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SYMMETRY AND MONOTONICITY OF SOLUTIONS
FOR EQUATIONS INVOLVING THE FRACTIONAL

LAPLACIAN OF HIGHER ORDER

XUEWEI CUI AND WEIJIE SONG

ABSTRACT. The aim of this paper is to establish sym-
metry and monotonicity of solutions to the equation involv-
ing fractional Laplacians of higher order. For this purpose,
we first reduce the equation into a system via the composi-
tion of lower fractional Laplacians and then obtain symmetry
and monotonicity of solutions to the system by applying the
method of moving planes.

1. Introduction. Let S be Schwartz space of rapidly decreasing
smooth functions onRn, n ≥ 2. For 0 < α < 1, the fractional Laplacian
(−∆)α is a non-local operator defined by

(−∆)αu(x) = c(n, α) P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2α
dy

= c(n, α) lim
ϵ→0

∫
Rn\Bϵ

u(x)− u(y)

|x− y|n+2α
dy,

where u ∈ S, P.V. denotes the principal value of the integral and
c(n, α) is a positive normalization constant. The fractional Laplacian
(−∆)α can also be equivalently viewed as a pseudo-differential operator

(̂−∆)αu(ξ) = |ξ|2αû(ξ), u ∈ S, where û is the Fourier transform of u.
Let

Lα =

{
u : Rn → R |

∫
Rn

|u(x)|
1 + |x|n+2α

< ∞
}
.

Then, (−∆)α can be extended to an operator on the Lα ∩ C1,1
loc (Rn).
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Positive solutions of semi-linear elliptic equations involving the frac-
tional Laplacian (−∆)α have recently been investigated by many au-
thors. Brandle, et al., [1] reduced the non-local equation

(1.1) (−∆)αu(x) = up(x), x ∈ Rn,

into a local one in higher dimensions by using the extension method
of Caffarelli and Silvestre [3] and then proved the non-existence of
positive solutions to (1.1) in the subcritical exponent by using the
method of moving planes for local problems. Zhuo, et al., established
the equivalence between (1.1) and the integral equation

(1.2) u(x) = c

∫
Rn

up(y)

|x− y|n−2α
dy

by employing a Liouville theorem for α-harmonic functions and then
obtained radial symmetry in the critical case and non-existence in the
subcritical case for positive solutions to (1.1) via the method of moving
planes in integral forms. Chen, Li and Li [5] proved the strong maxi-
mum principle for antisymmetric functions, narrow region principle and
decay at infinity, developed a direct method of moving planes to frac-
tional Laplacian and employed it to some semi-linear elliptic equations
involving fractional Laplacian to obtain symmetry and non-existence of
positive solutions. Felmer and Wang [10] established a version of the
maximum principle for small domains by applying the Aleksandrov-
Bakelman-Pucci (ABP) estimate, which was proven by Guillen and
Schwab [12], and used it with the method of moving planes to prove
symmetry and monotonicity of positive solutions to some problems in-
volving fractional Laplacians in the unit ball. Quaas and Aliang [14]
extended the idea in [10] to unbounded domains and obtained nonex-
istence of positive solutions for a class of fractional Laplacian equations
and systems on the half space.

This paper extends the results of Felmer and Wang [10] to equations
involving fractional Laplacians of higher order.

For 0 < α < 1, u ∈ S, the higher fractional Laplacian (−∆)α+1 is
defined by

(1.3) (−∆)α+1u(x)

= c(n, α+ 1) P.V.

∫
Rn

u(x) + (1/2n)∆u(x)|x− y|2 − u(y)

|x− y|n+2α+2
dy,
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where c(n, α+ 1) is a positive constant. Denote

L2,α =

{
u : Rn −→ R |

∫
Rn

|u(x)|
1 + |x|n+2α+2

dx

+

∫
Rn

|D2u(x)|
1 + |x|n+2α+2

dx < ∞
}
.

