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LEFSCHETZ PROPERTIES
OF BALANCED 3-POLYTOPES

DAVID COOK II, MARTINA JUHNKE-KUBITZKE,

SATOSHI MURAI AND ERAN NEVO

ABSTRACT. In this paper, we study Lefschetz properties
of Artinian reductions of Stanley-Reisner rings of balanced
simplicial 3-polytopes. A (d − 1)-dimensional simplicial com-
plex is said to be balanced if its graph is d-colorable. If a
simplicial complex is balanced, then its Stanley-Reisner ring
has a special system of parameters induced by the color-
ing. We prove that the Artinian reduction of the Stanley-
Reisner ring of a balanced simplicial 3-polytope with respect
to this special system of parameters has the strong Lefschetz
property if the characteristic of the base field is not two
or three. Moreover, we characterize (2, 1)-balanced simplicial
polytopes, i.e., polytopes with exactly one red vertex and
two blue vertices in each facet, such that an analogous prop-
erty holds. In fact, we show that this is the case if and only
if the induced graph on the blue vertices satisfies a Laman-
type combinatorial condition.

1. Introduction. Let F be an infinite field. An Artinian Gorenstein
standard graded F-algebra A = A0 ⊕A1 ⊕ · · · ⊕As with A0

∼= As
∼= F

is said to have the strong Lefschetz property (SLP) if there is a linear
form w ∈ A1 such that the multiplication map ×ws−2i : Ai → As−i

is bijective for all i < s/2. This property is motivated by the Hard
Lefschetz theorem and has been of great interest in both algebra and
combinatorics, with a multitude of applications (see [6]). Proving the
SLP is difficult in general, and it is interesting to find new classes of
Artinian Gorenstein algebras having the SLP. In this paper, we study
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the SLP for certain Artinian reductions of the Stanley-Reisner rings of
simplicial 3-polytopes, which satisfy nice vertex coloring conditions.

Given a simplicial complex ∆ on the vertex set V , the ideal I∆ of
F[xv : v ∈ V ], defined by

I∆ = (xv1 · · ·xvk
: {v1, . . . , vk} ⊆ V, {v1, . . . , vk} /∈ ∆),

is called the Stanley-Reisner ideal of ∆, and the quotient ring

F[∆] = F[xv : v ∈ V ]/I∆

is called the Stanley-Reisner ring of ∆ over the field F. A (d − 1)-
dimensional simplicial complex ∆ is said to be balanced (or completely
balanced in some literature) if its graph is d-colorable, equivalently, if
there is a map

κ : V −→ [d] = {1, 2, . . . , d}

such that, for all faces σ ∈ ∆, one has |{v ∈ σ : κ(v) = i}| ≤ 1 for all
i ∈ [d]. It was proven by Stanley [9], that, if ∆ is balanced, then the
sequence of linear forms Θ = (θ1, . . . , θd), defined by θi =

∑
κ(v)=i xv

for i = 1, 2, . . . , d, is a system of parameters for F[∆]. We call such a Θ
a colored system of parameters (colored s.o.p.) for F[∆]. Note that, if
∆ is strongly connected, then a map κ satisfying the above condition
is unique up to permutation of the elements of [d], see Section 2. Thus,
as a set, the colored s.o.p. does not depend upon the choice of the
coloring κ.

A simplicial d-sphere is a simplicial complex which is homeomorphic
to a d-sphere. In general, the boundary complex of a simplicial d-
polytope is a simplicial (d − 1)-sphere, and, by a classical theorem of
Steinitz, every simplicial 2-sphere is the boundary complex of some
simplicial 3-polytope. If ∆ is the boundary complex of a simplicial
polytope and Θ is a linear system of parameters for F[∆], then the
algebra F[∆]/ΘF[∆] is an Artinian Gorenstein algebra, and moreover,
by the Hard Lefschetz theorem for projective toric varieties, for a
certain choice of Θ (corresponding to convex or generic embeddings)
this algebra has the SLP in characteristic 0 (see [10, III, Section 1]).
However, when ∆ is balanced, the linear system of parameters Θ used
in this setting is not the colored s.o.p. defined above, and it is, hence,
natural to ask whether the SLP holds for this specific s.o.p. as well.
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We say that a balanced simplicial sphere ∆ has the colored SLP over
a field F if F[∆]/ΘF[∆] has the SLP for the colored s.o.p. Θ for F[∆].
The first main result of this paper is the following.

Theorem 1.1. Let F be an infinite field with char(F) ̸= 2, 3. Any
balanced simplicial 2-sphere has the colored SLP over F.

Note that, in characteristic 2 and 3, any ω ∈ (F[∆]/ΘF[∆])1 satisfies
ω3 = 0 for Θ the colored s.o.p., and thus, ∆ fails to have the colored
SLP over F. We consider a similar problem also for a more general
class of spheres, namely, (2, 1)-balanced simplicial 2-spheres. For a =
(a1, . . . , an) ∈ Nn, a simplicial complex ∆ on the vertex set V is said
to be a-balanced if ∆ has dimension a1 + · · · + an − 1, and there
is a map κ : V → [n] such that, for any face σ ∈ ∆, we have
|{v ∈ σ : κ(v) = i}| ≤ ai for all i ∈ [n]. We call such a map κ an
a-coloring of ∆. By a result from [9], for an a-balanced simplicial
complex ∆, there exists an s.o.p. θ1, . . . , θd such that exactly aj of the
θis are a linear combination of the variables xv having the same color j,
that is, κ(v) = j. We call such a system of parameters an a-colored
system of parameters (a-colored s.o.p.) for F[∆].

It is natural to ask whether an analogue of Theorem 1.1 holds for a-
balanced simplicial polytopes and spheres. Somewhat surprisingly, we
find that the answer is negative even when a = (2, 1). More precisely,
we provide the following combinatorial characterization of the SLP for
Artinian reductions of F[∆] with respect to any (2, 1)-colored s.o.p. if
∆ is a (2, 1)-balanced simplicial sphere.

