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MULTIPLICITY OF SOLUTIONS FOR
p-BIHARMONIC PROBLEMS
WITH CRITICAL GROWTH

H. BUENO, L. PAES-LEME AND H. RODRIGUES

ABSTRACT. We prove the existence of infinitely many
solutions for p-biharmonic problems in a bounded, smooth
domain Ω with concave-convex nonlinearities dependent
upon a parameter λ and a positive continuous function
f : Ω → R. We simultaneously handle critical case problems
with both Navier and Dirichlet boundary conditions by ap-
plying the Ljusternik-Schnirelmann method. The multiplic-
ity of solutions is obtained when λ is small enough. In the
case of Navier boundary conditions, all solutions are positive,
and a regularity result is proved.

1. Introduction. In this work, we study the p-biharmonic equation
with concave-convex nonlinearity and critical exponent

(1.1) ∆2
pu := ∆(|∆u|p−2∆u) = λf(x)|u|q−2u+ |u|p

∗−2u in Ω,

where Ω ⊂ RN is a bounded, smooth domain. We suppose that the
exponents p and q are such that 1 < p < ∞, N > 2p, 1 < q < p, and
that

p∗ =
Np

N − 2p

denotes the Sobolev critical exponent for fourth-order problems. The
parameters λ and f : Ω → R are assumed to be continuous and positive.

Equation (1.1) is handled simultaneously with Dirichlet

(1.2) u =
∂u

∂n
= 0 on ∂Ω,
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and Navier boundary conditions

(1.3) u = ∆u = 0 on ∂Ω.

The p-biharmonic operator ∆2
p has recently attracted the attention

of many researchers (see [5, 7, 12, 17] and references therein). Looking
for positive solutions u, v > 0 defined in a bounded, smooth domain Ω,
it is sometimes associated with Hamiltonian systems (see [4, 11]):

−∆u = vp in Ω,

−∆v = uq in Ω,

u = v = 0 on ∂Ω,

where p, q ≥ 1 since, formally substituting the first equation

v = (−∆u)1/p

into the second, we obtain{
−∆

(
| −∆u|1/p−1(−∆u)

)
= −∆(−∆u)1/p = uq in Ω,

u = ∆u = 0 on ∂Ω.

The biharmonic operator, i.e., the case p = 2, can be viewed as a
viscosity coefficient in Navier-Stokes equations, while the biharmonic
equation ∆2u = 0 appears in quantum mechanics as well as in the
theory of linear elasticity modeling Stokes’ flows.

Existence of solutions for p-biharmonic equations are mostly proved
in cases of Steklov and Navier boundary conditions, see [7, 17];
existence and multiplicity of solutions for problems with Dirichlet
boundary conditions in bounded, smooth domains are rare.

The main motivation for the present work comes from Bernis,
Garćıa-Azorero and Peral [2], who in 1996 studied problems (1.2)–
(1.3) in the case p = 2 and f ≡ 1. Thus, our study can be considered
a generalization of these results for the p-biharmonic operator.

In the present paper, we apply Ljusternik-Schnirelmann methods to
prove the existence of infinitely many solutions for problems (1.1)–(1.2)
and (1.1)–(1.3). These methods were considered by many authors dur-
ing the last decade, see [10] for Kirchhoff-type problems, [15] for non-
autonomous elliptic semilinear equations, [18] for elliptic problems with
nonlinear boundary data, [1] for systems in the whole RN and [14] for
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systems in bounded domains. In [6], a nondecreasing and unbounded
sequence of eigenvalues of the p-biharmonic operator was obtained by
considering the Ljusternik-Schnirelmann theory on C1-manifolds.

Next, we state our main result.

Theorem 1.1. There exists a constant λ0 > 0 such that, for all
λ ∈ (0, λ0), problems (1.1)–(1.2) and (1.1)–(1.3) admit infinitely many
solutions. Furthermore, the solutions of the problem (1.1)–(1.3) are
positive.

In order to obtain our result, we consider the functional

(1.4) Jλ(u) =
1

p

∫
Ω

|∆u|p − λ

q

∫
Ω

f(x)|u|q − 1

p∗

∫
Ω

|u|p
∗
.