Then, (−∆)α+1 can be extended to wider spaces L2,α∩C3,1
loc (Rn). Note

that, for u ∈ L2,α ∩ C3,1
loc (Rn), it follows that (see [13])

(1.4) (−∆)α+1u(x) = (−∆)α ◦ (−∆)u(x).

The aim of this paper is to study symmetry and monotonicity of
solutions to the following problem

(1.5)


(−∆)α+1u(x) = f(u(x)) + g(x) x ∈ B1,

(−∆)u(x) > 0 x ∈ B1,

u(x) = 0 x ∈ Rn \B1,

where B1 is the open unit ball centered at origin. The function

f : R −→ R

is assumed to be locally Lipschitz continuous, increasing, and

g : B1 −→ R

is radially symmetric and decreasing in |x|. We say that a continuous
function

u : Rn −→ R

is a classical solution to problem (1.5), if u ∈ C3,1
loc (B1) satisfies the

equation and the conditions of (1.5) in the point-wise sense.

Our main result is:

Theorem 1.1. Suppose that f is locally Lipschitz continuous, increas-
ing on R, and g is radially symmetric and decreasing. If u is a classical
solution to (1.5), then u is positive, radially symmetric and strictly de-
creasing in r = |x| with r ∈ (0, 1).

Unlike elliptic equations involving the fractional Laplacian (−∆)α,
there are few results (due to the lack of maximum principle) to equa-
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tions involving (−∆)α+1. In order to overcome this difficulty, we change
equation (1.5) into a system and obtain symmetry and monotonicity
of positive solutions for the system by applying the method of moving
planes.

This paper is organized as follows. In Section 2, we describe the
fractional Laplacian (−∆)α+1 in pseudo-differential form. In Section 3,
we present the ABP estimates involving (−∆)α and (−∆) in a bounded
domain, and, finally, we prove the main result by applying the method
of moving planes.

2. Higher fractional Laplacians in pseudo-differential forms.
In this section, we show that the higher fractional Laplacian (−∆)α+1

can also be defined through the Fourier transform. Toward this aim,
we need the following lemma.

Lemma 2.1. For 0 < α < 1, let (−∆)α+1 be the fractional Laplacian
defined by (1.3). Then, for any x ∈ Rn, u ∈ S,
(2.1)

(−∆)α+1u(x) =
c(n, α+ 1)

2

·
∫
Rn

2u(x)+(1/n)∆u(x)|z|2−u(x− z)−u(x+ z)

|z|n+2α+2
dz

=
c(n, α+ 1)

2

·
∫
Rn

2u(x)+zD2u(x)zT −u(x− z)−u(x+ z)

|z|n+2α+2
dz.

Proof. By choosing y = x − z and y = x + z in (1.3), respectively,
we have
(2.2)

(−∆)α+1u(x) = c(n, α+1)

∫
Rn

u(x) + (1/2n)∆u(x)|z|2 − u(x− z)

|z|n+2α+2
dz,

and
(2.3)

(−∆)α+1u(x) = c(n, α+1)

∫
Rn

u(x) + (1/2n)∆u(x)|z|2 − u(x+ z)

|z|n+2α+2
dz.
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Equalities (2.2) and (2.3) infer that

(−∆)α+1u(x) =
c(n, α+ 1)

2

(2.4)

·
∫
Rn

2u(x)+(1/n)∆u(x)|z|2 − u(x− z)− u(x+ z)

|z|n+2α+2
dz.

Since the integral in (2.4) is, in principle, value sense, a fourth order
Taylor expansion yields

(−∆)α+1u(x) =
c(n, α+ 1)

2

·
∫
Rn

2u(x) + zD2u(x)zT − u(x− z)− u(x+ z)

|z|n+2α+2
dz.

The proof is complete. �
We point out that, by Lemma 2.1, (−∆)α+1 can be viewed as a

pseudo-differential operator of symbol |ξ|2(α+1).

