TENSOR PRODUCTS AND ENDOMORPHISM RINGS OF FINITE VALUATED GROUPS

ULRICH ALBRECHT

ABSTRACT. This paper discusses homological properties of a finite valuated *p*-group *A*. A category equivalence between full subcategories of the category of valuated *p*-groups and the category of right modules over the endomorphism ring of *A* is developed to study *A*-presented and *A*-valuated valuated *p*-groups. In particular, we show that these classes do not coincide if |A/pA| > p. Examples are given throughout the paper.

1. Introduction. Let p be a prime and G a p-local Abelian group. A valuation v on G assigns a value v(g) to each $g \in G$, which is either an ordinal or ∞ subject to the rules

- (i) v(px) > v(x) for all $x \in G$ where $\infty > \infty$;
- (ii) $v(x+y) \ge \min\{v(x), v(y)\}$ for all $x, y \in G$;
- (iii) v(nx) = v(x) for all x and all integers n not divisible by p [10].

Condition (iii) is redundant if G is a p-group, which will be our standard assumption throughout this paper. The finite valuated p-groups are the objects of the category \mathcal{V}_p . A \mathcal{V}_p -morphism $(G, v) \to (H, w)$ is a group homomorphism $\alpha : G \to H$ such that $w(\alpha(g)) \ge v(g)$ for all $g \in G$. The family of \mathcal{V}_p -morphisms from (G, v) to (H, w) is denoted by Mor(G, H).

Hunter, Richman and Walker studied valuated groups in a series of papers in the 1970s and 1980s (e.g., [7, 9, 10]). They showed that \mathcal{V}_p is a *pre-Abelian* category, i.e., all maps have kernels and cokernels, but it is not Abelian. In particular, the kernel and the cokernel of a \mathcal{V}_p -morphism are its kernel and cokernel in the category $\mathcal{A}b$ of Abelian groups; however, they carry an additional valuation. Arnold discovered

²⁰¹⁰ AMS Mathematics subject classification. Primary 20K40, Secondary 18G50, 20K30.

 $Keywords\ and\ phrases.$ Valuated groups, endomorphism rings, preabelian categories.

Received by the editors on June 24, 2016, and in revised form on October 25, 2016.

DOI:10.1216/RMJ-2018-48-3-703 Copyright ©2018 Rocky Mountain Mathematics Consortium

a surprising connection between finite valuated *p*-groups and torsionfree Abelian groups of finite rank in [3]. He used representation theory to investigate finite rank Butler groups, and then described valuated *p*groups similarly in terms of representations of the underlying valuated *p*-trees. In particular, there are infinitely many isomorphism classes of indecomposable finite valuated *p*-groups *G* such that $p^4G = 0$ and $v(g) \leq 9$ for all $0 \neq g \in G$ [3, Example 8.2.5]. Moreover, the category of indecomposable finite valuated *p*-groups *G* such that $p^5G = 0$ and $v(g) \leq 11$ for all $0 \neq g \in G$ has wild representation type [3, Example 8.2.6].

This paper follows Arnold's approach by investigating valuated pgroups using tools which have traditionally been used in the discussion of torsion-free groups of finite rank. In particular, homological properties of a torsion-free group A have been successfully studied by viewing A as a left module over its endomorphism ring. Valuated groups can similarly be investigated in terms of their endomorphism ring R = Mor(A, A). Some of the major difficulties we encounter are that neither the 5-lemma nor the snake lemma hold in \mathcal{V}_p [9]. Moreover, compositions of kernels (cokernels) may not be kernels (cokernels) [9]. Therefore, the usual homological constructions may not carry over from Abelian categories. Nevertheless, it is still possible to develop a homological algebra for pre-Abelian categories as Yakovlev showed in [14].

Since A is a left R-module, $H_A = Mor(A, -)$ can be viewed as a functor from \mathcal{V}_p to \mathcal{M}_R , the category of finitely generated right *R*-modules. In particular, $H_A(G)$ is a free right *R*-module if *G* is A-free, i.e. of the form A^n for some $n < \omega$. Similarly, $H_A(G)$ is projective if G is A-projective, i.e., a \mathcal{V}_p -direct summand of an A-free group. The functor H_A induces a category equivalence between the full subcategory of \mathcal{V}_p consisting of the A-free groups and the category of finitely generated free right *R*-modules [1]. Its converse T_A was obtained by considering a finitely generated free right R-module Fwith basis $\{x_i \mid i \in I\}$. Writing $y \in F \otimes_R A$ as $y = \sum_{i \in I} (x_i \otimes a_i)$, the valuation v on $F \otimes_R A$ was defined as $v(y) = \min_{i \in I} v(a_i)$. Clearly, $T_A(F) = (F \otimes_R A, v)$ is A-free. Moreover, if F_1 and F_2 are finitely generated free right R-modules, then every map $\phi \in \operatorname{Hom}_R(F_1, F_2)$ induces a \mathcal{V}_p -morphism $T_A(\phi): T_A(F_1) \to T_A(F_2)$ [1]. Unfortunately, this construction relies on the freeness of the right R-module and does not carry over even to projective modules.

As a first step towards developing a homological algebra for finite valuated *p*-groups and their endomorphism rings, Section 2 extends the definition of T_A to the whole category \mathcal{M}_R (Theorem 2.3). Although the underlying group structure of T_A is induced by the tensor product $-\otimes_R A$, as in [1], we show that its exactness properties may be different from those of the classical tensor product due to the failure of the 5-lemma in \mathcal{V}_p (Proposition 2.2). Section 3 describes the classes of A-solvable and A-presented valuated *p*-groups, i.e., finite valuated *p*-groups which arise as cokernels of maps in Mor (A^n, A^m) for some $n, m < \omega$, and investigates the splitting of monomorphisms $A^n \to A^m$ (Theorem 3.6). Section 4 concerns the case where A is a simply presented group and shows that, for such a group A, these two classes coincide if and only if A is cyclic (Theorem 4.3).

2. Tensor products and valuations. We begin our discussion with a few technical results. If α is a kernel in \mathcal{V}_p , then $\alpha = \ker(\operatorname{coker}(\alpha))$ [13], and a similar result holds for cokernels. If U is a valuated subgroup of a finite valuated group G, then the cokernel of the inclusion $U \subseteq G$ is the group G/U with a valuation v defined by

$$v(g+U) = \max\{v(g+u) \mid u \in U\}$$

[10]. A sequence $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ of valuated *p*-groups is *left-exact* if α is a \mathcal{V}_p -kernel for β , and right exact if β is a \mathcal{V}_p -cokernel for α . It is *exact* if α is a kernel for β and β is a cokernel for α **[10]**. The functor H_A is left-exact since

$$(*) 0 \longrightarrow H_A(U) \xrightarrow{H_A(\alpha)} H_A(B) \xrightarrow{H_A(\beta)} H_A(C)$$

is an exact sequence of right *R*-modules whenever $0 \to U \xrightarrow{\alpha} B \xrightarrow{\beta} C$ is a left-exact sequence of valuated *p*-groups. Finally, the *forgetful functor* $\mathcal{F}: \mathcal{V}_p \to \mathcal{A}b$ strips a valuated group (G, v) of its valuation.

Lemma 2.1. Let A, B and C be finite valuated p-groups.

(a) Let $\alpha \in Mor(A, B)$ be an epimorphism and $\beta \in Mor(B, C)$. If $\beta \alpha$ is a cohernel of $\delta \in Mor(G, A)$ for some $G \in \mathcal{V}_p$, then β is a cohernel for $\alpha \delta$.

(b) Let $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ be a sequence of valuated p-groups which is exact in Ab.

ULRICH ALBRECHT

(i) If there is a δ ∈ Mor(C, B) such that βδ = 1_C, then β = coker α.
(ii) If there is a γ ∈ Mor(B, A) such that γα = 1_A, then α = ker β.
Proof.

(a) Suppose that ϕ satisfies $\phi \alpha \delta = 0$. Since $\beta \alpha$ is a cokernel for δ , there is a map ψ such that $\psi \beta \alpha = \phi \alpha$. Since α is an epimorphism, $\phi = \psi \beta$. In addition, since β is an epimorphism, ψ is unique with this property.