Theorem 1.2. Let F be an infinite field with char(F) ̸= 2, 3. Let ∆ be
a (2, 1)-balanced simplicial 2-sphere, κ : V → {1, 2} a (2, 1)-coloring of
∆ and U the set of the vertices v of ∆ with κ(v) = 1. The following
conditions are equivalent :

(i) There is a (2, 1)-colored s.o.p. Θ for F[∆] such that F[∆]/ΘF[∆]
has the SLP.

(ii) For any subset W ⊆ U with |W | ≥ 2, the induced subcomplex
∆W = {σ ∈ ∆ : σ ⊆W} has at most 2|W | − 3 edges.

Criterion (ii) is motivated by, and essentially the same as, Laman’s
criterion for minimal generic rigidity of graphs in the plane [7].
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Theorem 1.2 allows us to construct (2, 1)-balanced simplicial 2-
spheres ∆ such that the Artinian reduction of F[∆] with respect to
any (2, 1)-colored s.o.p. fails to have the SLP, see Example 4.2.

Even though an analogue of Theorem 1.1 for a-balanced simplicial
polytopes does not hold, considering Theorem 1.1, we propose the
following conjecture in higher dimensions:

Conjecture 1.3. Any balanced simplicial sphere (or at least any bal-
anced simplicial polytope) has the colored SLP over a field of charac-
teristic 0.

The paper is structured as follows. Section 2 provides some back-
ground on simplicial complexes and constructions on simplicial spheres.
Section 3 contains the proof of our first main result, Theorem 1.1. Fi-
nally, Section 4 is concerned with the study of (2, 1)-balanced simplicial
2-spheres. Our second main result (Theorem 1.2) characterizes when
those have the SLP with respect to a (2, 1)-colored s.o.p.

2. Preliminaries. In this section, we provide some background and
introduce notation that will be used throughout this article.

2.1. Simplicial complexes. A simplicial complex ∆ on a finite set V
is a collection of subsets of V that is closed under inclusion. An element
of ∆ is called a face of ∆, and maximal faces (under inclusion) are called
facets of ∆. The dimension of a face is its cardinality minus one, and
the dimension of a simplicial complex is the maximal dimension of its
faces. Faces of dimension 0 are called vertices, and faces of dimension 1
are called edges. We denote by V (∆) = {v : {v} ∈ ∆} the vertex set
of ∆ and identify a singleton {v} ∈ ∆ with v ∈ V (∆). A simplicial
complex is said to be pure if all of its facets have the same dimension.
A pure simplicial complex ∆ is said to be strongly connected if, for any
pair σ, τ of facets of ∆, there is a sequence ρ1, . . . , ρk of facets of ∆
such that

|σ \ ρ1| = |ρ1 \ ρ2| = · · · = |ρk \ τ | = 1.

For a simplicial complex ∆, a map κ : V (∆) → [d] is said to be a
proper d-coloring of ∆ if κ(u) ̸= κ(v) for all edges {u, v} ∈ ∆. Note
that a (d−1)-dimensional simplicial complex ∆ is balanced if and only
if it has a proper d-coloring. If, in addition, ∆ is strongly connected,
then the choice of a proper d-coloring is unique up to permutations
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of the elements of [d] (since the values of κ for vertices of one facet
determine the values of κ for all other vertices). The smallest example
of a balanced simplicial (d− 1)-sphere is the boundary complex of the
d-crosspolytope, which is the convex hull of the unit vectors and their
antipodes in Rd.

For a simplicial complex ∆ and a vertex v ∈ V (∆), the simplicial
complex

st∆(v) = {τ ∈ ∆ : τ ∪ {v} ∈ ∆}

is called the star of v in ∆. A simplicial 2-ball is a simplicial complex
that is homeomorphic to a two-dimensional ball. If ∆ is a simplicial
2-sphere, then st∆(v) is a simplicial 2-ball for any vertex v ∈ V (∆).
For a simplicial 2-ball B, we write ∂B for the boundary complex of B
and int(B) = B \ ∂B for the set of all interior faces of B.

Given a (d − 1)-dimensional simplicial complex ∆, a sequence of
linear forms θ1, . . . , θd ∈ F[∆] is said to be a linear system of parameters
(l.s.o.p.) for F[∆] if dimF(F[∆]/(θ1, . . . , θd)F[∆]) <∞, and the Artinian
algebra F[∆]/(θ1, . . . , θd)F[∆] is called the Artinian reduction of F[∆]
with respect to θ1, . . . , θd. As mentioned in the introduction, if ∆ is
balanced and κ a proper d-coloring of ∆, then the sequence of linear
forms θ1, . . . , θd defined by θi =

∑
v∈V (∆), κ(v)=i xv forms an l.s.o.p. for

F[∆], the so-called colored s.o.p.

2.2. Operations on simplicial spheres. Finally, we recall two com-
binatorial operations on simplicial 2-spheres. For finite subsets σ1, . . . ,
σk, we write

⟨σ1, . . . , σk⟩ = {τ : τ ⊆ σi for some i}

for the simplicial complex generated by σ1, . . . , σk.

Definition 2.1. Let ∆ and Γ be two-dimensional simplicial complexes.
If ∆ ∩ Γ is generated by a single two-dimensional face σ, then the
simplicial complex

(∆ \ {σ}) ∪ (Γ \ {σ})

is called the connected sum of ∆ and Γ, and denoted by ∆#σΓ.

A missing triangle of a simplicial complex ∆ is a set {a, b, c} such
that {a, b}, {a, c}, {b, c} ∈ ∆ and {a, b, c} /∈ ∆. The following property
is well known.
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Lemma 2.2. Let ∆ be a simplicial 2-sphere. If σ is a missing triangle
of ∆, then there are unique simplicial 2-spheres Γ and Σ such that
∆ = Γ#σΣ. Moreover, if ∆ is balanced, then so are Γ and Σ.

The first part of Lemma 2.2 easily follows from Jordan’s curve
theorem; see [2, Lemma 1.3] for a more general statement for PL-
manifolds. The second part follows from the fact that the 1-skeleta of
Γ and Σ are subgraphs of that of ∆.