Proposition 2.2. For 0 < α < 1, let (−∆)α+1 be the fractional
Laplacian defined by (1.3). Then, for any u ∈ S,

(−∆)α+1u(x) = F−1[C|ξ|2(α+1)û(ξ)],

where C is a positive constant depending only upon α and n.

Proof. For |z| < 1, the Taylor expansion yields

(2.5) 2u(x) + zD2u(x)zT − u(x− z)− u(x+ z) = O(|z|4)

and

(2.6)
|2u(x) + zD2u(x)zT − u(x− z)− u(x+ z)|

|z|n+2α+2
≤ c

|z|n+2α−2
.

For |z| ≥ 1, it follows from u ∈ S that

(2.7)

|2u(x) + zD2u(x)zT − u(x− z)− u(x+ z)|
|z|n+2α+2

≤ c
4maxx∈Rn |u(x)|+ |z|2 maxx∈Rn |D2u(x)|

|z|n+2α+2

≤ c

|z|n+2α
.



490 XUEWEI CUI AND WEIJIE SONG

As a consequence of (2.6) and (2.7), we obtain

|u(x) + (1/2n)∆u(x)|z|2 − (x− z)|
|z|n+2α+2

≤ c

(
1

|z|n+2α−2
χB1(0) +

1

|z|n+2α
χRn\B1(0)

)
1

1 + |x|n+1
,

and thus, apply the Fourier transform with respect to x in (2.1) to
obtain
(2.8)

F [(−∆)α+1u](ξ)=
c(n, α+1)

2

∫
Rn

2−(1/n)|ξ|2|z|2−eiξ·z − e−iξ·z

|z|n+2α+2
dzû(ξ)

=
c(n, α+1)

2

∫
Rn

2−(1/n)|ξ|2|z|2−2 cos (ξ · z)
|z|n+2α+2

dzû(ξ).

By making a change of variable z = y/|ξ| in (2.8), it yields

F [(−∆)α+1u](ξ)

=
c(n, α+ 1)

2

∫
Rn

2− (1/n)|y|2 − 2 cos ((ξ/|ξ|) · y)
|y|n+2α+2

dy|ξ|2(α+1)û(ξ).

Choosing a rotation A such that ξ/|ξ| = Ae1, where e1 = (1, 0, . . . , 0),
and substituting z = AT y, we see

F [(−∆)α+1u](ξ)

=
c(n, α+ 1)

2

∫
Rn

2− (1/n)|y|2 − 2 cos (Ae1 · y)
|y|n+2α+2

dy|ξ|2(α+1)û(ξ)

=
c(n, α+ 1)

2

∫
Rn

2− (1/n)|y|2 − 2 cos (e1 ·AT y)

|y|n+2α+2
dy|ξ|2(α+1)û(ξ)

=
c(n, α+ 1)

2

∫
Rn

2− (1/n)|z|2 − 2 cos (e1 · z)
|z|n+2α+2

dz|ξ|2(α+1)û(ξ)

=
c(n, α+ 1)

2

∫
Rn

2− |z1|2 − 2 cos (z1)

|z|n+2α+2
dz|ξ|2(α+1)û(ξ)

=
c(n, α+ 1)

2

∫
{|z|<1}∪{|z|≥1}

2− |z1|2 − 2 cos (z1)

|z|n+2α+2
dz|ξ|2(α+1)û(ξ),

where z = (z1, z2, . . . , zn), A
T the transpose of A.



SYMMETRY AND MONOTONICITY OF SOLUTIONS 491

If |z| < 1, it follows from the Taylor expansion that

(2.9)

∣∣∣∣2− |z1|2 − 2 cos (z1)

|z|n+2α+2

∣∣∣∣ ≤ c

|z|n+2α−2
.

If |z| ≥ 1, we have

(2.10)

∣∣∣∣2− |z1|2 − 2 cos (z1)

|z|n+2α+2

∣∣∣∣ ≤ c

|z|n+2α
.