(b) We only show (i). Let X be a valuated group, and $\phi \in Mor(B, X)$ with $\phi \alpha = 0$. Since $\beta(1_B - \delta \beta) = 0$, every $b \in B$ can be written as $b = \delta \beta(b) + \alpha(a)$ for some $a \in A$ since the given sequence is exact in $\mathcal{A}b$. Thus, $\phi(b) = (\phi\delta)\beta(b)$. Moreover, ϕ is unique since β is an epimorphism.

Lemma 2.1 (b) raises the question of whether the splitting of β in \mathcal{V}_p guarantees the splitting of α in \mathcal{V}_p , and vice-versa. However, this need not be the case unless the sequence

$$0 \longrightarrow G \stackrel{\alpha}{\longrightarrow} H \stackrel{\beta}{\longrightarrow} K \longrightarrow 0$$

is \mathcal{V}_p -exact. In order to see this, let $A_1 = \langle x \rangle$ be a cyclic group of order p with a valuation such that v(x) > 0 and $A_2 = \mathbb{Z}/p\mathbb{Z}$ with the height valuation. The sequence

$$0 \longrightarrow A_2 \xrightarrow{\alpha} A_1 \oplus A_2 \xrightarrow{\beta} A_2 \longrightarrow 0,$$

in which α is the embedding into the first coordinate and β is the projection onto the second coordinate, is $\mathcal{A}b$ -exact. Although β splits in \mathcal{V}_p , this is not true for α .

This example highlights a significant difference between the category \mathcal{V}_p and the quasi-category $\mathbb{Q}Ab$ of torsion-free groups of finite rank. In the latter, there is a natural monomorphism from $\operatorname{Hom}(G, H)$ to $\operatorname{Mor}_{\mathbb{Q}Ab}(G, H)$ for all $G, H \in \mathbb{Q}Ab$, while such a map does usually not exist in \mathcal{V}_p . In particular, Ab-decompositions of a group induce $\mathbb{Q}Ab$ -decomposition, while there exist indecomposable finite valuated p-groups which are acyclic.

Consider the functor $t_A : \mathcal{M}_R \to \mathcal{A}b$ defined by $t_A = -\otimes_R A$ for all $M \in \mathcal{M}_R$. In order to define a valuation on $t_A(M)$, choose a free resolution $F_1 \xrightarrow{\alpha} F_0 \xrightarrow{\beta} M \to 0$ of M. Applying t_A induces an exact sequence

$$T_A(F_1) \xrightarrow{t_A(\alpha)} T_A(F_0) \xrightarrow{t_A(\beta)} t_A(M) \longrightarrow 0,$$

where $t_A(\alpha) = T_A(\alpha)$ is a \mathcal{V}_p -map by [1]. Since \mathcal{V}_p is pre-Abelian, there is a unique valuation v on $t_A(M)$ such that $t_A(\beta)$ is the \mathcal{V}_p -cokernel of $T_A(\alpha)$ [10]. Let $T_A(M) = (t_A(M), v)$. Although $t_A = \mathcal{F}T_A$, exactness properties of t_A do not necessarily carry over to T_A , as the following example shows:

Proposition 2.2. Let $A = \langle a \rangle$ be a valuated cyclic group of order p^n for some $1 < n < \omega$ with a valuation v such that $v(a) \neq \infty$. Then, A is free as a left R-module, and there exists a monomorphism $\alpha : R/J \rightarrow R$ such that the induced map $T_A(\alpha) : T_A(R/J) \rightarrow T_A(R)$ is not a \mathcal{V}_p kernel.

Proof. Observe that $R = \mathbb{Z}/p^n\mathbb{Z}$ and $J = p\mathbb{Z}/p^n\mathbb{Z}$. The left R-module R/J fits into the exact sequence $R \xrightarrow{\phi} R \xrightarrow{\pi} R/J \to 0$ where $\phi(1_R) = p1_R$ and $\pi(1_R) = 1_R + J$. Setting $v((1_R + J) \otimes a) = v(a)$ defines the cokernel valuation on $T_A(R/J)$.

The map $\gamma : R/J \to E$, defined by $\gamma(1_R + J) = p^{n-1} + p^n \mathbb{Z}$, induces a monomorphism $T_A(\gamma) : T_A(R/J) \to T_A(E)$ such that $\operatorname{im}(T_A(\gamma)) = \langle p^{n-1}a \rangle$. Since

$$v((1_R + J) \otimes a) = v(a) < v(p^{n-1}a)$$

and $v(a) \neq \infty$, the map $T_A(\gamma)$ does not preserve valuations. Therefore, it is not a kernel, and the induced sequence

$$0 \longrightarrow T_A(R/J) \xrightarrow{\gamma} T_A(R) \longrightarrow T_A(R/\operatorname{im} \gamma) \longrightarrow 0$$

of Abelian groups is not \mathcal{V}_p -exact.

Although the classical adjoint functor theorem and its associated exactness properties apply to the pair (H_A, t_A) , they may not be applicable to (H_A, T_A) since homological arguments that work in an Abelian category may not carry over to a pre-Abelian category like \mathcal{V}_p [14].

Theorem 2.3. Let A be a finite valuated p-group.

(a) T_A is a right exact functor from \mathcal{V}_p to \mathcal{M}_R .

ULRICH ALBRECHT

(b) The evaluation map $\theta_G : T_A H_A(G) \to G$ defined by $\theta_G(\alpha \otimes a) = \alpha(a)$ is a natural \mathcal{V}_p -map for all valuated p-groups G such that

(i) θ_F is an isomorphism for all A-free groups F.

(ii) $\theta_{T_A(M)}$ is an epimorphism for all right *R*-modules *M*.

(c) The natural map $\Phi_M : M \to \text{Hom}(A, T_A(M))$, defined by $[\Phi_M(x)](a) = x \otimes a$, is a natural transformation, and Φ_F is an isomorphism for all free right *R*-modules *F*.

Proof.

(a) Let $M, N \in \mathcal{M}_R$, and choose exact sequences $F_1 \xrightarrow{\alpha} F_0 \xrightarrow{\beta} M \to 0$ and $P_1 \xrightarrow{\gamma} P_0 \xrightarrow{\delta} N \to 0$ of right *R*-modules in which the P_i 's and the F_i 's are free. For every $\phi : M \to N$, applying the functor t_A induces a commutative diagram

$$T_{A}(F_{1}) \xrightarrow{T_{A}(\alpha)} T_{A}(F_{0}) \xrightarrow{T_{A}(\beta)} T_{A}(M) \longrightarrow 0$$

$$\downarrow^{T_{A}(\phi_{1})} \qquad \downarrow^{T_{A}(\phi_{0})} \qquad \downarrow^{t_{A}(\phi)}$$

$$T_{A}(P_{1}) \xrightarrow{T_{A}(\gamma)} T_{A}(P_{0}) \xrightarrow{T_{A}(\delta)} T_{A}(N) \longrightarrow 0$$

of Abelian groups in which the maps ϕ_0 and ϕ_1 are induced by ϕ using standard homological arguments. Here, the usage of the symbol T_A indicates that the corresponding map has already been shown to be a \mathcal{V}_p -map. Since t_A is right-exact, the rows of the diagram are exact as sequences of Abelian groups, and

$$[T_A(\delta)T_A(\phi_0)]T_A(\alpha) = t_A(\phi)T_A(\beta)T_A(\alpha) = 0.$$

Since $T_A(\delta)T_A(\phi_0)$ is a \mathcal{V}_p -map and $T_A(\beta) : T_A(F_0) \to T_A(M)$ is a cokernel for $T_A(\alpha)$, there is a \mathcal{V}_p -map $\lambda : T_A(M) \to T_A(N)$ with $\lambda T_A(\beta) = T_A(\delta)T_A(\phi_0)$. On the other hand, $T_A(\delta)T_A(\phi_0) = t_A(\phi)T_A(\beta)$ in $\mathcal{A}b$. Since $T_A(\beta)$ is an epimorphism of Abelian groups, $t_A(\phi) = \lambda$ is a \mathcal{V}_p -map. In particular, if M = N and $\phi = 1_M$, then we denote the valuation on $T_A(M)$ induced by the F_i 's by v and the one induced by the P_i 's by w. Since $t_A(1_M)$ is a \mathcal{V}_p -map, $w(x) = w(T_A(1_M))(x) \geq v(x)$ for all $x \in T_A(M)$.