Definition 2.3. For a simplicial complex ∆ and two of its vertices p,
q, we define

Cp→q(∆) = {σ ∈ ∆ : p /∈ σ} ∪ {(σ \ {p}) ∪ {q} : p ∈ σ ∈ ∆}.

If {p, q} is an edge of ∆, then the operation ∆ → Cp→q(∆) is called the
contraction of the edge {p, q}.

For a simplicial 2-sphere ∆ that is not the boundary of a 3-simplex a
contraction ∆ → Cp→q(∆) is admissible if there are no missing triangles
of ∆ that contain the edge {p, q}. Note that this condition is equivalent
to saying that st∆(p) ∩ st∆(q) = ⟨{p, q, s}, {p, q, t}⟩ for some distinct
vertices s, t. The following fact is well known, see, e.g., [3, Lemma 1] for
a short proof, or, more generally, [8, Theorem 1.4] for edge contractions
in PL-manifolds.

Lemma 2.4. Let ∆ be a simplicial 2-sphere. If ∆ → Cp→q(∆) is an
admissible contraction, then Cp→q(∆) is a simplicial 2-sphere.

2.3. Contractions for balanced simplicial 2-spheres. It is a clas-
sical result in graph theory, sometimes called the three color theorem,
that a simplicial 2-sphere is balanced if and only if each of its ver-
tices has an even degree. See [5, pages 44–46] for possibly the earliest
published complete proof. For such simplicial spheres, the following
contraction operation has been considered.

Definition 2.5. Let ∆ be a balanced simplicial 2-sphere. We say that
a pair (p, q) of distinct vertices of ∆ is a contractible pair in ∆ if

(i) p and q have the same color, that is, κ(p) = κ(q) for some
proper 3-coloring κ of ∆; and
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(ii) there are vertices s, t, w such that

st∆(p) ∩ st∆(q) = ⟨{s, w}, {w, t}⟩.

For a contractible pair (p, q), we define

C(b)
p→q(∆) = (∆ \ int(st∆(p) ∪ st∆(q)))

∪ {σ ∪ {q} : σ ∈ ∂(st∆(p) ∪ st∆(q))}.

The operation ∆ → C(b)
p→q(∆) is called the balanced contraction (or 4-

contraction in some literature) of the pair (p, q), see Figure 1 for an
illustration.
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Figure 1. The balanced contraction of a pair (p, q) also showing the change

in a coloring.

Observe that, by the uniqueness of a coloring, the first condition in
Definition 2.5 either holds for any proper 3-coloring or none. Note also
that, since st∆(p) and st∆(q) are simplicial 2-balls, the second condition
implies that st∆(p) ∪ st∆(q) is a simplicial 2-ball; thus, its boundary,

used in the definition of C(b)
p→q(∆), is indeed well defined.
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It is easy to see that, if ∆ is a balanced simplicial 2-sphere and

(p, q) is a contractible pair in ∆, then C(b)
p→q(∆) is a balanced simplicial

2-sphere. The following result was proven by Batagelj [4].1

Theorem 2.6. Let ∆ be a balanced simplicial 2-sphere which is not
the boundary of a 3-crosspolytope. Then, ∆ has a missing triangle or
a contractible pair (p, q).

3. Lefschetz properties of 2-spheres. In this section, we study
the strong Lefschetz property of simplicial 2-spheres. Throughout this
section, we assume that char(F) is not 2 or 3.

Let ∆ be a simplicial 2-sphere, and let Θ = θ1, θ2, θ3 be an l.s.o.p. for
F[∆]. Then, A = F[∆]/ΘF[∆] is a Gorenstein algebra with

A = A0 ⊕A1 ⊕A2 ⊕A3

and A0
∼= A3

∼= F, see [10, II, Section 6]. Since any monomial of de-
gree 3 in F[x1, . . . , xn] can be written as a linear combination of cubics
of linear forms if char(F) is not 2 or 3, {w3 : w ∈ A1} spans A3. Since
A3 is non-zero, this implies that ×w3 : A0 → A3 is bijective for a
generic w. Thus, A has the SLP if and only if there is a linear form w
such that

×w : A1 −→ A2

is bijective. Moreover, since A1
∼= A2 as F-vector spaces, to prove

the above bijectivity, it suffices to prove that the multiplication map
×w : A1 → A2 is surjective. Thus, in this setting, A has the SLP if
and only if (

F[∆]/(Θ, w)F[∆]
)
2
= 0

for some linear form w.

Let ∆ be a simplicial complex. We identify linear forms in S =
F[xv : v ∈ V (∆)] with their image in F[∆]. Also, for a subcomplex Γ
of ∆, we often regard F[Γ] as an S-module. Since there is a surjection
F[∆]/ΘF[∆] → F[Γ]/ΘF[Γ] for any sequence Θ = θ1, . . . , θk ∈ S if
Γ ⊆ ∆, the following property holds.

Lemma 3.1. Let ∆ be a simplicial complex, and let Γ be a subcomplex
of ∆ having the same dimension as ∆. Then every l.s.o.p. for F[∆] is
an l.s.o.p. for F[Γ].
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The next statement was proven by Babson and Nevo [1, Theo-
rem 6.1].

Lemma 3.2 ([1]). Let ∆ = Γ1#σΓ2 be a simplicial 2-sphere, Θ = θ1,
θ2, θ3 a common l.s.o.p. for F[∆] and F[⟨σ⟩] and let w be a linear form
in F[xv : v ∈ V (∆)]. If (F[Γi]/(Θ, w)F[Γi])2 = 0 for i = 1, 2, then
(F[∆]/(Θ, w)F[∆])2 = 0.

Recall that a balanced simplicial 2-sphere ∆ is said to have the
colored SLP over F if F[∆]/ΘF[∆] has the SLP, where Θ is the colored
s.o.p. for F[∆]. Lemma 3.2, applied to the case that Θ is the colored
s.o.p. implies the following corollary.

Corollary 3.3. Let ∆ = Γ1#σΓ2 be a balanced simplicial 2-sphere. If
both Γ1 and Γ2 have the colored SLP over F, then so does ∆.

We need two more technical statements.