Inequalities (2.9) and (2.10) imply the integral∫
{|z|<1}∪{|z|≥1}

2− |z1|2 − 2 cos (z1)

|z|n+2α+2
dz

is finite. Hence,

F [(−∆)α+1u](ξ) = C|ξ|2(α+1)û(ξ),

which completes the proof. �

3. ABP estimates and the proof of the main result. The
method of moving planes is based upon the ABP estimate. We first
state the ABP estimate for fractional Laplacian (−∆)α, which was
proven by Guillen and Schwab [12] for general integro-differential
operators.

Proposition 3.1 ([10, 12]). Let Ω be a bounded, open subset of Rn.
For 0 < α < 1, suppose that h : Ω → R is in L∞(Ω), and w(x)
∈ L∞(Rn) is a classical solution to the problem(−∆)αw(x) ≥ −h(x) x ∈ Ω,

w(x) ≥ 0 x ∈ Rn \ Ω.

Then, there exists a positive constant C depending upon n and α, such
that

− inf w(x) ≤ Cdα∥h+∥1−α
L∞(Ω)∥h

+∥αLn(Ω),

where d = diam(Ω) is the diameter of Ω and h+ = max{h(x), 0}.
The ABP estimate for Laplace (−∆) is also useful for our purposes,

which is stated as follows:

Proposition 3.2 ([10]). Let Ω, h, d and h+ be described as in Propo-
sition 3.1. Suppose that w(x) ∈ L∞(Rn) is a classical solution to the
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problem (−∆)w(x) ≥ −h(x) x ∈ Ω,

w(x) ≥ 0 x ∈ ∂Ω.

Then, there exists a positive constant C depending upon n, such that

− inf w(x) ≤ Cd∥h+∥Ln(Ω).

In the sequel, we apply the method of moving planes with Proposi-
tions 3.1 and 3.2 to prove Theorem 1.1.

Proof of Theorem 1.1. The proof is divided into two steps.

Step 1. The positivity of u can be derived from (−∆)u > 0 by the
maximum principle. Using (1.4), we rewrite problem (1.5) as:

(3.1)



(−∆)u(x) = v(x) x ∈ B1,

(−∆)αv(x) = f(u(x)) + g(x) x ∈ B1,

v(x) > 0 x ∈ B1,

u(x) = 0 x ∈ Rn \B1,

v(x) = 0 x ∈ Rn \B1.

We first consider the x1 direction. For x = (x1, x
′) ∈ Rn, 0 < λ < 1,

denote

Tλ = {x = (x1, x
′) ∈ Rn | x1 = λ},

Σλ = {x = (x1, x
′) ∈ B1 | x1 > λ},

uλ(x) = u(xλ), wλ,u(x) = uλ(x)− u(x),

vλ(x) = v(xλ), wλ,v(x) = vλ(x)− v(x),

Σ−
λ,u = {x ∈ Σλ | wλ,u < 0},

Σ−
λ,v = {x ∈ Σλ | wλ,v < 0},

and let xλ = (2λ− x1, x
′) be the reflection point of x about the plane

Tλ. For A ⊂ Rn, write Aλ = {xλ | x ∈ A}. Hence, (3.1) becomes
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(3.2)



(−∆)wλ,u(x) = wλ,v(x) x ∈ Σλ,

(−∆)αwλ,v(x) = f(uλ(x))

−f(u(x)) + g(xλ)− g(x) x ∈ Σλ,

wλ,u(x), wλ,v(x) ≥ 0 x ∈ Rn \B1.

We will show that wλ,u, wλ,v > 0 in Σλ, if λ ∈ (0, 1) is close to 1.
For this purpose, we use the truncation technique in [10, 14]. Assume
that

(3.3) Σ−
λ,v ̸= ∅,

and define

w+
λ,v(x) =

{
wλ,v x ∈ Σ−

λ,v,

0 x ∈ Rn \ Σ−
λ,v,

w−
λ,v(x) =

{
0 x ∈ Σ−

λ,v,

wλ,v x ∈ Rn \ Σ−
λ,v.