Now, consider an exact sequence $L \xrightarrow{\alpha} M \xrightarrow{\beta} N \to 0$ in \mathcal{M}_R . Standard homological arguments based on the Horseshoe lemma [11, Lemma 6.20] and an application of T_A yield the commutative diagram:

$$\begin{array}{cccc} T_A(F_1) & \xrightarrow{T_A(\beta_1)} & T_A(P_1) & \longrightarrow & 0 \\ & & & & \downarrow^{T_A(\sigma_2)} & & \downarrow^{T_A(\sigma_3)} \end{array} \\ T_A(Q_0) & \xrightarrow{T_A(\alpha_0)} & T_A(F_0) & \xrightarrow{T_A(\beta_0)} & T_A(P_0) & \longrightarrow & 0 \\ & & & \downarrow^{T_A(\tau)} & & \downarrow^{T_A(\tau_2)} & & \downarrow^{T_A(\tau_3)} \end{array} \\ T_A(L) & \xrightarrow{T_A(\alpha)} & T_A(M) & \xrightarrow{T_A(\beta)} & T_A(N) & \longrightarrow & 0 \\ & & & \downarrow & & \downarrow \\ & & & 0 & & 0 \end{array}$$

of \mathcal{V}_p -maps whose rows and columns are exact in $\mathcal{A}b$. Here, the F_i 's, P_i 's and Q_i 's are free modules obtained by the horseshoe lemma, and the *R*-module homomorphisms β_0 and β_1 split. The definition of T_A ensures that $T_A(\tau_i)$ is a cokernel of $T_A(\sigma_i)$ for i = 2, 3. Since $T_A(\beta_0)$ and $T_A(\beta_1)$ split, they are cokernels for $T_A(\alpha_0)$ and $T_A(\alpha_1)$, respectively, by Lemma 2.1 (b).

Clearly, $T_A(\beta)T_A(\alpha) = 0$. in order to see that $T_A(\beta)$ is a cokernel for $T_A(\alpha)$, assume that $\phi T_A(\alpha) = 0$ for some valuated *p*-group *G* and a map $\phi \in \operatorname{Mor}(T_A(M), G)$. Then, $[\phi T_A(\tau_2)]T_A(\alpha_0) = \phi T_A(\alpha)T_A(\tau) = 0$. Since $T_A(\beta_0)$ is a cokernel for $T_A(\alpha_0)$, we can find $\lambda_1 \in \operatorname{Mor}(T_A(P_0), G)$ such that $\phi T_A(\tau_2) = \lambda_1 T_A(\beta_0)$. Now,

$$\lambda_1 T_A(\sigma_3) T_A(\beta_1) = \lambda_1 T_A(\beta_0) T_A(\sigma_2) = \phi T_A(\tau_2) T_A(\sigma_2) = 0.$$

Since $T_A(\beta_1)$ is an epimorphism, $\lambda_1 T_A(\sigma_3) = 0$. However, $T_A(\tau_3)$ is a cokernel for $T_A(\sigma_3)$. Hence, there is a $\lambda \in Mor(T_A(N), G)$ with $\lambda T_A(\tau_3) = \lambda_1$. Then,

$$\lambda T_A(\beta)T_A(\tau_2) = \lambda T_A(\tau_3)T_A(\beta_0) = \lambda_1 T_A(\beta_0) = \phi T_A(\tau_2).$$

Since $T_A(\tau_2)$ is an epimorphism, $\phi = \lambda T_A(\beta)$.

Finally, if $\phi = \lambda_1 T_A(\beta) = \lambda_2 T_A(\beta)$, then $\lambda_1 = \lambda_2$ since $T_A(\beta)$ is an epimorphism. Therefore, $T_A(\beta)$ is a cokernel of $T_A(\alpha)$.

(b) The map θ_G is well defined since $\operatorname{Mor}(G, H) \subseteq \operatorname{Hom}_{\mathbb{Z}}(G, H)$. Arguing as in the case of Abelian groups yields that this map is natural. From [1], θ_F is a \mathcal{V}_p -isomorphism if F is an A-free group. It remains to show that θ_G is a \mathcal{V}_p -morphism for all $G \in \mathcal{V}_p$. For this, let I indicate the finite set $H_A(G)$. For each $\phi \in I$, choose $A_{\phi} = A$ and define $F = \bigoplus_I A$ and $\pi : F \to G$ by $\pi(\Sigma_I a_{\phi}) = \Sigma_I \phi(a_{\phi})$. Then, there is a $\phi_0 \in I$ such that

$$v(\Sigma_I \phi(a_{\phi})) \ge \min\{v(\phi(a_{\phi}))\} = v(\phi_0(a_{\phi_0})) \ge v(a_{\phi_0}) \ge v(\Sigma_I a_{\phi}),$$

and π is a \mathcal{V}_p -map.

Since A is finite, $H_A(F)$ is a free R-module [1]. Applying H_A induces an R-module epimorphism $H_A(\pi) : H_A(F) \to H_A(G)$ as in the case of Abelian groups. Select a free R-module P and an epimorphism $\tau : P \to \ker(H_A(\pi))$ to obtain the exact sequence

$$P \xrightarrow{\tau} F \xrightarrow{H_A(\pi)} H_A(G) \longrightarrow 0$$

of right *R*-modules. Applying the functor T_A yields the commutative diagram

of Abelian *p*-groups in which θ_F is a \mathcal{V}_p -isomorphism by [1]. Then

$$[\pi \theta_F]T_A(\tau) = \theta_G T_A H_A(\pi) T_A(\tau) = 0.$$

Since $\pi\theta_F$ is a \mathcal{V}_p -map, there is a \mathcal{V}_p -map $\lambda : T_AH_A(G) \to G$ with $\lambda T_AH_A(\pi) = \pi\theta_F$ since $T_AH_A(\pi) : T_A(F) \to T_AH_A(G)$ is a \mathcal{V}_p -cokernel of $T_A(\tau)$. On the other hand, $\pi\theta_F = \theta_G T_A(\pi)$ holds in $\mathcal{A}b$. Arguing as before, $\theta_G = \lambda$ is a \mathcal{V}_p -morphism.

Let M be a finitely generated right R-module. Since $T_A(M)$ is an epimorphic image of an A-free group, we can argue as in the case of Abelian groups that there exist an A-free valuated group P_1 and an epimorphism $\alpha : P_1 \to T_A(M)$ such that $H_A(\alpha) : H_A(P_1) \to H_AT_A(M)$ is onto. We therefore obtain the commutative diagram:

$$\begin{array}{cccc} T_A H_A(P_1) & \xrightarrow{T_A H_A(\alpha)} & T_A H_A T_A(M) & \longrightarrow & 0 \\ & & & \downarrow \\ \theta_{P_1} & & & \downarrow \\ P_1 & \xrightarrow{\alpha} & T_A(M) & \longrightarrow & 0 \end{array}$$

of Abelian groups whose rows are exact. Thus, $\theta_{T_A(M)}$ is an epimorphism.

(c) Consider a finitely generated right *R*-module *M*. We must show that $\Phi_M(x)$ is a \mathcal{V}_p -map for all $x \in M$. In order to see this, select a free resolution $F_1 \to F_0 \xrightarrow{\pi} M \to 0$ where $F_0 = \bigoplus_M R_x$ with $R_x = R$ and $\pi(\delta_x(1)) = x$, where the δ_x 's are the coordinate embeddings. Since the valuation on $T_A(M)$ is the cokernel valuation,

$$v(x \otimes a) = v(\pi \delta_x(1) \otimes a) \ge v(\delta_x(1) \otimes a) = v(a)$$

for all $x \in M$ and all $a \in A$. Finally, Φ_F is an isomorphism by [1] whenever F is a free right R-module.