Lemma 3.4. Let ∆ be a two-dimensional simplicial complex, u a vertex
which is not in ∆ and {s, w}, {t, w} ∈ ∆. Let Σ = ⟨{s, w, u}, {t, w, u}⟩,
Γ = ∆ ∪ Σ, Θ an l.s.o.p. for F[Γ] and w a linear form in F[xv : v ∈
V (Γ)]. If (F[∆]/(Θ, w)F[∆])2 = 0 and w is non-zero in F[Σ]/ΘF[Σ],
then (F[Γ]/(Θ, w)F[Γ])2 = 0.

Proof. Let S = F[xv : v ∈ V (Γ)]. We have the following exact se-
quence of S-modules

0 −→ F[Σ] ×xu−→ F[Γ] −→ F[∆] −→ 0.

By the right-exactness of the tensor product, tensoring the above exact
sequence with S/(Θ, w)S yields the exact sequence

(F[Σ]/(Θ, w)F[Σ])1
×xu−→ (F[Γ]/(Θ, w)F[Γ])2(3.1)

−→ (F[∆]/(Θ, w)F[∆])2 −→ 0.

From

F[Σ]/ΘF[Σ] = F[xs, xt, xu, xw]/(xsxt, θ1, θ2, θ3) ∼= F[x]/(x2),
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we infer (F[Σ]/(Θ, w)F[Σ])1 = 0, if w is non-zero in F[Σ]/ΘF[Σ].
Now, the desired property follows from (3.1) and the assumption
(F[∆]/(Θ, w)F[∆])2 = 0. �

The following statement is crucial in our proof of Theorem 1.1.

Lemma 3.5. Let ∆ be a balanced simplicial 2-sphere, and let (p, q) be

a contractible pair in ∆. If C(b)
p→q(∆) has the colored SLP, then ∆ has

the colored SLP.

Proof. Let V = V (∆) be the vertex set of ∆, S = F[xv : v ∈ V ],
and let κ be a proper 3-coloring of ∆. Let Θ = θ1, θ2, θ3 be the colored
s.o.p. for F[∆], i.e., θi =

∑
v∈V,κ(v)=i xv for i = 1, 2, 3. Let s, t, w be

the vertices with st∆(p) ∩ st∆(q) = ⟨{s, w}, {w, t}⟩, and let

Γ = C(b)
p→q(∆) ∪ ⟨{s, w, q}, {t, w, q}⟩ ∪ ⟨{s, w, p}, {t, w, p}⟩.

As κ is also a proper coloring for Γ, Θ is also the colored s.o.p. for F[Γ].
Since {s, q}, {t, q} ∈ C(b)

p→q(∆) and w, p /∈ C(b)
p→q(∆), and, since C(b)

p→q(∆)
has the colored SLP by the assumption, applying Lemma 3.4 twice
yields that there is a linear form w such that (F[Γ]/(Θ, w)F[Γ])2 = 0,
in other words,

(IΓ + (Θ, w))2 = S2,(3.2)

where (Θ, w) is the ideal of S generated by Θ and w.

Let G = {xuxv : {u, v} /∈ ∆} and G = G ∪ {x2v : v ∈ V }. Thus, G
is the set of degree 2 generators of the Stanley-Reisner ideal I∆ ⊆ S.
Note that xpxq ∈ G. For m ∈ G and t ∈ F, we define

Φt(m) =

{
m(xp/xq) + tm if xq divides m and m(xp/xq) /∈ G,
m otherwise,

(3.3)

and define the ideal

J(t) = (Φt(m) : m ∈ G) ⊆ S.

Also, for t ∈ F \ {0}, let φt be the change of coordinates of S defined
by φt(xv) = xv for all v ̸= q and φt(xq) = xp + txq.

We show the following claims:
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Claim 3.6.

(a) I∆ + (x2v : v ∈ V ) + (Θ) = I∆ + (Θ).
(b) J(0)2 = (IΓ)2.
(c) For t ̸= 0, φt(I∆ + (x2v : v ∈ V ))2 = (J(t) + (x2v : v ∈ V ))2.
(d) For t /∈ {0, 1}, if (φt(I∆ + (x2v : v ∈ V )) + (Θ, w))2 = S2 for

some linear form w, then there is a linear form w′ such that
(I∆ + (Θ, w′))2 = S2.

Proof. Property (a) follows from [10, III, Proposition 4.3]. Since
the graph of Γ is obtained from the graph of ∆ by replacing an edge
{p, v} ∈ ∆ with {q, v} whenever {q, v} /∈ ∆ (see Figure 1); property (b)
is straightforward by the definition of Φt.

Now, we prove (c). Let H = {m ∈ G : m(xp/xq) ∈ G} and

H = H∪{x2q}. By the definition of Φt(−), Φt(m) = φt(m) form ∈ G\H
and Φt(m) = m for m ∈ H. Also, φt(x

2
v) = x2v for any v ∈ V with

v ̸= q. Thus, the F-vector space (J(t) + (x2v : v ∈ V ))2 is spanned by:

{Φt(m) : m ∈ G} ∪ {x2v : v ∈ V }(3.4)

= {φt(m) : m ∈ G \ H} ∪ H ∪ {x2q} ∪ {x2v : v ∈ V, v ̸= q}
= {φt(m) : m ∈ G \ H} ∪ H ∪ {x2q}.

Also, φt(I∆ + (x2v : v ∈ V ))2 is spanned by

φt(G) = {φt(m) : m ∈ G \ H} ∪ {φt(m) : m ∈ H} ∪ {φt(x
2
q)}

(3.5)

= {φt(m) : m ∈ G \ H} ∪ {m(xp/xq) + tm : m ∈ H} ∪ {φt(x
2
q)}.

Since, for any m ∈ H, m(xp/xq) = φt(m(xp/xq)) is contained in

{φt(m) : m ∈ G \ H}, (3.5) states that φt(I∆ + (x2v : v ∈ V ))2 is
spanned by

{φt(m) : m ∈ G \ H} ∪ H ∪ {x2p + 2txpxq + t2x2q}.(3.6)

Since x2p, xpxq ∈ G \ H, {φt(m) : m ∈ G \ H} contains φt(x
2
p) =

x2p, φt(xpxq) = x2p + txpxq. This implies that both sets (3.4) and (3.6)
generate the same F-vector space, which proves the desired equation.