It is obvious that wλ,v(x) = w+
λ,v(x) + w−

λ,v(x), for all x ∈ Rn. By the

definitions of fractional Laplacian operator and w−
λ,v for x ∈ Σ−

λ,v, we
obtain

(−∆)αw−
λ,v(x) = c(n, α)

∫
Rn

w−
λ,v(x)− w−

λ,v(y)

|x− y|n+2α
dy

(3.4)

= −c(n, α)

∫
Rn\Σ−

λ,v

wλ,v(y)

|x− y|n+2α
dy

= −c(n, α)

∫
(Σλ\Σ−

λ,v)∪(Σλ\Σ−
λ,v)λ

wλ,v(y)

|x− y|n+2α
dy

− c(n, α)

∫
(Σ−

λ,v)λ

wλ,v(y)

|x− y|n+2α
dy

− c(n, α)

∫
(B1\(B1)λ)∪((B1)λ\B1)

wλ,v(y)

|x− y|n+2α
dy

= −I1 − I2 − I3.
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We estimate integrals Ii, i = 1, 2, 3, respectively, which yields

I1 = c(n, α)

∫
Σλ\Σ−

λ,v

wλ,v(y)

|x− y|n+2α
dy(3.5)

+ c(n, α)

∫
Σλ\Σ−

λ,v

wλ,v(y
λ)

|x− yλ|n+2α
dy

= c(n, α)

∫
Σλ\Σ−

λ,v

wλ,v(y)

(
1

|x− y|n+2α
− 1

|x− yλ|n+2α

)
dy

≥ 0,

since wλ,v(y) ≥ 0 in Σλ \ Σ−
λ,v and |x − yλ| > |x − y| for x ∈ Σ−

λ,v,

y ∈ Σλ \ Σ−
λ,v.

Considering wλ,v(y) ≤ 0 for y ∈ Σ−
λ,v, we have

I2 = c(n, α)

∫
Σ−

λ,v

wλ,v(y
λ)

|x− yλ|n+2α
dy(3.6)

= −c(n, α)

∫
Σ−

λ,v

wλ,v(y)

|x− yλ|n+2α
dy ≥ 0.

Observing v = 0 in (B1)λ \B1 and vλ = 0 in B1 \ (B1)λ, we obtain

I3 = c(n, α)

∫
(B1)λ\B1

vλ(y)

|x− y|n+2α
dy

(3.7)

− c(n, α)

∫
B1\(B1)λ

v(y)

|x− y|n+2α
dy

= c(n, α)

∫
(B1)λ\B1

vλ(y)

(
1

|x− y|n+2α
− 1

|x− yλ|n+2α

)
dy ≥ 0,

since vλ(y) ≥ 0 in (B1)λ \ B1 and |x − yλ| > |x − y| for x ∈ Σ−
λ,v,

y ∈ (B1)λ \B1.

Putting (3.5), (3.6) and (3.7) into (3.4), we have that, for 0 < λ < 1,
x ∈ Σ−

λ,v,

(−∆)αw−
λ,v(x) ≤ 0.
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Hence, for x ∈ Σ−
λ,v,

(−∆)αw+
λ,v(x) = (−∆)αwλ,v(x)− (−∆)αw−

λ,v(x)

≥ (−∆)αwλ,v(x)

= f(uλ(x))− f(u(x)) + g(xλ)− g(x)

≥ f(uλ(x))− f(u(x))

uλ(x)− u(x)
wλ,u(x)

= φu(x)wλ,u(x),

where φu(x) = (f(uλ(x))− f(u(x)))/(uλ(x)− u(x)). It follows from
Proposition 3.1 that
(3.8)

∥w+
λ,v∥L∞(Σ−

λ,v)
≤ C∥(−φuwλ,u)

+∥1−α

L∞(Σ−
λ,v)

∥(−φuwλ,u)
+∥α

Ln(Σ−
λ,v)

.