For A-free groups F and P, consider $\alpha \in \operatorname{Mor}(P, F)$. The last result induces a valuation on $T_A(M)$ where $M = H_A(F)/im(H_A(\alpha))$, making the latter the cokernel of $T_AH_A(\alpha)$. On the other hand, α also has a \mathcal{V}_p -cokernel $\beta : F \to G$ for some valuated p-group (G, w). We consider the commutative diagram

$$\begin{array}{cccc} T_A H_A(P) & \xrightarrow{T_A H_A(\alpha)} & T_A H_A(F) & \longrightarrow & T_A(M) & \longrightarrow & 0 \\ & & & & & \downarrow \\ & & & & \downarrow \downarrow \\ P & & \xrightarrow{\alpha} & F & \xrightarrow{\beta} & G & \longrightarrow & 0 \end{array}$$

in which all maps are \mathcal{V}_p -maps. Since the rows are \mathcal{V}_p -exact and $T_A(\pi)$ is a cokernel by the last theorem, there is an isomorphism $\delta : (T_A(M), w) \to (G, v)$. Thus, the valuation given by the last result coincides with the cokernel valuation defined in [10].

Example 2.4. The application of the functor T_AH_A to a valuated pgroup G does not preserve the original valuation on G. For instance, if $A = \mathbb{Z}/p\mathbb{Z}$ with the height valuation, and $G = \mathbb{Z}/p\mathbb{Z}$ with the valuation which assigns the value ∞ to all elements of G, then $T_AH_A(G) \cong A$ in \mathcal{V}_p , but $G \ncong A$ in \mathcal{V}_p . In particular, θ_G need not be a \mathcal{V}_p -cokernel.

Although the focus of this paper is on finite valuated p-groups, we want to mention that the results of this section carry over to the more general case of a self-small p-local group.

ULRICH ALBRECHT

3. A-presented groups. An epimorphism $G \to H$ of valuated pgroups is A-balanced if the induced map $H_A(\alpha) : H_A(G) \to H_A(H)$ is surjective. A valuated p-group is A-generated if we can find an Abalanced \mathcal{V}_p -exact sequence $\bigoplus_I A \xrightarrow{\beta} G \to 0$. It is weakly A-generated if there is an epimorphism $\bigoplus_I A \to G$ for some index-set I. As in the case of Abelian groups, we can choose this epimorphism to be A-balanced. When working in $\mathcal{A}b$, it is not necessary to distinguish between Agenerated and weakly A-generated groups. However, the next result shows that weakly A-generated groups which are not A-generated arise regularly in \mathcal{V}_p :

Proposition 3.1. Let A be a finite valuated group such that $v(a) \neq \infty$ for all $0 \neq a \in A$. Then, there exists a weakly A-generated valuated group G which is not A-generated.

Proof. Select an ordinal λ such that $v(a) < \lambda$ for all non-zero $a \in A$, and let G be the group A equipped with a valuation w such that $w(a) > \lambda$ for all $a \in A$. Then, $1_A : A \to G$ is a \mathcal{V}_p -epimorphism which is not a cokernel, for, otherwise, it would be an isomorphism.

If G were A-generated, then we could find an A-balanced cokernel $\pi : A^n \to G$ for some $n < \omega$. Since A^n carries the co-product valuation, $v(x) < \lambda$ for all non-zero $x \in A^n$. If $U = \ker \pi$, then $v(x+U) = v(x+u_0) < \lambda$ for some $u_0 \in U$ since U is finite. Thus, $v(g) < \lambda$ for all non-zero $g \in G$, which contradicts the construction of G.

A valuated p-group G is A-presented if there is an exact sequence

$$(\mathbf{E}) \qquad \qquad 0 \longrightarrow U \longrightarrow F \longrightarrow G \longrightarrow 0$$

of valuated p-groups such that F is A-free and U is weakly A-generated. An A-presented group G is A-solvable if (E) can be chosen to be Abalanced. Since A is projective with respect to split-exact sequences, every A-projective group is A-solvable. We begin our discussion with a technical result which we use frequently throughout this paper as a substitute for the 5-lemma:

Proposition 3.2. Let A and G be finite valuated p-groups.

(a) For every \mathcal{V}_p -exact sequence $0 \to U \to H \to G \to 0$ such that θ_H is an isomorphism, there exists a commutative diagram

$$T_{A}H_{A}(U) \xrightarrow{T_{A}H_{A}(\alpha)} T_{A}H_{A}(H) \xrightarrow{T_{A}H_{A}(\beta)} T_{A}(M) \longrightarrow 0$$

$$\downarrow_{\theta_{U}} \qquad \downarrow_{\theta_{H}} \qquad \qquad \downarrow_{\theta}$$

$$U \xrightarrow{\alpha} H \xrightarrow{\beta} G \longrightarrow 0$$

of valuated groups and \mathcal{V}_p -maps in which $M = \operatorname{im} H_A(\beta)$ is a submodule of $H_A(G)$ and $\theta : T_A(M) \to G$ is the evaluation map. Moreover, θ is a cokernel, and $\theta = \theta_G T_A(\iota)$, where $\iota : M \to H_A(G)$ is the embedding.

(b) If G is A-generated, then an A-balanced sequence $0 \to U \to \oplus_I A \to G \to 0$ induces a diagram as in (a) with $M = H_A(G)$ and $\theta = \theta_G$. In particular, θ_G is a cokernel.

Proof.

(a) Since H_A is left-exact, every exact sequence $0 \to U \xrightarrow{\alpha} H \xrightarrow{\beta} G \to 0$ of valuated groups induces an exact sequence

$$0 \longrightarrow H_A(U) \stackrel{H_A(\alpha)}{\longrightarrow} H_A(H) \stackrel{H_A(\beta)}{\longrightarrow} M \longrightarrow 0$$

of right *R*-modules where $M = im(H_A(\beta))$ is a submodule of $H_A(G)$. From Theorem 2.3, the induced sequence

$$T_A H_A(U) \xrightarrow{T_A H_A(\alpha)} T_A H_A(H) \xrightarrow{T_A H_A(\beta)} T_A(M) \longrightarrow 0$$

is exact. Theorem 2.3 also yields the commutativity of the diagram in $\mathcal{A}b$ and the fact that θ_U and θ_G are \mathcal{V}_p -maps. Since θ_H is a \mathcal{V}_p -isomorphism such that $\theta = \theta_H T_A(\iota)$, we obtain that θ is a \mathcal{V}_p map since this holds for $T_A(\iota)$ by Theorem 2.3. The diagram shows $\theta[T_A H_A(\beta) \theta_H^{-1}] = \beta$. Since $T_A H_A(\beta)$ is a cokernel by Theorem 2.3, Lemma 2.1 yields that θ is a cokernel too.

(b) follows directly from (a) since $M = H_A(G)$ in this case.

Using the last result, we obtain the following description of A-presented and A-solvable valuated p-groups:

Theorem 3.3. Let A be a finite valuated p-group.

(a) A finite valuated p-group G is A-presented if and only if $G \cong T_A(M)$ for some finitely generated right R-module M.

(b) A finite valuated p-group G is A-solvable if and only if the map θ_G is a \mathcal{V}_p -isomorphism.

Proof.