Finally, we prove (d). We may assume that κ(p) = κ(q) = 1. Since
φ−1
t (xq) = (xq − xp)/t and φ

−1
t (xv) = xv for v ̸= q, by the assumption
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of (d),

S2 = φ−1
t (S2)(3.7)

= φ−1
t

(
φt(I∆ + (x2v : v ∈ V )) + (Θ, w)

)
2

=
(
I∆ + (x2v : v ∈ V ) + (φ−1

t (θ1), θ2, θ3, φ
−1
t (w))

)
2
.

Since

φ−1
t (θ1) =

1

t
xq +

(
1− 1

t

)
xp +

∑
κ(v)=1
v ̸=p,q

xv

and, since I∆ + (x2v : v ∈ V ) is a monomial ideal, by applying the
change of coordinates ψ of S which only changes xp to (1 − 1/t)−1xp
and xq to txq, we infer from (3.7) that(

I∆ + (x2v : v ∈ V ) + (θ1, θ2, θ3, ψ ◦ φ−1
t (w))

)
2
= ψ(S2) = S2.

Then, the desired equality follows from (a). �

We now return to the proof of Lemma 3.5. For any linear form w,
we have

dimF(J(0) + (Θ, w))2 ≤ dimF(J(t) + (Θ, w))2(3.8)

for a generic choice of t ∈ F. Indeed, since (J(t) + (Θ, w))2 is spanned
by

X = {Φt(m) : m ∈ G} ∪ {xvθi : v ∈ V, i ∈ {1, 2, 3}} ∪ {xvw : v ∈ V },

dimF(J(t)+ (Θ, w))2 is equal to the rank of the |X|× (dimF S2)-matrix
Mt, whose entries are coefficients of degree 2 monomials of the elements
of X. Since we may regard the entries of Mt as polynomials in t, we
have rankMt ≥ rankM0 for a generic choice of t ∈ F. (A generic choice
of t makes sense as the field F is infinite.)

Now, by (3.2), there is a linear form w such that

(J(0) + (Θ, w))2 = (IΓ + (Θ, w))2 = S2,

where we use claim (b) for the first equality. Thus, by (3.8),(
J(t) + (x2v : v ∈ V ) + (Θ, w)

)
2
= S2
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for a generic t ∈ F. Then, by claim (c), we have(
φt(I∆ + (x2v : v ∈ V )) + (Θ, w)

)
2
= S2,

and, by claim (d), it follows that there is a linear form w′ such that(
I∆ + (Θ, w′)

)
2
= S2.

This proves (F[∆]/(Θ, w′)F[∆])2 = 0, as desired. �

We now prove Theorem 1.1.

Proof of Theorem 1.1. We prove the statement by induction on the
number of vertices. Let ∆ be a balanced simplicial 2-sphere. Then, ∆
has at least six vertices since there are at least two vertices in each
color. If ∆ has exactly six vertices, then ∆ must be the boundary of a
3-crosspolytope, and hence,

F[∆]/ΘF[∆] ∼= F[x, y, z]/(x2, y2, z2),

which has the SLP if char(F) is not 2 or 3, where Θ is the colored s.o.p.

Suppose that ∆ has at least seven vertices. By Theorem 2.6, either
∆ = Γ#σΣ for some balanced simplicial 2-spheres Γ and Σ, or there is
a contractible pair (p, q) in ∆. In the former case, since Γ and Σ have
the colored SLP by the induction hypothesis, ∆ also has the colored

SLP by Corollary 3.3. In the latter case, C(b)
p→q(∆) has the colored SLP

by the induction hypothesis, and Lemma 3.5 shows that ∆ has the
colored SLP. �

4. (2, 1)-balanced simplicial spheres. In this section, we prove
Theorem 1.2. In order to simplify the argument, we slightly modify
some notation from the introduction.

Let ∆ be a two-dimensional simplicial complex. A bi-coloring of ∆
is a map π : V (∆) → {b, r}, where b and r are letters. For a fixed bi-
coloring π, vertices v with π(v) = b (respectively, π(v) = r) are called
blue vertices (respectively, red vertices). A bi-coloring π is said to be a
(2, 1)-coloring of ∆ if every face σ ∈ ∆ has at most two blue vertices
and at most one red vertex. Thus a two-dimensional simplicial complex
is (2, 1)-balanced if it has a (2, 1)-coloring.
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Given a fixed bi-coloring π of ∆, a linear form θ =
∑

v∈V (∆) αvxv ∈
F[∆] is said to be blue (respectively, red) if αv = 0 for all v with
π(v) ̸= b (respectively, π(v) ̸= r). A (2, 1)-colored sequence in F[∆]
(with respect to π) is a sequence of linear forms θ1, θ2, θ3 in F[∆] such
that θ1, θ2 are blue and θ3 is red. If π is a (2, 1)-coloring of ∆, then, by
a result from [9, Theorem 4.1], there is a (2, 1)-colored sequence which
is an l.s.o.p. for F[∆]. We call such an l.s.o.p. a (2, 1)-colored s.o.p. for
F[∆].

Recall from the previous section that, for a simplicial 2-sphere ∆ and
an l.s.o.p. Θ for F[∆], the algebra F[∆]/ΘF[∆] has the SLP if there is
a linear form w such that

(F[∆]/(Θ, w)F[∆])2 = 0.

We denote by e(∆) the number of edges of ∆. The next statement
proves the implication (i) ⇒ (ii) of Theorem 1.2.

Lemma 4.1. Let ∆ be a two-dimensional simplicial complex, π a bi-
coloring of ∆ and Θ a (2, 1)-colored sequence in F[∆]. For any set W
of blue vertices of ∆ with |W | ≥ 2, and for any linear form w, we have

dimF(F[∆]/(Θ, w)F[∆])2 ≥ e(∆W )− 2|W |+ 3.