Denote Σ−
λ = Σ−

λ,u ∩ Σ−
λ,v. Noting

−φuwλ,u(x) = f(u(x))− f(uλ(x))

{
≤ 0 x ∈ Rn \ Σ−

λ,u,

> 0 x ∈ Σ−
λ,u,

we have

∥w+
λ,v∥L∞(Σ−

λ,v)
≤ C∥(−φuwλ,u)

+∥L∞(Σ−
λ )|Σ

−
λ |

α/n.

Furthermore, we have

(3.9) ∥wλ,v∥L∞(Σ−
λ,v)

≤ C∥wλ,u∥L∞(Σ−
λ )|Σ

−
λ |

α/n.

If Σ−
λ,u = ∅, then (3.9) infers that Σ−

λ,v is empty, which is a contradiction

with (3.3). If Σ−
λ,u ̸= ∅, then we have that, for x ∈ Σ−

λ,u,

(−∆)wλ,u(x) = wλ,v(x).

Using Proposition 3.2, we obtain

(3.10) ∥wλ,u∥L∞(Σ−
λ,u)

≤ C∥wλ,v∥L∞(Σ−
λ )|Σ

−
λ |

(1/n).

Inequalities (3.9) and (3.10) show that

∥wλ,v∥L∞(Σ−
λ,v)

≤ C∥wλ,v∥L∞(Σ−
λ )|Σ

−
λ |

(1+α)/n(3.11)

≤ C∥wλ,v∥L∞(Σ−
λ,v)

|Σ−
λ |

(1+α)/n
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and

∥wλ,u∥L∞(Σ−
λ,u)

≤ C∥wλ,u∥L∞(Σ−
λ )|Σ

−
λ |

(1+α)/n(3.12)

≤ C∥wλ,u∥L∞(Σ−
λ,u)

|Σ−
λ |

(1+α)/n.

Now, we choose λ close to 1 such that C|Σ−
λ |(1+α)/n < 1 and conclude

that Σ−
λ,v is empty from (3.11). This is a contradiction to (3.3) and

proves that wλ,v ≥ 0 in Σλ if λ is close to 1.

It follows from (3.10) that

(3.13) Σ−
λ,u = ∅.

Thus, wλ,u ≥ 0 in Σλ if λ is close to 1.

In order to finish Step 1, we will prove the following claim. If wλ,u,
wλ,v ≥ 0, wλ,u or wλ,v ̸≡ 0 in Σλ, then wλ,u, wλ,v > 0 in Σλ.

By way of contradiction, suppose that wλ,v ̸≡ 0 in Σλ, and there
exist x0, y0 ∈ Σλ, such that

wλ,v(x0) = 0, wλ,u(y0) = 0.

On one hand, from the monotonicity hypothesis of f and g, we have

(−∆)αwλ,v(x0) = (−∆)αvλ(x0)− (−∆)αv(x0)(3.14)

= f(uλ(x0))− f(u(x0)) + g(xλ)− g(x) ≥ 0.

On the other hand, defining B = {(x1, x
′) ∈ Rn|x1 > λ}, and recalling

wλ,v(x0) = 0, we can conclude
(3.15)

(−∆)αwλ,v(x0) = −c(n, α)

∫
B

wλ,v(y)

|x0 − y|n+2α
dy

− c(n, α)

∫
Rn\B

wλ,v(y)

|x0 − y|n+2α
dy

= −c(n, α)

∫
B

wλ,v(y)

|x0 − y|n+2α
dy

− c(n, α)

∫
B

wλ,v(y
λ)

|x0 − yλ|n+2α
dy

= −c(n, α)

∫
B

wλ,v(y)

(
1

|x0−y|n+2α
− 1

|x0−yλ|n+2α

)
dy.
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Since |x0 − y| < |x0 − yλ|, wλ,v(y) ≥ 0 and wλ,v(y) ̸≡ 0 for y ∈ Σλ, we
see

(−∆)αwλ,v(x0) < 0,

which is impossible by (3.14). Therefore, wλ,v > 0 in Σλ for 0 < λ < 1.