(a) Since G is A-presented, there is an exact sequence $0 \to U \xrightarrow{\alpha} A^n \xrightarrow{\beta} G \to 0$ such that U is weakly A-generated. Proposition 3.2 yields the commutative diagram

$$\begin{array}{cccc} T_A H_A(U) & \xrightarrow{T_A H_A(\alpha)} & T_A H_A(A^n) & \xrightarrow{T_A H_A(\beta)} & T_A(M) & \longrightarrow & 0 \\ & & & & \downarrow \theta_U & & \downarrow \downarrow \theta_{A^n} & & & \downarrow \theta \\ & & & U & \xrightarrow{\alpha} & A^n & \xrightarrow{\beta} & G & \longrightarrow & 0 \end{array}$$

of \mathcal{V}_p -maps in which θ_U is an epimorphism and $M = \operatorname{im} H_A(\beta)$. The snake lemma in $\mathcal{A}b$ shows that θ is an isomorphism of Abelian groups. Therefore, $\theta T_A H_A(\beta) \theta_A^{-1} = \beta$ yields $T_A H_A(\beta) \theta_A^{-1} \alpha = 0$. Since β is a cokernel of α , there is a $\lambda \in \operatorname{Mor}(G, T_A(M))$ such that $\lambda\beta = T_A H_A(\beta) \theta_A^{-1}$. Hence,

$$\theta\lambda\beta = \theta T_A H_A(\beta)\theta_A^{-1} = \beta$$

so that $\theta \lambda = 1_G$ because β is onto. Moreover, λ is a \mathcal{V}_p -isomorphism since it is an isomorphism of Abelian groups such that $v(g) = v(\theta\lambda(g)) \ge v(\lambda(g)) \ge v(g)$ for all $g \in G$. Hence, θ is a \mathcal{V}_p -isomorphism. The converse is obvious.

(b) Since G is A-solvable, there is an A-balanced sequence $0 \to U \xrightarrow{\alpha} A^n \xrightarrow{\beta} G \to 0$ such that U is weakly A-generated group. Proposition 3.2 (b) yields the commutative diagram

Observe that θ_U is an epimorphism since there is an exact sequence $\oplus_J A \to U \to 0$. Looking at the diagram in $\mathcal{A}b$, we get ker $\theta_G = 0$. Since θ_G is a cokernel, the valuation on G is the smallest valuation v such that $v(x) \geq w(y)$ for all elements y of $T_A H_A(G)$ with $\theta_G(y) = x$, where w is the valuation on $T_A H_A(G)$ given by Theorem 2.3. On the other hand, setting $v_1(x) = w(\theta_G^{-1}(x))$ defines a valuation on G with $v_1(x) \ge w(y)$. Thus, $w(\theta_G^{-1}(x)) \ge v(x)$ and θ_G^{-1} is a \mathcal{V}_p -map. Hence, θ_G is a \mathcal{V}_p -isomorphism.

Conversely, if θ_G is an isomorphism, then $H_A(\theta_G)$ is an isomorphism such that

$$[H_A(\theta_G)\Phi_{H_A(G)}(\sigma)](a) = [\theta_G\Phi_{H_A(G)}(\sigma)](a) = \theta_G(\sigma \otimes a) = \sigma(a)$$

for all $\sigma \in H_A(G)$ and all $a \in A$. Consequently, $\Phi_{H_A(G)}$ is an isomorphism.

We consider an exact sequence $P \xrightarrow{\alpha} F \xrightarrow{\beta} H_A(G) \to 0$ of right *R*modules in which *P* and *F* are projective. It induces the exact sequence

$$T_A(P) \xrightarrow{T_A(\alpha)} T_A(F) \xrightarrow{T_A(\beta)} T_A H_A(G) \longrightarrow 0.$$

The \mathcal{V}_p -kernel $K \subseteq T_A(F)$ of $T_A(\beta)$ is weakly A-generated since it is an image of $T_A(P)$ which carries the valuation induced by $T_A(F)$. Also, since $T_A(\beta)$ is a cokernel, we have $T_A(\beta) = \operatorname{Coker}(\ker(T_A(\beta)))$. Therefore, the sequence

$$0 \longrightarrow K \stackrel{\iota}{\longrightarrow} T_A(F) \stackrel{T_A(\beta)}{\longrightarrow} T_A H_A(G) \longrightarrow 0$$

is \mathcal{V}_p -exact where $\iota: K \to T(F)$ is the inclusion map.

In order to see that the last sequence is A-balanced, consider the commutative diagram

$$\begin{array}{cccc} H_A T_A(F) & \xrightarrow{H_A T_A(\beta)} & H_A T_A H_A(G) \\ & & & \uparrow \Phi_F & & & \uparrow \Phi_{H_A(G)} \\ & & F & \xrightarrow{\beta} & H_A(G) & \longrightarrow & 0 \end{array}$$

in which the vertical maps are isomorphisms by what has already been shown. Therefore, $H_A T_A(\beta)$ is onto, and $T_A H_A(G)$ is an A-solvable group. The same holds for $G \cong T_A H_A(G)$.

Our next result summarizes the most important homological properties of A-solvable groups. The reader is reminded that a left module A is faithful if $A \neq IA$ for all proper right ideals I of R. Since the Jacobson radical J = J(S) is nilpotent for all Artinian rings S, every indecomposable finite valuated p-groups is faithful as an R-module. **Corollary 3.4.** Let A be a finite valuated p-group.

(a) If G is an A-solvable group and $\alpha : A^n \to G$ is an A-balanced epimorphism, then α is a cokernel.

(b) If $U \to G \xrightarrow{\beta} H \to 0$ is an A-balanced exact sequence of valuated p-groups such that U is weakly A-generated and G is A-solvable, then H is A-solvable.

(c) Let $0 \to U \xrightarrow{\alpha} C \xrightarrow{\beta} H$ be a left exact sequence of valuated p-groups such that U is weakly A-generated, C is A-solvable and $\beta : C \to H$ is an A-balanced epimorphism. If $\pi : C \to G$ is a cokernel for α , then there is a monomorphism $G \to H$, and the sequence $0 \to U \xrightarrow{\alpha} C \xrightarrow{\pi} G \to 0$ is A-balanced.

(d) Suppose that A is faithful as a left R-module.

(i) If G is weakly A-generated and H is A-solvable, then every epimorphism $G \to H$ is A-balanced.

(ii) An A-generated group G is A-solvable if it fits into an exact sequence $0 \to U \xrightarrow{\alpha} G \xrightarrow{\beta} H \to 0$ of valuated groups in which U and H are A-solvable.

Proof. In order to see (a), let $U = \ker \alpha$, and consider the induced diagram

in which $T_A H_A(\alpha)$ is a cokernel by Theorem 2.3. Since the last two vertical maps are \mathcal{V}_p -isomorphisms, α is a cokernel as well.

(b) Successively applying the functors H_A and T_A induces the toprow of the commutative diagram

Although the 5-lemma fails in \mathcal{V}_p , we can apply it in $\mathcal{A}b$ to obtain that θ_H is an isomorphism of Abelian groups. However, it is also a cokernel by Lemma 2.1. This is only possible if it is a \mathcal{V}_p -isomorphism.

(c) Since $\pi : C \to G$ is a cokernel of α , we obtain a \mathcal{V}_p -map $\gamma : G \to H$ such that $\beta = \gamma \pi$. Obviously, γ is an isomorphism of Abelian groups, and hence a \mathcal{V}_p -monomorphism. By (b), it suffices to show that the sequence $0 \to U \xrightarrow{\alpha} C \xrightarrow{\pi} G \to 0$ is A-balanced. For this, consider $\phi \in H_A(G)$, and select $\psi \in H_A(C)$ such that $\gamma \phi = \beta \psi = \gamma \pi \psi$.

(d) Suppose that A is faithful as a left R-module, and consider the submodule $M = \operatorname{im} H_A(\beta)$ of $H_A(H)$ together with the induced commutative diagram

$$\begin{array}{cccc} T_A H_A(G) & \xrightarrow{T_A H_A(\beta)} & T_A(M) & \longrightarrow & 0 \\ & & & & & \downarrow^{\theta_G} & & & \downarrow^{\theta} \\ & & & & & & & & \\ G & \xrightarrow{-\beta} & H & \longrightarrow & 0 \end{array}$$

of Abelian groups. Since β and θ_G are epimorphisms, the same holds for θ . However, θ also fits into the commutative diagram

$$T_{A}(M) \xrightarrow{T_{A}(\iota)} T_{A}H_{A}(H) \longrightarrow T_{A}(H_{A}(H)/M) \longrightarrow 0$$

$$\downarrow_{\theta} \qquad \land \downarrow_{\theta_{H}}$$

$$H \xrightarrow{1_{H}} H$$

of Abelian groups where $\iota: M \to H_A(H)$ is the inclusion map. Since θ_H is an isomorphism, $T_A(\iota)$ is onto and $T_A(H_A(H)/M) = 0$. Since A is a faithful R-module, $M = H_A(H)$, and (i) holds.