Proof. The surjection F[∆] → F[∆W ] induces a surjection

F[∆]/(Θ, w)F[∆] −→ F[∆W ]/(Θ, w)F[∆W ].

Since ∆W has no red vertices, θ3 is zero in F[∆W ] and

F[∆W ]/(Θ, w)F[∆W ] = F[∆W ]/(θ1, θ2, w)F[∆W ].

Then, since dimF F[∆W ]2 = e(∆W ) + |W | and dimF F[∆W ]1 = |W |, it
follows that

dimF(F[∆]/(Θ, w)F[∆])2 ≥ dimF(F[∆W ]/(θ1, θ2, w)F[∆W ])2

≥ e(∆W ) + |W | − (3|W | − 3)

= e(∆W )− 2|W |+ 3,

as desired. (The −3 term above comes from the fact that each of θ1θ2,
θ1w, θ2w ∈ F[∆W ]2 is in at least two of the ideals xF[∆W ], where
x ∈ {θ1, θ2, w}.) �
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Example 4.2. From Lemma 4.1, we can produce (2, 1)-balanced 2-
spheres such that F[∆]/ΘF[∆] fails to have the SLP for any (2, 1)-
colored s.o.p. Θ for F[∆].

Let Γ be a simplicial 2-sphere with n vertices, and let ∆ be the
simplicial 2-sphere obtained from Γ by subdividing all facets of Γ. Then,
∆ is (2, 1)-balanced and has a unique (2, 1)-coloring π, which is defined
by π(v) = b if v is a vertex of Γ and π(v) = r, otherwise. Figure 2
shows the graph of ∆ when Γ is the boundary of a simplex.

.................

Figure 2. The graph of the (2, 1)-balanced sphere constructed from a tetra-

hedron.

Let W be the set of all blue vertices of ∆. Then, ∆W is the graph of
Γ; thus, |W | = n and e(∆W ) = 3n− 6. Hence, Lemma 4.1 states that

dimF(F[∆]/(Θ, w)F[∆])2 ≥ 3n− 6− (2n− 3) = n− 3

for any (2, 1)-colored s.o.p. Θ for F[∆] and any linear form w. Since
n > 3, F[∆]/ΘF[∆] fails to have the SLP for any (2, 1)-colored s.o.p. Θ
for F[∆].

For any simplicial 2-sphere ∆, by the Hard Lefschetz theorem,
F[∆]/ΘF[∆] has the SLP for a generic l.s.o.p. Θ for F[∆]. However,
the previous example shows that, for a specific choice of a simplicial
2-sphere ∆ and a specific l.s.o.p. Θ, the dimension
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dimF(F[∆]/(Θ, w)F[∆])2,

where w is a generic linear form, can be arbitrarily big.

In the rest of this section, we prove the implication of Theorem 1.2
(ii) ⇒ (i). We actually consider a more general class of simplicial
spheres that properly contain (2, 1)-balanced simplicial 2-spheres. We
say that a bi-coloring π of a simplicial complex ∆ is semi-proper if
there are no edges {u, v} ∈ ∆ with π(u) = π(v) = r. Note that
any (2, 1)-coloring is semi-proper; however, the converse is false since a
semi-proper bi-coloring does not forbid the existence of a 2-face, all of
whose vertices are blue. From Kind-Kleinschmidt’s criterion on linear
systems of parameters for Stanley-Reisner rings [10, III, Lemma 2.4],
we obtain the following lemma.

Lemma 4.3. Let ∆ be a two-dimensional simplical complex, and let
π be a semi-proper bi-coloring of ∆. Then, for a generic choice of
blue linear forms θ1, θ2, and for a generic linear form θ3, the sequence
θ1, θ2, θ3 is a system of parameters for F[∆].

Proof. Let Θ = θ1, θ2, θ3 ∈ F[∆] be a sequence of linear forms with
θi =

∑
v∈V (∆) αi,vxv. Kind-Kleinschmidt’s criterion states that, if, for

any face σ ∈ ∆, the matrix (αi,v)1≤i≤3, v∈σ has rank |σ|, then Θ is
an l.s.o.p. for F[∆]. Since each face has at most one red vertex, if we
choose Θ generically under the restriction that αi,v = 0 when π(v) = r
and i ∈ {1, 2}, then Kind-Kleinschmidt’s criterion shows that θ1, θ2, θ3
is an l.s.o.p. for F[∆]. �

Next, we prove analogues of Corollary 3.3 and Lemma 3.5 for the
semi-proper setup. Let ∆ be a simplicial 2-sphere with a semi-proper
bi-coloring π. We say that ∆ has the π-colored SLP (over F) if there
are a (2, 1)-colored sequence Θ = θ1, θ2, θ3 in F[∆] and a linear form w
such that

(F[∆]/(Θ, w)F[∆])2 = 0.

Note that, if ∆ has the π-colored SLP, then (F[∆]/(Θ, w)F[∆])2 = 0
for a generic choice of a (2, 1)-colored sequence Θ and a generic linear
form w. In particular, if π is a (2, 1)-coloring, then Θ can be taken as
an l.s.o.p. for F[∆].
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Lemma 4.4. Let ∆ = Γ1 #σ Γ2 be a simplicial 2-sphere with a semi-
proper bi-coloring π. If both Γ1 and Γ2 have the π-colored SLP, then
so does ∆.

Proof. Let S = F[xv : v ∈ V (∆)]. If we choose a (2, 1)-colored se-
quence θ1, θ2, θ3 ∈ S and a linear form w ∈ S generically, then θ1, θ2, w
is a common system of parameters for F[∆] and F[⟨σ⟩] by Lemma 4.3.
Also, (F[Γi]/(Θ, w)F[Γi])2 = 0 for i ∈ {1, 2} by the assumption. Then,
the assertion follows from Lemma 3.2. �

Lemma 4.5. Let ∆ be a simplicial 2-sphere with a semi-proper bi-
coloring π, and let {p, q} ∈ ∆ with π(p) = π(q) = b. Assume that
st∆(p)∩st∆(q) is an induced subcomplex of ∆ consisting of two triangles
⟨{s, p, q}, {t, p, q}⟩ and that π(s) = r. Then, ∆ → Cp→q(∆) is an admis-
sible contraction and, if Cp→q(∆) has the π-colored SLP, then ∆ has
the π-colored SLP.