In the case of problem (1.1)–(1.2), Jλ is defined inW 2,p
0 (Ω), while Jλ

is defined in W 2,p(Ω) ∩W 1,p
0 (Ω) for the problem (1.1)–(1.3). Thus, let

E = E(Ω) stand either for the space W 2,p
0 (Ω) or the space W 2,p(Ω) ∩

W 1,p
0 (Ω), according to the problem with which we deal. The space E

is endowed with the norm

∥u∥ =

∫
Ω

(|∆u|pdx)1/p.

In order to handle both problems simultaneously, we apply a result
by Gazzola, Grunau and Sweers [9], which proves that the best constant
for the immersion

W 2,p
0 (Ω) ↩→ Lp∗

(Ω)

equals the best constant for the immersion

W 2,p(Ω) ∩W 1,p
0 (Ω) ↩→ Lp∗

(Ω).

Critical points of Jλ are weak solutions of problems (1.1)–(1.2)
and (1.1)–(1.3), see Section 4 for problem (1.1)–(1.3). Since the
immersion of E into Lp∗

(Ω) is not compact, we apply Lions’ lemma
(see Lemma 2.2), which implies that Jλ satisfies a local Palais-Smale
(PS) condition below the level

2

N
SN/(2p) −Dλβ .
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(We denote by S the best constant for the immersion of E into Lp∗
and

β = p∗/(p∗ − q); the constant D will be defined later on.)

The outline of this article is the following. In Section 2, we introduce
the framework of both problems and prove a local PS-condition by
applying a measure representation lemma obtained by Lions in the
proof of the concentration-compactness principle (see Lemma 2.2). In
Section 3, the application of Ljusternik-Schnirelmann methods allows
us to establish the existence of infinitely many solutions for λ small
enough. In Section 4, we prove a simple regularization result regarding
equation (1.1) with Navier boundary conditions.

2. The local PS-condition via the concentration-compactness
principle. We consider the “energy” functional

(2.1) Jλ(u) =
1

p

∫
Ω

|∆u|p − λ

q

∫
Ω

f(x)|u|q − 1

p∗

∫
Ω

|u|p
∗
.

As mentioned above, Jλ is defined in W 2,p
0 (Ω) in the case of problem

(1.1)–(1.2) and inW 2,p(Ω)∩W 1,p
0 (Ω) in the case of problem (1.1)–(1.3).

Both spaces will be simply designated by E = E(Ω), according to the
problem with which we deal. We denote

∥u∥E = ∥u∥ = ∥∆u∥p,

where ∥·∥p stands for the usual norm of Lp(Ω). In order to handle prob-
lems (1.1)–(1.2) and (1.1)–(1.3) simultaneously, we apply the following
result by Gazzola, Grunau and Sweers [9]:

Theorem 2.1. The best constant for the immersion W 2,p
0 (Ω) ↩→

Lp∗
(Ω) is equal to the best constant for the immersion W 2,p(Ω) ∩

W 1,p
0 (Ω) ↩→ Lp∗

(Ω).

From now on,

S = inf{∥u∥p : u ∈ E and ∥u∥p∗ = 1}

indicates the best constant for the Sobolev’s immersion of E into Lp∗
.

Thus, by definition,
∥u∥p∗ ≤ S−1/p∥u∥.

For the reader’s convenience, we state Lions’ lemma (see [13]):
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Lemma 2.2. Let {un} be a weakly convergent sequence with limit u
such that

(i) |∆un|p → µ weakly-* in the sense of measures;
(ii) |un|p

∗ → ν weakly-* in the sense of measures,

where µ and ν are non-negative and bounded measure. Then, for some
finite set of indices I, we have

(a) ν = |u|p
∗
+
∑
k∈I

νkδxk
, νk > 0,

(b) µ ≥ |∆u|p +
∑
k∈I

µkδxk
, µk > 0, xk ∈ Ω,

(c) ν
p/p∗

k ≤ µkS
−1.

We apply this result to prove that the functional Jλ satisfies the
Palais-Smale condition for levels below a certain constant.

We recall that β = p∗/(p∗ − q).

Theorem 2.3. There exists a positive constant D such that any Palais-
Smale sequence {un} ⊂ E for Jλ at the level c satisfying

c <
2

N
SN/(2p) −Dλβ ,

has a subsequence that converges strongly in E.