Noting that wλ,u(x) arrives at the minima at y0, and applying the
maximum principle, we have

(3.16) (−∆)wλ,u(y0) ≤ 0;

however, from (3.2), it follows that

(−∆)wλ,u(y0) = (−∆)uλ(y0)− (−∆)u(y0) = vλ(y0)− v(y0) > 0,

which is impossible by (3.16). Thus, wλ,u > 0 in Σλ for 0 < λ < 1.

Assume that wλ,u ̸≡ 0 in Σλ and there exist ξ, η ∈ Σλ such that

wλ,u(ξ) = 0, wλ,v(ζ) = 0.

Using (3.2) and the maximum principle, we conclude that wλ,u ≡ 0 in
Σλ, which is impossible since u > 0 in B1 and u = 0 in Rn \B1. Thus,
wλ,u > 0 in Σλ. Deducing similarly to (3.14) and (3.15), we obtain
that (−∆)αwλ,v(ζ) ≥ 0 and (−∆)αwλ,v(ζ) < 0. Therefore, wλ,v > 0 in
Σλ for 0 < λ < 1. The proof of the claim is complete.

Step 2. Let

λ0 = inf{λ ∈ (0, 1) | wλ,u(x), wλ,v(x) > 0, x ∈ Σλ}.

We will prove that λ0 = 0. If not, then λ0 > 0. We know that wλ0,u(x),
wλ0,v(x) ≥ 0 and wλ0,u(x), wλ0,v(x) ̸≡ 0 for x ∈ Σλ0 . The claim in Step
1 infers that wλ0,u(x), wλ0,v(x) > 0. For 0 < µ < 1 sufficiently small,
set

Dµ = {x ∈ Σλ0 | dist(x,Σλ0) ≥ µ}.

Then, there exists an m0 > 0 such that, for x ∈ Dµ,

wλ0,u(x), wλ0,v(x) ≥ m0.

By continuity of wλ,u, wλ,v with respect to λ, we have that, for ϵ > 0
small enough, and x ∈ Dµ,

wλ0−ε,u(x), wλ0−ϵ,v(x) ≥ 0.
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Since
Σ−

λ0−ε,u,Σ
−
λ0−ε,v ⊂ Σλ0−ε \Dµ,

for µ and λ sufficiently small, we use the same argument in Step 1 to
prove that

Σ−
λ0−ε,u,Σ

−
λ0−ε,v = ∅,

that is,
wλ0−ε,u(x), wλ0−ϵ,v(x) ≥ 0

for x ∈ Σλ0−ε. This is a contradiction with the definition of λ0. Hence,
λ0 = 0, which implies that

u(−x1, x
′) ≥ u(x1, x

′)

and

v(−x1, x
′) ≥ v(x1, x

′)

for x1 > 0. Similarly, we can move the plane Tλ from −1 to the right
and obtain

u(x1, x
′) ≥ u(−x1, x

′) and v(x1, x
′) ≥ v(−x1, x

′)

for x1 > 0. Since the x1 direction can be arbitrarily changed, we have
shown that u(x) and v(x) are radially symmetric.

For 0 < x1 < x1 < 1, let λ = (x1 + x1)/2. Then, wλ,u(x), wλ,v(x) >
0 in Σλ, and thus, u(x1, x

′) > u(x1, x
′) and v(x1, x

′) > v(x1, x
′). Hence,

monotonicity of u and v follow from the radial symmetry. �
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