma 3.3 (ii),
we have that αn−2 + (αn−1 + αn) ∈ Φ. This process can continue for
at most i− 1 steps prior to finding I ⊆ [n] with n ∈ I such that |I| = i
and αI ∈ Φ. �

4. Graded posets from sums of roots.

Definition 4.1 ([2, 5]). A graded poset P is a finite poset with a
minimum element m and a maximum element M such that every
maximal chain m = p0 < p1 < · · · < pr = M has the same length
r, called the rank P . If P is a graded poset, then, for any x ∈ P , the
closed interval [m,x] is graded. The rank of x is the rank of the interval
[m,x].

Theorem 4.2. Let Φ denote a crystallographic root system. Let
α1, α2, . . . , αn ∈ Φ with α[n] ∈ Φ be such that αI ̸= 0 if I ⊆ [n] and
I ̸= ∅. Let C be the poset associated to the sum α[n]. If I, J ∈ C with
I ⊆ J and k = |J \ I| ≥ 2, then there exists a K ∈ C with I ⊆ K ⊆ J
and |K| = |I| + 1. Consequently, we can find I1, I2, . . . , Ik ∈ C such
that |Il \ Il−1| = 1 for l ∈ [k], and

I = I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ Ik = J.
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Proof. Let J \ I = {αj1 , αj2 , . . . , αjk}. We use induction on k. The
result is obviously true if k = 1. We have αJ = αI+αj1+αj2+· · ·+αjk ∈
Φ. Letting αi1 = αI , αi2 = αj1 , αi3 = αj2 , . . . , αik+1

= αjk , by Theorem
3.7, we have at least k+1−2+1 = k > 1 subsets L of the set of indices
{i1, i2, . . . , ik+1} for which |L| = 2 and αL ∈ Φ. Furthermore, at least
one of those subsets contains i1. Therefore there exists a jl ∈ J \I such
that αI + αjl ∈ Φ. Letting K = I ∪ {jl}, we have |K \ I| = 1, K ⊆ J
and αK ∈ Φ. Therefore, K ∈ C and, since |J \K| = k − 1, we can use
induction to find I2, I3, . . . , Ik ∈ C, such that |Il \ I| = l and

I = I0 ⊆ K = I1 ⊆ I2 ⊆ · · · ⊆ Ik = J. �

Theorems 3.7 and 4.2 yield the following:

Theorem 4.3. Let αi ∈ Φ for i ∈ [n] be such that α[n] ∈ Φ and αI ̸= 0
if I ⊆ [n], I ̸= ∅. Let C be the poset associated to the sum α[n]. Then:

(i) C is a graded poset with minimum element ∅, maximum ele-
ment [n] and rank function given by I 7→ |I| for I ∈ C.

(ii) For 0 ≤ i ≤ n, let Ci = {I ∈ C | |I| = i}, and let ci = |Ci|.
Then, for i ∈ [n], ci ≥ n− i+ 1.

(iii) If i, k ∈ [n], then there exists an I ∈ Ci with k ∈ I.

Definition 4.4. A poset P with partial order ≤ is a lattice if, for every
pair x, y ∈ P , there exist elements x ∨ y and x ∧ y in P such that

• x ≤ x ∨ y, y ≤ x ∨ y and, if u ∈ P with x ≤ u and y ≤ u, then
x ∨ y ≤ u,

• x ≥ x ∧ y, y ≥ x ∧ y and, if l ∈ P with x ≥ l and y ≥ l, then
x ∧ y ≥ l.

Below, we present some examples with root systems of type An and
Bn. We see that, in root systems of type An, the posets defined above
associated to sums of roots, are lattices. We see with the example from
B4 presented below that this is not always the case.

4.1. Root system of type An ([1]). Let {ε1, ε2, . . . , εn+1} denote
the canonical basis of V = Rn+1. The set of vectors Φ = {εi−εj | i ̸= j,
1 ≤ i ≤ n+1, 1 ≤ j ≤ n+1} is a root system of type An, with positive
roots given by Φ+ = {εi − εj | i < j, 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1}.
Let sα : V → V denote the reflection associated to α ∈ Φ. The
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associated Weyl group W is the group generated by the reflections
{sεi−εj | 1 ≤ i < j ≤ n + 1}. Since sεi−εj switches εi and εj for
1 ≤ i < j ≤ n+ 1 and leaves εk fixed for k /∈ {i, j}, we can identify W
with the symmetric group on n+ 1 letters Sn+1.

Example 4.5. A sum of roots form a root system of type A3.

Suppose that Φ is of type A3 with positive roots

Φ+ = {α1 = ε1 − ε2, α2 = ε2 − ε3,

α3 = ε3 − ε4, α1 + α2, α2 + α3, α1 + α2 + α3}.

Clearly, α = α1 +α2 +α3 has the property that αI ∈ Φ for ∅ ( I ⊆ [3]
and I ̸= {1, 3}. The poset corresponding to this sum of roots is the
lattice consisting of all subsets of [3] except {1, 3}.

Example 4.6. Posets associated to sums of roots in a root system of
type An−1 are lattices.

Suppose that Φ is of type An−1 with Φ+ = {εi−εj | 1 ≤ i < j ≤ n}.
Let α1, . . . , αm ∈ Φ be such that α[m] ∈ Φ and αI ̸= 0 for all I with
∅ ( I ⊆ [m].

Claim 4.7. We claim that there is a σ ∈ Sm and a w ∈ W such that
w(ασ(i)) = εi − εi+1.