Proof. It is easy to conclude that {un} is bounded in E. Therefore,
we may suppose that

un ⇀ u weakly in E,

and
|∆un|p ⇀ µ

|un|p∗ ⇀ ν

}
weakly-* in the sense of measures,

for some bounded, non-negative measures µ and ν. Applying Lemma 2.2
(passing to a subsequence, if necessary) we also have
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un → u in Lr(Ω) for 1 < r < p∗ and almost everywhere in Ω,

|∆un|p ⇀ µ ≥ |∆u|p +
∑

k∈I µkδxk
,

|un|p
∗
⇀ ν = |u|p∗

+
∑

k∈I νkδxk

(2.2)

for some finite set I.

We claim that I = ∅. Supposing that k ∈ I, define ψ ∈ C∞(RN )
such that

(2.3)


ψ := 1 in Bϵ(xk),

ψ := 0 out B2ϵ(xk),

|∇ψ| ≤ 2

ϵ
, |∆ψ| ≤ 2

ϵ2
.

Now, consider the bounded sequence in E given by {ϕun}, where
ϕ(x) = ψ(x)χΩ(x). It follows that

lim
n→∞

⟨J ′
λ(un), ϕun⟩ = 0.

Thus,

(2.4)

lim
n→∞

∫
Ω

|∆un|p−2∆un∆(ϕun) dx

= λ

∫
Ω

f(x)|un|qϕ+

∫
Ω

|un|p
∗
ϕ

= λ

∫
Ω

f(x)|u|qϕ dx+

∫
Ω

ϕdν.

However, the left-hand side of the last equation gives∫
Ω

|∆un|p−2∆un(ϕ∆un + 2⟨∇ϕ,∇un⟩+ un∆ϕ) dx

=

∫
Ω

|∆un|pϕdx

+

∫
Ω

|∆un|p−2∆un(2⟨∇ϕ,∇un⟩+ un∆ϕ) dx,
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and taking the limit in n, we have

(2.5) lim
n→∞

∫
Ω

|∆un|p−2∆un∆(ϕun) dx =

∫
Ω

ϕ dµ

+ lim
n→∞

∫
Ω

|∆un|p−2∆un(2⟨∇ϕ,∇un⟩+ un∆ϕ) dx.

We now prove that

lim
ϵ→0

(
lim
n→∞

∫
Ω

|∆un|p−2∆un(2⟨∇ϕ,∇un⟩+ un∆ϕ) dx

)
= 0.

In fact, by the Cauchy-Schwarz and Hölder inequalities, we have

0 ≤ lim
n→∞

∣∣∣∣ ∫
Ω

|∆un|p−2∆un⟨∇ϕ,∇un⟩dx
∣∣∣∣

≤ lim
n→∞

(∫
Ω

|∆un|pdx
)(p−1)/p(∫

Ω

|∇ϕ|p|∇un|pdx
)1/p

.

The weak convergence of {un}, Hölder’s inequality and (2.3) thus imply

lim
n→∞

(∫
Ω

|∆un|pdx
)(p−1)/p(∫

Ω

|∇ϕ|p|∇un|pdx
)1/p

≤ C

(∫
B(xk,2ϵ)∩Ω

|∇ϕ|p|∇u|pdx
)1/p

≤ C

[(∫
B(xk,2ϵ)∩Ω

|∇ϕ|Ndx

)p/N

×
(∫

B(xk,2ϵ)∩Ω

|∇u|Np/(N−p)dx

)(N−p)/N]1/p
≤ C

(∫
B(xk,2ϵ)∩Ω

|∇u|Np/(N−p)dx

)(N−p)/Np

−→ 0 when ϵ→ 0.
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However, we also have that

0 ≤ lim
n→∞

∣∣∣∣ ∫
Ω

|∆un|p−2(∆un)un∆ϕ dx

∣∣∣∣
≤ lim

n→∞

∫
Ω

|∆un|p−1|un∆ϕ| dx

≤ lim
n→∞

(∫
Ω

|∆un|pdx
)(p−1)/p(∫

Ω

|∆ϕ|p|un|pdx
)1/p

≤ C

(∫
B(xk,2ϵ)∩Ω

|∆ϕ|p|u|pdx
)1/p

≤ C

[(∫
B(xk,2ϵ)∩Ω

|∆ϕ|N/2dx

)(2p)/N(∫
B(xk,2ϵ)∩Ω

|u|p
∗
dx

)p/p∗]1/p
≤ C

(∫
B(xk,2ϵ)∩Ω

|u|p
∗
dx

)1/p∗

−→ 0 when ϵ→ 0,

as claimed.