Moreover, the given sequence is A-balanced by (b) and induces the exact sequence

$$0 \longrightarrow H_A(U) \stackrel{H_A(\alpha)}{\longrightarrow} H_A(G) \stackrel{H_A(\beta)}{\longrightarrow} H_A(H) \longrightarrow 0.$$

As in Proposition 3.2, we obtain the commutative diagram

$$\begin{array}{cccc} T_A H_A(U) & \xrightarrow{T_A H_A(\alpha)} & T_A H_A(G) & \xrightarrow{T_A H_A(\beta)} & T_A H_A(H) & \longrightarrow & 0 \\ & & & \downarrow \\ \theta_U & & & \downarrow \\ \theta_G & & & \downarrow \\ \theta_H & & \\ U & \xrightarrow{\alpha} & G & \xrightarrow{\beta} & H & \longrightarrow & 0. \end{array}$$

Since the 5-lemma is valid in $\mathcal{A}b$, the map θ_G is an isomorphism of Abelian groups. However, θ_G is a cokernel by Proposition 3.2 (b). Arguing as before, we obtain that θ_G is a \mathcal{V}_p -isomorphism. By Theorem 3.3, G is A-solvable.

We continue consideration of groups of the form $T_A(M)$ by examining the case where M is a module of projective dimension 1. A ring Rhas right finistic dimension 0 if every finitely generated right R-module is either projective or has infinite projective dimension [4]. In particular, every local Artinian ring has right and left finistic dimension 0.

A valuated group A has the Szele property if every monomorphism $\alpha : P \to F$ such that P and F are A-projective groups splits. If A and G are valuated p-groups, then the A-radical of G is the valuated subgroup

$$R_A(G) = \cap \{\ker \phi \mid \phi \in \operatorname{Mor}(G, A)\}$$

of G. As in the case of Abelian groups, $R_A(G)$ is the kernel of the \mathcal{V}_p -morphism $\Psi_G : G \to A^I$ defined by $\Psi(g) = (\alpha(g))_{\alpha \in I}$, where $I = \operatorname{Mor}(G, A)$. In particular, Ψ_G induces a \mathcal{V}_p -monomorphism $G/R_A(G) \to A^I$ whenever G is a valuated p-group.

Before giving a description of the structure of finite valuated groups with the Szele-property, we remind the reader of the following technical result from [1]:

Lemma 3.5. Let $G, H \in \mathcal{V}_p$ be such that $H = U \oplus V$ in \mathcal{V}_p . If $\alpha \in \operatorname{Mor}(G, H)$ is a \mathcal{V}_p -monomorphism such that the restriction of α to U splits in \mathcal{V}_p as $G = \alpha(U) \oplus C$ with projection $\pi : G \to C$ and the map $\pi \alpha : V \to C$ splits in \mathcal{V}_p , then the map α splits in \mathcal{V}_p as well.

Theorem 3.6. Let A be a finite valuated p-group.

- (a) R has right finistic dimension 0 if and only if
- (i) A has the Szele property, and

(ii) $\operatorname{Tor}_{1}^{R}(M, A) = 0$ whenever M is a finitely generated right R-module with $p.d.(M_{R}) \leq 1$.

(b) A has the Szele-property if and only if

(i) $R_{A_i}(A_j) \neq 0$ for $i \neq j$.

(ii) $\bigcap_{j=1}^{n} U_j \neq 0$ for all non-zero valuated subgroups U_1, \ldots, U_n of A_i such that $R_{A_j}(A_i/U_j) = 0$ for $j = 1, \ldots, n$.

Proof.

(a) Suppose that R has right finistic dimension 0. If $0 \to P \xrightarrow{\alpha} F$ is exact with P and F A-projective, then the sequence

$$0 \longrightarrow H_A(P) \xrightarrow{H_A(\alpha)} H_A(F) \longrightarrow M \longrightarrow 0$$

of right *R*-modules splits since $p.d.(M) \leq 1$. Thus, the top-row of the diagram $T_{i}H_{i}(q)$

splits, and the same holds for the bottom. Clearly, (ii) holds.

Conversely, consider an exact sequence $0 \to P \to F \to M \to 0$ in which P and F are finitely generated projective right R-modules. An application of T_A yields the sequence $0 = \operatorname{Tor}_1^R(M, A) \to T_A(P) \to$ $T_A(F)$, which splits since A has the Szele property. Using an argument similar to that used in (i) \Rightarrow (ii), we obtain that M is projective.

(b) Suppose that A has the Szele property. If we can find $i, j \in \{1, \ldots, n\}$ such that $R_{A_i}(A_j) = 0$, then there exists a monomorphism $\alpha : A_j \to A_i^k$ for some $k < \omega$. This sequence splits since A has the Szele property. Since direct decompositions of finite valuated *p*-groups into indecomposables are unique, $A_j \cong A_i$.

If there are non-zero valuated subgroups U_1, \ldots, U_n of A_i with $R_{A_j}(A_i/U_j) = 0$ for $j = 1, \ldots, n$ and $\bigcap_{j=1}^n U_j = 0$, then the map $\pi : A_i \to \bigoplus_j A_i/U_j$, defined by $\pi(a_i) = (a_i + U_1, \ldots, a_i + U_n)$, is a monomorphism. Moreover, we can select a monomorphism $\alpha_j : A_i/U_j \to A_j^{k_j}$ for each j. The α_j coordinatewise induce a monomorphism $\alpha : \bigoplus_j A_i/U_j \to \bigoplus_{j=1}^n A_j^{k_j}$. Clearly, $\alpha \pi : A_i \to \bigoplus_{j=1}^n A_j^{k_j}$ is a

 \mathcal{V}_p -monomorphism which splits by (a), say, $\beta \alpha \pi = 1_{A_i}$. Thus, A_i is isomorphic to an indecomposable direct summand of $\bigoplus_j [A_i/U_j]$, and we can find $j \in \{1, \ldots, n\}$ such that A_i is isomorphic to a direct summand of A_i/U_j contradicting $|A_i/U_j| < |A_i|$.

Conversely, let F and P be A-projective groups, and let $\alpha: P \to F$ be a monomorphism. We have $P = A_1^{r_1} \oplus \cdots \oplus A_n^{r_n}$ and $F = A_1^{s_1} \oplus \cdots \oplus A_n^{s_n}$ for some $r_1, \ldots, r_n, s_1, \ldots, s_n < \omega$. We establish the splitting of the map α by induction on $r = r_1 + \cdots + r_n$. If r = 1, then we may assume that $r_1 = 1$. Let $\pi_i: F \to A_i^{s_i}$ be the projection onto the *i*th-coordinate, and set $U_i = \ker \pi_i \alpha$. If $U_i = 0$ for some $i \ge 2$, then $R_{A_i}(A_1) = 0$, which contradicts (i). Since $\bigcap_{i=1}^n U_i = 0$ due to the fact that α is one-to-one, $U_1 = 0$ by (ii). By (a), A_1 has the Szele property since its has a local endomorphism ring, and $\pi_1 \alpha$ splits, say $\beta \pi_1 \alpha = 1_{A_1}$. Thus, α splits.