Proof. The proof is similar to that of Lemma 3.5. That the contrac-
tion ∆ → Cp→q(∆) is admissible is obvious. Let S = F[xv : v ∈ V (∆)].
In addition, let

Σ := st∆(p) ∩ st∆(q) = ⟨{s, p, q}, {t, p, q}⟩,(4.1)

and let
Γ := Cp→q(∆) ∪ Σ.

Note that π gives a semi-proper bi-coloring of Γ. For a generic choice
of blue linear forms θ1, θ2, of a red linear form θ3 and of a linear form
w ∈ S, the sequence θ1, θ2, w is an l.s.o.p. for F[Γ] by Lemma 4.3.
Moreover, θ3 is non-zero in F[Σ]/(θ1, θ2, w)F[Σ] since, otherwise, either
w is zero in F[Σ]/(θ1, θ2, θ3)F[Σ] or θ3 is zero in F[Σ]/(θ1, θ2)F[Σ], none
of which may occur as Σ has a red vertex.

Then, by Lemma 3.4 and the assumption that Cp→q(∆) has the π-
colored SLP, we have(

S/(IΓ + (Θ, w))
)
2
=

(
F[Γ]/(Θ, w)F[Γ]

)
2
= 0,(4.2)

where Θ = θ1, θ2, θ3.

Let G = {xuxv : {u, v} /∈ ∆}. For m ∈ G and t ∈ F, we define
Φt(m) in the same manner as in (3.3). Also, for t ∈ F \ {0}, let φt be
the change of coordinates of S defined by φt(xv) = xv for v ̸= q and
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φt(xq) = xp+ txq. Let J(t) = (Φt(m) : m ∈ G). Then, it is not difficult
to prove that

(a) J(0)2 = (IΓ)2

and

(b) (φt(I∆))2 = (J(t))2 for t ̸= 0.

Indeed, (a) easily follows from (4.1), and (b) follows from a similar
(and simpler) argument as claim (c) in the proof of Lemma 3.5.

Now, using (b), for a generic t ∈ F, we have

(J(0) + (Θ, w))2 ≤ dimF(J(t) + (Θ, w))2

= dimF(I∆ + (φ−1
t (Θ), φ−1

t (w)))2.

Since (J(0)+(Θ, w))2 = (IΓ+(Θ, w))2 = S2 by (a) and (4.2), the above
inequality shows

(4.3) (S/(I∆ + (φ−1
t (Θ), φ−1

t (w))))2 = 0.

Since (φ−1
t (θ1), φ

−1
t (θ2), φ

−1
t (θ3)) is a (2, 1)-colored sequence, equa-

tion (4.3) proves that ∆ has the π-colored SLP. �

The next theorem completes the proof of the remaining part of
Theorem 1.2.

Theorem 4.6. Let ∆ be a simplicial 2-sphere with a semi-proper bi-
coloring π that satisfies the following property :

(L) e(∆W ) ≤ 2|W | − 3 for any set W of blue vertices with |W | ≥ 2.

Then, ∆ has the π-colored SLP.

Proof. We proceed by induction on |V | for V = V (∆). If |V | = 4,
then ∆ is the boundary of a tetrahedron and, as (L) holds, ∆ has three
blue vertices and one red vertex with respect to π. It may readily be
verified that ∆ has the π-colored SLP.

Assume that |V | > 4. If ∆ has a missing triangle, then, by Lemma
2.2, ∆ decomposes as a connected sum ∆ = Γ1 #σ Γ2. In this case, π
induces a semi-proper bi-coloring on each Γi, and, clearly, (L) holds for
each Γi. Hence, by the induction hypothesis, each Γi has the π-colored
SLP, and thus, by Lemma 4.4, so has ∆.
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Thus, assume that ∆ has no missing triangle. Then, for any edge
{p, q} ∈ ∆,

∆ −→ Cp→q(∆)

is an admissible contraction. Moreover, if p and q are blue vertices,
then π induces a semi-proper coloring of Cp→q(∆). We will show that
there is a facet {p, q, x} with π(p) = π(q) = b and π(x) = r such that
the complex Cp→q(∆) satisfies (L). Then, by the induction hypothesis,
Cp→q(∆) has the π-colored SLP, and thus, by Lemma 4.5 so has ∆, as
desired.

We distinguish two cases: whether ∆ contains a blue facet (i.e., a
facet all of whose vertices are blue) or not.

Case (i). Assume that ∆ has no blue facet. Recall that ∆ has no
missing triangle either. Then, for every subset W of blue vertices, the
1-skeleton of ∆W has no 3-cycles; thus, by Euler’s formula, e(∆W ) ≤
2|W | − 4 whenever |W | ≥ 3. Assume further that W is a subset of the
vertex set of Cp→q(∆), namely, p /∈ W . Since e(Cp→q(∆)W ) = e(∆W )
if q /∈ W and e(Cp→q(∆)W ) ≤ e(∆W∪{p}) − 1 if q ∈ W , this implies
that condition (L) holds in Cp→q(∆) for any blue edge {p, q} ∈ ∆.

Case (ii). Assume that ∆ has a blue facet. We first show that there
is a blue facet T = {v1, v2, v3} such that there exist red vertices v′1, v

′
2

(possibly v′1 = v′2) with {v1, v′1, v3}, {v2, v′2, v3} ∈ ∆. Then, we proceed
to show that either Cv1→v3(∆) or Cv2→v3(∆) satisfies (L), for some such
choice.