Equations (2.4) and (2.5) imply

0 = lim
ϵ→0

{
λ

∫
Ω

f(x)|u|qϕ dx+

∫
Ω

ϕdν −
∫
Ω

ϕdµ

}
= νk − µk.

Applying Lemma 2.2, we know that νk ≥ Sν
p/p∗

k . So, νk ≥ SN/(2p).
It follows from (2.4) and (2.5) that

(2.6)

c = lim
n→∞

Jλ(un) = lim
n→∞

{
Jλ(un)−

1

p
⟨J ′

λ(un), un⟩
}

= lim
n→∞

λ

(
1

p
− 1

q

)∫
Ω

f(x)|un|qdx+

(
1

p
− 1

p∗

)∫
Ω

|un|p
∗
dx

= λ

(
1

p
− 1

q

)∫
Ω

f(x)|u|qdx+
2

N

(∫
Ω

|u|p
∗
dx+

∑
k∈I

νk

)
≥ λ

(
1

p
− 1

q

)∫
Ω

f(x)|u|qdx+
2

N

∫
Ω

|u|p
∗
dx+

2

N
SN/(2p).

Since 1 < q < p, applying Hölder’s inequality to (2.6) we obtain

c ≥ 2

N
SN/(2p) +

2

N

∫
Ω

|u|p
∗
dx− λ

(
1

q
− 1

p

)
∥f∥β

(∫
Ω

|u|p
∗
dx

)q/p∗

.
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We now consider the function g(x) = κ1x
p∗ − λκ2x

q with

κ1 =
2

N
and κ2 =

(
1

q
− 1

p

)
∥f∥β .

The function g attains its absolute minimum for x > 0 at

x0 =

(
λκ2q

p∗κ1

)1/(p∗−q)

.

Thus,

g(x) ≥ g(x0) = κ1

(
λκ2q

p∗κ1

)p∗/(p∗−q)

− λκ2

(
λκ2q

p∗κ1

)q/(p∗−q)

= λp
∗/(p∗−q)κ1

(
κ2q

p∗κ1

)p∗/(p∗−q)

− λ1+(q/(p∗−q))κ2

(
κ2q

p∗κ1

)q/(p∗−q)

= −Dλp
∗/(p∗−q),

where

D = κ2

(
κ2q

p∗κ1

)q/(p∗−q)

− κ1

(
κ2q

p∗κ1

)p∗/(p∗−q)

.

(It is easy to verify that D > 0.) Therefore, we conclude that

c ≥ 2

N
SN/(2p) −Dλβ ,

thus reaching a contradiction with the hypothesis c < (2/N)SN/(2p) −
Dλβ . We conclude that I = ∅, and thus, (2.2) implies that∫

Ω

|un|p
∗
dx −→

∫
Ω

|u|p
∗
dx when n→ ∞.

Applying the Brézis-Lieb lemma, see [3], we conclude that the conver-
gence

un −→ u in Lp∗
(Ω).

If we set

Fn := J ′
λ(un) + λ|un|q−2un + |un|p

∗−2un,
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a straightforward computation shows that {Fnk
} is a Cauchy sequence

in E∗. Since we have

∥un − um∥ ≤ α

{
∥Fn − Fm∥1/(p−1)

E∗ if p ≥ 2,

M2−p∥Fn − Fm∥E∗ if 1 < p < 2,

where α = α(p) and M = max{∥un∥, ∥um∥}, we deduce that {unk
} is

strongly convergent in E. �

3. Proof of Theorem 1.1. Assume that 1 < q < p and

Jλ(u) =
1

p

∫
Ω

|∆u|pdx− λ

q

∫
Ω

f(x)|u|qdx− 1

p∗

∫
Ω

|u|p
∗
dx.