Now, suppose that r > 1. As before, we may assume $r_1 > 0$. For the decomposition $D = A_1^{r_1-1} \oplus \cdots \oplus A_n^{r_n}$, let $\delta_1 : D \to P$ and $\delta_2 : A_1 \to P$ be the embeddings associated with the decomposition $P = A_1 \oplus D$. By the induction hypothesis, there is a map $\beta_1 : F \to D$ such that $\beta_1 \alpha \delta_1 = 1_D$. Thus, $F = \alpha(D) \oplus C$ for some valuated subgroup of F. Let $\pi : F \to C$ denote the projection with kernel $\alpha(D)$. If $\pi\alpha(a_1) = 0$ for some $a_1 \in A_1$, then $\alpha(a_1) \in \alpha(D)$, which is a contradiction unless $a_1 = 0$. Hence, $\pi \alpha \delta_2 : A_1 \to C$ is a monomorphism, which splits by the last paragraph, say, $\beta_2 \pi \alpha \delta_2 = 1_{A_1}$ for a map $\beta_2 : C \to A_1$. By Lemma 3.5, α splits.

4. Simply presented groups. A (p-)valuated tree (X, v) is a set X with a (partial) multiplication by p and a map v defined on X subject to the following rules

(i) v(x) is an ordinal or ∞ for all $x \in X$.

(ii) If $p^n x = x$ for some $0 < n < \omega$, then px = x, and there is exactly one element in X with this property, called the root of X.

(iii) v(px) > v(x) whenever px is defined.

We can associate a simply presented valuated p-group S(X) with a rooted tree X by setting $S(X) = F_X/R_X$, where F_X is a free \mathbb{Z}_{p^-} module with basis $\{[x]|x \in X\}$ and R_X is generated by the elements p[x] - [px]. Every non-zero element $g \in S(X)$ can be uniquely written as $g = \sum_{x \in X} n_x([x] + R_X)$. We now define the valuation on S(X) by $v(g) = \min\{v(x) \mid n_x \neq 0\}$.

A map $\psi: X \to Y$, where X and Y are valuated trees, is a *tree map* if

- (i) $\psi(px) = p\psi(x)$ whenever px exists and
- (ii) $v(\psi(x)) \ge v(x)$ for all $x \in X$.

Every tree map $\psi : X \to Y$ induces a \mathcal{V}_p -map $\overline{\psi} : S(X) \to S(Y)$. A tree map $r : X \to X$ is a retraction if $r^2 = r$. In particular, there is an order preserving retraction from S(X) onto X for all valuated trees [7].

If A = S(T) and G = S(X) are simply presented groups, then any monomorphism $\alpha : S(T) \to S(X)$ induces a one-to-one tree map $r\alpha \mid T : T \to X$, where $r : S(X) \to X$ is the retraction introduced in [7]. We now show that a similar result need not hold for epimorphisms $\pi : A^n \to G$:

Example 4.1. Let A be a cyclic group of order p^3 with the height valuation. We consider $F = A \oplus A$ and its valuated subgroup U generated by $(p^2x, -p^2x)$. There exists a simply presented valuated p-group G generated by x_1 and x_2 such that $v(x_1) = 1$, $v(px_1) = 4$, $v(x_2) = 2$, $v(px_2) = 3$, $p_1^3 = 0$ and $p^2x_1 = p^2x_2$ has value 5. The group G is indecomposable, and it is generated by x_1 and $x_1 - x_2$. Sending (1,0) to x_1 and (0,1) to $x_1 - x_2$ yields an epimorphism of $F = A \oplus A$ onto G = S(X) where X is the valuated tree given by x_1 and x_2 . If $r : S(X) \to X$ is the order-preserving retraction from [7], then $r(x_1) = x_2$ and $r(x_1 - x_2)$ has order p^2 . Therefore, $x_2 \notin r\phi(T \cup T)$.

The next result illustrates Corollary 3.4 (c) further:

Example 4.2. Let A be a cyclic valuated group of order p^3 , and choose generator x of A such that v(x) = 1, v(px) = 3 and $v(p^2x) = 5$. We consider $F = A \oplus A$ and its valuated subgroup U generated by $(p^2x, -p^2x)$.

The cokernel $\pi: F \to G$ of the embedding $U \subseteq F$ has order p^5 . If we consider the induced sequence

$$0 \longrightarrow H_A(U) \longrightarrow H_A(F) \xrightarrow{H_A(\pi)} H_A(G),$$

then $|H_A(U)| = p$ and $|H_A(F)| = p^6$. Clearly, U is weakly A-generated. As an Abelian group, we have $G \cong \mathbb{Z}/p^3\mathbb{Z} \oplus \mathbb{Z}/p^2\mathbb{Z}$ since it is generated by two elements and has order p^5 . Therefore,

$$p^5 \le |H_A(G)| \le |\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/p^3\mathbb{Z}, \mathbb{Z}/p^3\mathbb{Z} \oplus \mathbb{Z}/p^2\mathbb{Z})| = p^5,$$

and $H_A(\pi)$ is onto. By Proposition 3.4 (a), G is A-solvable and a \mathcal{V}_p -direct sum of cyclics.

On the other hand, there exists a simply presented valuated *p*-group H generated by x_1 and x_2 such that $v(x_1) = 1$, $v(px_1) = 4$, $v(x_2) = 2$, $v(px_2) = 3$, $p_1^3 = 0$ and $p^2x_1 = p^2x_2$ has value 5. The group H is indecomposable, and there is an epimorphism $\phi : F \to H$ with kernel U. Arguing as before yields that

$$0 \longrightarrow H_A(U) \longrightarrow H_A(F) \xrightarrow{H_A(\phi)} H_A(H) \longrightarrow 0$$

is exact. Since G is the cokernel of ker ϕ , there is a map $\lambda : G \to H$ with $\phi = \lambda \pi$. Another order argument establishes that λ is an isomorphism of groups, and hence, a \mathcal{V}_p -monomorphism. However, H is not A-solvable by Corollary 3.4 (b).

We now show that usually there exist A-presented groups which are not A-solvable unless A is cyclic.

Theorem 4.3. Let A be an indecomposable finite valuated p-group:

- (a) If |A/pA| > p, then A/pA is not A-solvable.
- (b) If |A/JA| > p, then A/JA is not A-solvable.
- (c) The following are equivalent if A is simply presented:
- (i) A is cyclic.
- (ii) Every A-presented group is A-solvable.

Proof.

(a) Let J denote the Jacobson-radical of R, and

$$S = \operatorname{Mor}_{\mathcal{V}_p}(A/pA, A/pA)$$

the \mathcal{V}_p -endomorphism ring of A/pA, where A/pA has the cokernel valuation. Define a map $\lambda : R \to S$ by $\lambda(\alpha)(a + pA) = \alpha(a) + pA$ for all $\alpha \in R$. As in the case of Abelian groups, $\lambda(\alpha)$ is well defined. If

 $a \in A$, then we can find $a_0 \in A$ such that $v(a + pA) = v(a + pa_0)$ [10]. Select $a_1 \in A$ with $v(\alpha(a) + pA) = v(\alpha(a) + pa_1)$. Then, $v(a + pA) = v(a + pa_0) \leq v(\alpha(a) + p\alpha(a_0)) \leq v(\alpha(a) + pa_1) = v(\lambda(\alpha)(a + pA))$. Hence, $\lambda(\alpha) \in S$. As in the case of Abelian groups, λ is a ring-morphism with ker $\lambda = \operatorname{Mor}_{\mathcal{V}_p}(A, pA) = H_A(pA)$. Since $H_A(pA)$ is a proper ideal of R, we obtain $H_A(pA) \subseteq J$, and $R/H_A(pA)$ is a local ring since A is indecomposable. On the other hand, A/pA is a valuated direct sum of cyclic groups of order p. Since |A/pA| > p, its endomorphism ring contains at least one non-trivial idempotent and cannot be local. Therefore, λ cannot be onto.