Proof. This may be proven by induction on m. The result is trivial
if m = 1. Suppose that m ≥ 2. By Lemma 3.3, we may assume that,
by permuting the αi, α[m−1] ∈ Φ. By induction, we may assume that
αi = εi − εi+1 for i = 1, . . . ,m − 1. Then, since α[m−1] ∈ Φ, we must
have m− 1 ≤ n and α[m−1] = ε1 − εm. Since α[m] = α[m−1] + αm ∈ Φ
and αI ̸= 0 for all I with ∅ ( I ⊆ [m], we must have either αm = εj−ε1
for some j ≥ m+ 1 or αm = εm − εj for some m+ 1 ≤ j ≤ n+ 1.

In the first case, we can choose w ∈ W with w(εj) = ε1 and w(εi) =
εi+1 for i = 1, . . . ,m. This yields w(α1) = ε2 − ε3, . . . , w(αm−1) =
εm − εm+1, w(αm) = ε1 − ε2, and the claim follows.

In the second case, choosing w ∈ W with w(εi) = εi for i = 1, . . . ,m
and w(εj) = εm+1. This yields w(α1) = ε1 − ε2, . . . , w(αm−1) =
εm−1 − εm, w(αm) = εm − εm+1, and Claim 4.7 is proved. �
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It follows from the claim that the poset associated to the sum α[m] is
the same up to isomorphism as that associated to the sum β[m] where
β1 = ε1−ε2, β2 = ε2−ε3, . . . , βm = εm−εm+1. This poset is isomorphic
to the collection of nonempty intervals {[i, j] | 1 ≤ i < j ≤ n} inside
[n], ordered by containment, which is easily seen to be a lattice.

4.2. Root system of type Bn ([1, Chapter VI]). Let {ε1, ε2, . . . , εn}
denote the cannonical basis of Rn. The set of vectors Φ = {±εi,±εi ±
εj | 1 ≤ i < j ≤ n} ⊂ Rn forms a root system of type Bn.

Example 4.8. A sum of roots in a root system of type B4 where the
associated poset is not a lattice.

We have

ε1 + ε2 = (ε1 − ε2) + 2(ε2 − ε3) + 2(ε3 − ε4) + 2ε4 ∈ Φ.

Letting α1 = ε1−ε2, α2 = α3 = ε2−ε3, α4 = α5 = ε3−ε4, α6 = α7 = ε4,
we see that α[7] ∈ Φ. Figure 1, generated by the POSETS package for
Mathematica [4], shows the interval [α7, α[7]] in the associated poset C.

87<

84, 7< 85, 7<

82, 4, 7< 82, 5, 7< 83, 4, 7< 83, 5, 7< 84, 6, 7< 85, 6, 7<

81, 2, 4, 7< 81, 2, 5, 7< 81, 3, 4, 7< 81, 3, 5, 7< 82, 4, 6, 7< 82, 5, 6, 7< 83, 4, 6, 7< 83, 5, 6, 7<

81, 2, 4, 6, 7< 81, 2, 5, 6, 7< 81, 3, 4, 6, 7< 81, 3, 5, 6, 7< 82, 4, 5, 6, 7< 83, 4, 5, 6, 7<

81, 2, 4, 5, 6, 7< 81, 3, 4, 5, 6, 7<

81, 2, 3, 4, 5, 6, 7<

Figure 1. Note on sums of roots.
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We see that the subsets I = {4, 7} and J = {5, 7} do not have a
least upper bound I ∨ J . The highlighted nodes in Figure 2 show the
subsets of C containing I and J , respectively.

87<

84, 7< 85, 7<

82, 4, 7< 82, 5, 7< 83, 4, 7< 83, 5, 7< 84, 6, 7< 85, 6, 7<

81, 2, 4, 7< 81, 2, 5, 7< 81, 3, 4, 7< 81, 3, 5, 7< 82, 4, 6, 7< 82, 5, 6, 7< 83, 4, 6, 7< 83, 5, 6, 7<

81, 2, 4, 6, 7< 81, 2, 5, 6, 7< 81, 3, 4, 6, 7< 81, 3, 5, 6, 7< 82, 4, 5, 6, 7< 83, 4, 5, 6, 7<

81, 2, 4, 5, 6, 7< 81, 3, 4, 5, 6, 7<

81, 2, 3, 4, 5, 6, 7<

87<

84, 7< 85, 7<

82, 4, 7< 82, 5, 7< 83, 4, 7< 83, 5, 7< 84, 6, 7< 85, 6, 7<

81, 2, 4, 7< 81, 2, 5, 7< 81, 3, 4, 7< 81, 3, 5, 7< 82, 4, 6, 7< 82, 5, 6, 7< 83, 4, 6, 7< 83, 5, 6, 7<

81, 2, 4, 6, 7< 81, 2, 5, 6, 7< 81, 3, 4, 6, 7< 81, 3, 5, 6, 7< 82, 4, 5, 6, 7< 83, 4, 5, 6, 7<

81, 2, 4, 5, 6, 7< 81, 3, 4, 5, 6, 7<

81, 2, 3, 4, 5, 6, 7<

Figure 2.

We see that I and J are both bounded above by the sets {2, 4, 5, 6, 7}
and {3, 4, 5, 6, 7}, and there is no subset K ⊂ [7] ∈ C with I, J ⊆ K
and |K| < 5.
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Example 4.9. The root system of type BC2.

This is the unique irreducible, non-reduced root system of rank 2.
The positive roots may be chosen to be

Φ+ = {ε1, ε2, 2ε1, 2ε2, ε1 + ε2, ε2 − ε1} ⊂ R2.

Consider the roots {α1 = ε2 − ε1, α2 = ε1 + ε2, α3 = −ε2}. Then,
αI ∈ Φ for all I with ∅ ( I ⊆ [3]. The corresponding poset is the
Boolean lattice of all subsets of [3]. Note that, in contrast to the root
system of type An above, we cannot transform the set {α1, α2, α3} here
to a set of positive roots using an element of the associated Weyl group.
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