Then, by the Hölder and Sobolev inequalities we obtain:

Jλ(u) ≥
1

p

∫
Ω

|∆u|pdx

− λ

q
∥f∥βS−q/p

(∫
Ω

|∆u|pdx
)q/p

− 1

p∗
S−p∗/p

(∫
Ω

|∆u|pdx
)p∗/p

,

where β = p∗/(p∗ − q). Consequently,

Jλ(u) ≥ h(∥u∥),

where

h(x) =
1

p
xp − λ

q
∥f∥βS−q/pxq − 1

p∗
S−p∗/pxp

∗
.

There exists a λ1 > 0 such that, if 0 < λ < λ1, then h attains a
local minimum and a local maximum. Let R0 and R1 be such that
r < R0 < R < R1, where R is the value which h attains as its maximum
and r is the value which h attains as its minimum, and h(R1) > h(r).
(See Figure 1.)

We take the following truncation of the functional Jλ. Take

τ : R+ −→ [0, 1],
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Figure 1. Graph h(x) = (1/p)xp − (λ/q)∥f∥βS−q/pxq − (1/p∗)S−p∗/pxp∗ .

nonincreasing and C∞, such that{
τ(x) = 1 if x ≤ R0,

τ(x) = 0 if x ≥ R1.

Let φ(u) = τ(∥u∥). We consider the truncated functional

J̃λ(u) =
1

p

∫
Ω

|∆u|pdx− λ

q

∫
Ω

f(x)|u|qdx− 1

p∗

∫
Ω

|u|p
∗
φ(u) dx.

Then we have, as before, J̃λ(u) ≥ h(∥u∥), with

h(x) =
1

p
xp − λ

q
∥f∥βS−q/pxq − 1

p∗
S−p∗/pxp

∗
τ(x).

Observe that h = h, for x ≤ R0, and

h(x) =
1

p
xp − λ

q
∥f∥βS−q/pxq for x ≥ R1.

The main properties of J̃λ are the following:

Lemma 3.1.

(i) J̃λ ∈ C1(E,R).
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(ii) If J̃λ(u) ≤ 0, then ∥u∥ < R0, and Jλ(v) = J̃λ(v) for all

v ∈ BR0 = {u ∈ E : ∥u∥ < R0}.

(iii) There exists a λ2 > 0 such that, if 0 < λ < λ2, then J̃λ verifies
the Palais-Smale condition for any level c < 0.

Proof.

(i) and (ii) are immediate.

In order to prove (iii), let {un} ⊂ E be a Palais-Smale sequence for

J̃λ:
J̃λ(un) −→ c and J̃ ′

λ(un) −→ 0.

Since c < 0, we have that

J̃λ(un) ≤ 0 for n large enough.

Consequently, by (ii), {un} ⊂ BR0 . Let λ2 > 0 be such that, for 0 <
λ < λ2,

2

N
SN/(2p) −Kλβ ≥ 0.

By definition,

Jλ = J̃λ in BR0 ;

hence, the sequence {un} satisfies

Jλ(un) −→ c < 0 ≤ 2

N
SN/(2p) −Dλβ

and
J ′
λ(un) −→ 0.

Therefore, by Theorem 2.3, the sequence {un} admits a strongly con-
vergent subsequence in E. �

Remark 3.2. Note that, if we find some negative critical value for J̃λ,
then, by (ii), we have a negative critical value for Jλ.

Let Σ be the class of subsets of E \ {0} which are closed and
symmetric with respect to the origin. For A ∈ Σ, we define the genus
γ(A) by
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γ(A) = min{k ∈ N : there exists ϕ ∈ C(A,Rk \ {0}), ϕ(x) = −ϕ(−x)}

and, if such a minimum is not attained, we define γ(A) = +∞.

The main properties of the genus are the following (see [16] for
details):

Proposition 3.3. Let A,B ∈ Σ. Then:

(i) if there exists an odd function f ∈ C(A,B), then γ(A) ≤ γ(B).
(ii) If A ⊂ B, then γ(A) ≤ γ(B).
(iii) If there exists an odd homeomorphism between A and B, then

γ(A) = γ(B).
(iv) If SN−1 is the sphere in RN , then γ(SN−1) = N .
(v) γ(A ∪B) ≤ γ(A) + γ(B).