On the other hand, consider the exact sequence $0 \rightarrow pA \rightarrow A \rightarrow A/pA \rightarrow 0$ of valuated groups. By Proposition 3.2, it induces the commutative diagram

for some submodule M of $H_A(A/pA)$. The evaluation map θ is a cokernel and satisfies $\theta = \theta_{A/pA}T_A(\iota)$ where $\iota : M \to H_A(A/PA)$ is the inclusion map. If A/pA were A-solvable, then $\theta_{A/pA}$ would be an isomorphism, and $T_A(\iota)$ would be onto. As before, this yields that $T_A(H_A(A/pA)/M) = 0$, from which we obtain $M = H_A(A/pA)$ since A is faithful. Therefore, the sequence

$$0 \longrightarrow H_A(pA) \longrightarrow H_A(A) \longrightarrow H_A(A/pA) \longrightarrow 0$$

is exact. We also have the induced sequence

$$0 \longrightarrow \operatorname{Mor}_{\mathcal{V}_p}(A/pA, A/pA) \longrightarrow \operatorname{Mor}_{\mathcal{V}_p}(A, A/pA).$$

Clearly, this map is onto, too, so that

$$|\lambda(R)| = |H_A(A)/H_A(pA)| = |H_A(A/pA)| = |S| < \infty.$$

Hence, λ is onto, which is not possible by the last paragraph. Consequently, A/pA is not A-solvable.

(b) In order to simplify our notation, we write $G = T_A(R/J)$. Assume that we can find an A-balanced exact sequence $0 \to U \to F \to G \to 0$ with F A-free and U weakly A-generated. This induces the commutative diagram

in which θ_U is an epimorphism since U is weakly A-generated. Looking at this diagram as a diagram in $\mathcal{A}b$, we obtain that θ_G is an isomorphism of Abelian groups.

Since A is indecomposable and finite, R/J is a field of characteristic p. Thus, $pR \subseteq J$, and $G = T_A(R/J)$ is a valuated direct sum of cyclic groups of order p [8], say, $G = G_1 \oplus \cdots \oplus G_n$. We obtain the diagram

of valuated *p*-groups in which the rows split in \mathcal{V}_p . Viewing it as a diagram in $\mathcal{A}b$, we obtain that θ_{G_i} is an isomorphism of Abelian groups since the same holds for θ_G .

In order to see that this is not possible, consider a cyclic valuated group H of order p such that θ_H is an isomorphism of Abelian groups. Since $H_A(H) \neq 0$, we can find $0 \neq \alpha \in H_A(H)$. Clearly, α is onto. If V denotes the kernel of α , then the sequence $0 \to V \to A \xrightarrow{\alpha} H$ is left exact, and the same is true for the induced sequence

$$0 \longrightarrow H_A(V) \longrightarrow H_A(A) \stackrel{H_A(\alpha)}{\longrightarrow} H_A(H).$$

Let $M = \operatorname{im}(H_A(\alpha)) \subseteq H_A(H)$ and $\iota : M \to H_A(H)$ be the corresponding embedding. Observe that $H_A(V)$ is a proper right ideal of R since, otherwise, U = A, a contradiction. Therefore, $H_A(V) \subseteq J$. We obtain an exact sequence

$$M \cong H_A(A)/H_A(V) \longrightarrow R/J \longrightarrow 0$$

of right R-modules. Applying T_A yields

$$|T_A(M)| \ge |T_A(R/J)| = |A/JA| > p.$$

Arguing as before, we obtain the commutative diagram

of Abelian groups. Since the snake lemma is valid in $\mathcal{A}b$, the evaluation map θ is an epimorphism of Abelian groups. Arguing as before, we obtain $M = H_A(H)$. Therefore, $|T_A(M)| = |T_AH_A(H)| = |H| = p$, a contradiction.

(c) (i) \Rightarrow (ii). Let $G \cong T_A(M)$ for some right *R*-module *M*. Since *A* is a cyclic group, $R \cong \mathbb{Z}/p^n\mathbb{Z}$ for some $n < \omega$. Hence, every finitely generated *R*-module is a direct sum of cyclic submodules. By Theorem 3.3 (a), $G \cong T_A(M)$ for some finite right *R*-module *M*. Since *M* is a direct sum of cyclic modules, *G* is a direct sum of valuated subgroups of the form $T_A(U_i)$, where each U_i is a cyclic right *R*-module, and it suffices to show that $T_A(M)$ admits an *A*-balanced exact sequence of the desired form whenever *M* is cyclic.

In order to see this, consider an exact sequence $0 \to p^k R \to R \xrightarrow{\pi} M \to 0$ for some k < n. To establish that the induced sequence $0 \to p^k A \to A \xrightarrow{T_A(\pi)} T_A(M) \to 0$ is A-balanced, observe that M is isomorphic to a right ideal of R. We obtain the commutative diagram

$$\begin{array}{cccc} H_A T_A(M) & \longrightarrow & H_A T_A(R) \\ & & \uparrow^{\Phi_M} & & \uparrow^{\Phi_R} \\ 0 & \longrightarrow & M & \longrightarrow & R \end{array}$$

which yields that Φ_M is a monomorphism. On the other hand, $T_A(M)$ is a cyclic group of order at most p^{n-k} since it is an epimorphic image of $M^+ \otimes_{\mathbb{Z}} A \cong \mathbb{Z}/p^{n-k}\mathbb{Z}$. Thus, $p^{n-k} = |M| \leq |H_A T_A(M)| \leq p^{n-k}$, and Φ_M is an isomorphism. On the other hand, the commutative diagram

$$\begin{array}{cccc} H_A T_A(R) & \xrightarrow{T_A H_A(\pi)} & H_A T_A(M) \\ & & \uparrow \Phi_R & & \uparrow \Phi_M \\ & R & \xrightarrow{\pi} & M & \longrightarrow 0 \end{array}$$

yields that $T_A H_A(\pi)$ is onto. Clearly, $p^k A$ is weakly A-generated.

ULRICH ALBRECHT

(ii) \Rightarrow (i). Suppose that A is not cyclic, and choose a finite valuated *p*-tree X such that A = S(X). Suppose that x_1, \ldots, x_n are the elements of highest order in X. Computing as in the case of Abelian groups, we can show that $\{x_1 + pA, \ldots, x_n + pA\}$ is a *p*-basis for A/pA. Since A is acyclic, n > 1 and |A/pA| > p. From (a), A/pA is an A-presented group which is not A-solvable.

We want to contrast the last result with [12, Lemma 9], which shows that |R/J| = p if A is an indecomposable simply presented group. Moreover, $T_A(M)$ may be A-solvable for some finitely generated Rmodule M, although $T_A(X)$ is not A-solvable for all composition factors X of M. For instance, if A is indecomposable, then the only possible composition factors of a finitely generated R-module are isomorphic to R/J. Thus, $T_A(M)$ can be A-solvable although $T_A(R/J)$ may not be by part (b) of the last theorem.

REFERENCES

1. U. Albrecht, Bewertete p-Gruppen und ein Satz von Szele, J. Algebra 97 (1985), 201–220.

2. ____, Faithful abelian groups of infinite rank, Proc. Amer. Math. Soc. 103 (1988), 21–26.

3. D.M. Arnold, Abelian groups and representations of finite partially ordered sets, CMS Books Mathematics, Springer, Berlin, 2000.

4. H. Bass, Finistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488.

5. L. Fuchs, Infinite Abelian groups, Volume I, Academic Press, New York, 1970.

6. _____, Infinite Abelian groups, Volume II, Academic Press, New York, 1973.

 R. Hunter, F. Richman and E.A. Walker, Simply presented valuated p-groups, J. Algebra 49 (1977), 125–133.

8. ____, Finite direct sums of cyclic valuated p-groups, Pacific J. Math. 69 (1977), 97–133.

 F. Richman and E.A. Walker, Ext in pre-abelian categories, Pacific J. Math. 71 (1977), 521–535.

10. _____, Valuated groups, J. Algebra 56 (1979), 145–167.

 J. Rotman, An introduction to homological algebra, Academic Press, New York, 1979.

P. Schultz, The endomorphism ring of a valuated group, Contemp. Math.
 87 (1989), 75–84.

 B. Stenstrom, *Rings of quotients*, Grundl. Math. Wissen. 217, Springer-Verlag, Heidelberg, 1975. A.V. Yakolev, Homological algebra in pre-abelian categories, J. Soviet Math.
 (1982), 1060–1067.

AUBURN UNIVERSITY, DEPARTMENT OF MATHEMATICS, AUBURN, AL 36849 Email address: albreuf@mail.auburn.edu