Suppose, to the contrary, that there is no blue facet T satisfying
the above condition. This means that each blue facet is adjacent to
at least two blue facets in the dual graph of ∆. Consider the graph G
whose vertices are the blue facets of ∆ and two facets σ, τ are adjacent
if their intersection is an edge of ∆. Then, each vertex of G has degree
at least two, and therefore, G has an induced cycle σ1, . . . , σk. Let
Γ = ⟨σ1, . . . , σk⟩ and W = V (Γ). Then, since we take an induced cycle
in G, there are exactly k edges, which are contained in two facets in Γ,
implying e(Γ) = 3k − k = 2k. Also, since |V (Γ)| = |V (⟨σ1, . . . , σk−1⟩)|
and |V (⟨σ1, . . . , σi⟩)| − |V (⟨σ1, . . . , σi−1⟩)| ≤ 1 for i < k, we have
|V (Γ)| ≤ k + 1. Thus, we have e(∆W ) ≥ e(Γ) = 2k ≥ 2|W | − 2
which contradicts (L), as |W | ≥ 2.
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Let T, v1, v2, v3, v
′
1, v

′
2 be as guaranteed above. Next we show that

either at least one of the complexes C1 := Cv1→v3(∆) and C2 :=
Cv2→v3(∆) satisfies (L), or we are in a situation that allows an inductive
argument for finding some other choice as above for which one of C1

and C2 satisfies (L). Assume that both C1 and C2 violate (L). Then,
for i = 1, 2, there is a subset of blue vertices B′

i in Ci with |B′
i| ≥ 2 and

e((Ci)B′
i
) > 2|B′

i| − 3. In particular, the vertex v3 is in B′
i, and, for the

set Bi = B′
i ∪ {vi} ⊆ V , we must have

(i) e(∆Bi) = 2|Bi| − 3, and

(ii) v3−i is not in Bi;

this is due to the fact that ∆Bi satisfies the inequality in (L) and (Ci)B′
i

violates it.

Consider the union B = B1 ∪ B2. Now, we count the edges in ∆B1

∪∆B2 ; if |B1 ∩B2| ≥ 2, then

e(∆B1 ∪∆B2) = e(∆B1) + e(∆B2)− e(∆B1∩B2)

= 2|B1| − 3 + 2|B2| − 3− e(∆B1∩B2)

≥ 2|B1| − 3 + 2|B2| − 3− (2|B1 ∩B2| − 3)

= 2|B| − 3.

The edge {v1, v2} is in the 1-skeleton of ∆B but not in ∆B1 ∪ ∆B2 .
Thus, ∆B violates the inequality in (L), a contradiction. This completes
the proof, unless |B1 ∩B2| ≤ 1, in which case B1 ∩B2 = {v3}.

We point out a simple observation we have just proved that will be
useful later on in the proof: call a subset U of blue vertices in V with
|U | ≥ 3 Laman if the complex ∆U satisfies (L) and e(∆U ) = 2|U | − 3.

Lemma 4.7. If S1 and S2 are Laman subsets of vertices in a simplicial
complex ∆ and |S1 ∩ S2| ≥ 2, then S1 ∪ S2 is Laman and ∆S1∪S2 and
∆S1 ∪∆S2 have the same 1-skeleton.

Recall B1 above is Laman, v1, v3 ∈ B1 and v2 /∈ B1 (thus, C1 violates
(L)); let B1 be of maximal size with these properties. Note that ∆B1

contains a blue facet, by Euler’s formula as argued in case (i), since
|B1| = |B′

1|+ 1 ≥ 3.

Next, we show that there is a blue facet T ′′ = {u1, u2, u3} ⊆ B1

such that each of the edges u1u3 and u2u3 is contained in a facet whose
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third vertex is red; note that neither of these two edges is v1v3. Indeed,
in order to apply the argument used in case (ii) (for the existence of
T above) to ∆B1 rather than to ∆, what we must verify is that, if
F ⊆ B1 is a blue facet adjacent in ∆ to another blue facet F ′, and
{z} = F ′ \ F , then z ∈ B1. Now, if z /∈ B1, then B1 ∪ {z} is Laman;
thus, by the maximality of B1, we must have z = v2. However, one of
the edges v2v3, v2v1 is not in ∆B1 ∪ ⟨F ′⟩; thus, ∆B1∪{z} violates (L), a
contradiction.

Assume that both Cu1→u3(∆) and Cu2→u3(∆) violate (L); otherwise,
we are done. As previously argued, there exist, for i = 1, 2, Laman
subsets B′′

i with ui, u3 ∈ B′′
i and u3−i /∈ B′′

i . If |B′′
1 ∩B′′

2 | ≥ 2, then, by
Lemma 4.7, B′′

1 ∪ B′′
2 violates (L), a contradiction. Thus, assume that

B′′
1 ∩ B′′

2 = {u3}. Next, we show that, in this case, B′′
i ⊂ B1, for at

least one of i = 1, 2; the inclusion is strict.

Note that |B′′
i ∩ B1| ≥ 2. Thus, Lemma 4.7 gives that B′′

i ∪ B1 is
Laman with ∆B′′

i ∪B1
and ∆B′′

i
∪∆B1 having the same 1-skeleton. By

the maximality of B1, for each of i = 1, 2, either B′′
i ⊂ B1 (with strict

containment as u3−i ∈ B1 \ B′′
i ) or v2 ∈ B′′

i . The latter case cannot
occur for both i = 1, 2 as B′′

1 ∩ B′′
2 = {u3} and u3 ̸= v2. Thus, after

exchanging the names of u1 and u2, if necessary, we can assume that
B′′

1 ⊂ B1, and we choose such a B′′
1 of maximal size.

Since |B′′
1 | < |B1|, by iterating this argument for B′′

1 inductively, we
conclude that, at some point, an edge {x, y} is found that is contained in
a unique blue facet and such that Cx→y(∆) satisfies (L). This completes
the proof. �
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ENDNOTES

1. Batagelj phrased his result for simplicial spheres where all vertex
degrees are even.
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Google, New York, NY 10011
Email address: dcook.math@gmail.com

Universität Osnabrück, Institut für Mathematik, 49069 Osnabrück, Ger-
many
Email address: juhnke-kubitzke@uos.de

Waseda University, Department of Mathematics, Nishi-Waseda 1-6-1, Shin-
juku, Tokyo 169-8050, Japan
Email address: s-murai@waseda.jp

The Hebrew University of Jerusalem, Einstein Institute of Mathematics,
Jerusalem, Israel

Email address: nevo@math.huji.ac.il