(vi) If γ(B) < +∞, then γ(A \B) ≥ γ(A)− γ(B).
(vii) If A is compact, then γ(A) < +∞, and there is a δ > 0 such that

γ(A) = γ(Nδ(A)) where Nδ(A) = {x ∈ E : d(x,A) ≤ δ}.
(viii) If X is a subspace of E with codimension k, and γ(A) > k, then

A ∩X ̸= ∅.

Now, we will construct an appropriate mini-max sequence of negative

critical values for the functional J̃λ. The proof of the next result fol-
lows [8].

Lemma 3.4. Given n ∈ N, there is an ϵ = ϵ(n) > 0, such that

γ({u ∈ E : J̃λ(u) ≤ −ϵ}) ≥ n.

Proof. Fix n ∈ N, and let En be an n-dimensional subspace of E.
Take un ∈ En, with ∥un∥ = 1. For 0 < ρ < R0, we have:

J̃λ(ρun) = Jλ(ρun)

=
1

p
ρp − λ

q
ρq

∫
Ω

f(x)|un|qdx− 1

p∗
ρp

∗
∫
Ω

|un|p
∗
dx.

Since all the norms in En are equivalent, we define

αn = inf

{∫
Ω

|u|p
∗
dx : u ∈ En, ∥u∥ = 1

}
> 0,
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βn = inf

{∫
Ω

f(x)|u|qdx : u ∈ En, ∥u∥ = 1

}
> 0.

Hence,

J̃λ(ρun) ≤
1

p
ρ p − λβn

q
ρq − αn

p∗
ρ p∗

,

and we can choose ϵ > 0 (which depends upon n) and 0 < η < R0 such
that

J̃λ(ηu) ≤ −ϵ if u ∈ En and ∥u∥ = 1.

Let Sη = {u ∈ E : ∥u∥ = η} be such that

Sη ∩ En ⊂ {u ∈ E : J̃λ(u) ≤ −ϵ}.

Therefore, by Proposition 3.3, we have

γ({u ∈ E : J̃λ(u) ≤ −ϵ}) ≥ γ(Sη ∩ En) = n. �

Let

Σk = {C ⊂ E \ {0} : C is closed, C = −C, γ(C) ≥ k},

ck = inf
C∈Σk

sup
u∈C

J̃λ(u)

and
Kc = {u ∈ E : J̃ ′

λ(u) = 0, J̃λ(u) = c}.

Lemma 3.5. The cks are negative.

Proof. In fact, for simplicity, set

J̃ −ϵ
λ = {u ∈ E : J̃λ(u) ≤ −ϵ}.

From Lemma 3.4, for all k ∈ N, there exists an ϵ = ϵ(k) > 0 such that

γ(J̃ −ϵ
λ ) ≥ k.

Since J̃λ is continuous and even, J̃ −ϵ
λ ∈ Σk; then, ck ≤ −ϵ(k) < 0,

for all k. However, J̃λ is bounded from below; hence, ck > −∞ for
all k. �

The next result proves the existence of critical points.
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Lemma 3.6. Let λ0 = min{λ1, λ2}, and suppose that λ ∈ (0, λ0). If
c = ck = ck+1 = · · · = ck+r, then γ(Kc) ≥ r + 1.

Proof. We will use the classical deformation lemma (see [16]).

Assume that c = ck = ck+1 = · · · = ck+r, and observe that c < 0;

therefore, J̃λ verifies the Palais-Smale condition in Kc. It is easy to see
that Kc is compact.

Assume, for contradiction, that γ(Kc) ≤ r. Thus, there exists a
closed and symmetric set U , with Kc ⊂ U such that γ(U) = γ(Kc) ≤ r
(we can choose U = Nσ(Kc) for some σ > 0).

By the deformation lemma, we have an odd homeomorphism

η : E −→ E,

such that

η(J̃ c+δ
λ \ U) ⊂ J̃ c−δ

λ for some 0 < δ < −c.

By definition,

c = ck+r = inf
C∈Σk+r

sup
u∈C

J̃λ(u).

Then, there exists an A ∈ Σk+r such that supu∈A J̃λ(u) < c + δ, i.e.,

A ⊂ J̃ c+δ
λ and

(3.1) η(A \ U) ⊂ η(J̃c+δ
λ \ U) ⊂ J̃c−δ

λ .

However, by Proposition 3.3, we have

γ(A \ U) ≥ γ(A)− γ(U) ≥ k

and

γ(η(A \ U)) = γ(A \ U) ≥ k.

Consequently, η(A \ U) ∈ Σk. This contradicts (3.1) since η(A \ U) ∈
Σk implies

sup
u∈η(A\U)

J̃λ(u) ≥ ck = c. �

Proof of Theorem 1.1. It is a consequence of previous results. In
fact, define λ0 = min{λ1, λ2}, and suppose that λ ∈ (0, λ0). By
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definition, we have

(3.2) ck ≤ ck+1 ≤ · · · ≤ ck+r ≤ · · · < 0.

Now, we consider two cases.

Case (I). Suppose that all inequalities in (3.2) are strict. Since Lem-
ma 3.6 proves that γ(Kck) ≥ 1 for any k ∈ N, the set Kck has at
least one element. Thus, since the values of ck are different from each

other, we obtain a sequence of different critical points for J̃λ. Since
Lemma 3.5 implies that the values of ck are negative, Lemma 3.1 (ii)

implies that critical points of J̃λ are also critical points of Jλ.

Observe that, if E = W 2,p
0 (Ω) (respectively, E = W 2,p(Ω) ∩

W 1,p
0 (Ω)), then critical points of Jλ are solutions of problem (1.1)–

(1.2) (respectively, (1.1)–(1.3). See the next section for the second
Navier boundary condition. Furthermore, by the maximum principle,
the solutions of the problem (1.1)–(1.3) are positive.

Case (II). Suppose that there exist k, r ∈ N, such that

ck = ck+1 = · · · = ck+r.

In this case, Lemma 3.6 gives that γ(Kck) ≥ 2. This means that the
set Kck is connected, closed and symmetric with respect to the origin.
Indeed, if Kck is disconnected, then γ(Kck) = 1 since we can define an
odd function f ∈ C(Kck ,R \ {0}) as being 1 in a connected component
and −1 in the other symmetric connected component. Therefore, we

have an infinite number of distinct critical points of J̃λ. Analogously
to Case (I), we obtain an infinite number of solutions for problems
(1.1)–(1.2) and (1.1)–(1.3). �

4. On the Navier boundary condition. For all ϕ ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω), if u ∈W 2,p(Ω) ∩W 1,p
0 (Ω) satisfies∫

Ω

|∆u|p−2∆u∆ϕdx = λ

∫
Ω

f(x)|u|q−2uϕdx+

∫
Ω

|u|p
∗−2uϕdx,

we now show that ∆u = 0 on ∂Ω. For this, define

v = −|∆u|p−2∆u ∈ Lp/(p−1)(Ω)
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and

g(u) = λf(x)|u|q−2u+ |u|p
∗−2u ∈ Lp∗/(p∗−1)(Ω) = Lr(Ω),

where r = p∗/(p∗ − 1) > 1. Then, we have∫
Ω

v(−∆ϕ) dx =

∫
Ω

g(u)ϕ dx,(4.1)

for all ϕ ∈W 2,p(Ω) ∩W 1,p
0 (Ω).

Let w ∈W 2,r(Ω) ∩W 1,r
0 (Ω) be the unique solution of the problem

(4.2)

{
−∆w = g(u) on Ω,

w = 0 on ∂Ω.

Therefore, we have, for all ϕ ∈W 2,r(Ω) ∩W 1,r
0 (Ω),

(4.3)

∫
Ω

∇w∇ϕdx =

∫
Ω

w(−∆ϕ) dx =

∫
Ω

g(u)ϕdx.

Subtracting (4.1) from (4.3), we obtain∫
Ω

(v − w)∆ϕ dx = 0 for all ϕ ∈ C∞
0 (Ω),

from which v = w almost everywhere in Ω follows. Thus,

v = w ∈W 2,r(Ω) ∩W 1,r
0 (Ω),

and we conclude that v = 0 on ∂Ω.
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