
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 48, Number 1, 2018

GENERALIZED PALINDROMIC
CONTINUED FRACTIONS

DAVID M. FREEMAN

ABSTRACT. In this paper, we introduce a generaliza-
tion of palindromic continued fractions as studied by Adam-
czewski and Bugeaud [2]. We refer to these generalized
palindromes as m-palindromes, where m ranges over the pos-
itive integers. We provide a simple transcendency criterion
for m-palindromes, extending and slightly refining an analo-
gous result of Adamczewski and Bugeaud [2]. We also pro-
vide methods for constructing examples of m-palindromes.
Such examples allow us to illustrate our transcendency crite-
rion and to explore the relationship between m-palindromes
and stammering continued fractions, another concept intro-
duced by Adamczewski and Bugeaud.

1. Introduction. In [4] (also see [1, 6]), Adamczewski and Bugeaud
studied palindromic continued fractions, that is, continued fractions
whose sequences of partial quotients exhibit a certain form of mirror
symmetry (see Section 2 for a more precise definition). Amongst other
applications, the authors used their results regarding palindromic con-
tinued fractions to provide new examples of transcendental numbers
with bounded partial quotients, to provide new proofs of the transcen-
dency of certain well-known continued fractions (such as the Thue-
Morse continued fraction, see [5]), and to answer questions related to
the Littlewood Conjecture (see [3]). The main purpose of the present
paper is to generalize and slightly refine the following result from [4]
(see also [1, Theorem 35]).

Theorem 1.1 ([4]). Let α = [a0, a1, . . .] denote an irrational contin-
ued fraction. If α is palindromic, then α is either transcendental or
quadratic.
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We generalize the above result by introducing m-palindromic con-
tinued fractions, where m ranges over the positive integers. Instead of
exhibiting the mirror symmetry of palindromes (1-palindromes in our
terminology), an m-palindromic continued fraction exhibits a sort of
multiplicative symmetry (which we will precisely define in Section 2).
Our main result is the following theorem.

Theorem 1.2. Let α = [a0, a1, . . .] denote an irrational continued
fraction. If there exists an m ∈ N such that α is m-palindromic, then α
is either

(1) transcendental, or
(2) a quadratic irrational such that α/m is reduced.

Via results from [10], we prove the following corollary to Theorem
1.2 in the case that m = 1.

Corollary 1.3. Let α = [a0, a1, . . .] denote an algebraic irrational
continued fraction. If α is 1-palindromic, then α is a reduced quadratic
irrational that is equivalent to its algebraic conjugate.

In Example 8.2, we construct a quadratic irrational 2-palindromic
continued fraction α such that neither α nor α/2 is equivalent to its
algebraic conjugate, thus demonstrating that Corollary 1.3 does not
extend in a straightforward way to m-palindromes for m ≥ 2.

While constructing examples to illustrate the above results, we dis-
cuss the relationship between m-palindromes and stammering contin-
ued fractions as defined and studied in the work of Adamczewski and
Bugeaud (see [2, Section 2], for example). In other words, we discuss
the extent to which the partial quotients of an m-palindrome exhibit
large repetitive patterns. Our examples reveal stronger differences be-
tween m-palindromes (m ≥ 2) and stammering continued fractions
than exist between 1-palindromes and stammering continued fractions,
particularly in the case of positive palindromic density (cf., [4, Sec-
tion 7]).

Section 2 provides the basic definitions and notation that we will
use. Section 3 records several auxiliary results with which we will
construct examples and prove Theorem 1.2. In Section 4, we pause
to define and discuss extended continued fractions. In Section 5, we
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prove Theorem 1.2. In Section 6, we discuss the relationship between
m-palindromes and stammering continued fractions. Section 7 contains
a conjecture regarding a generalization of palindromic density. Finally,
in Section 8, we prove Corollary 1.3.

2. Basic definitions and notation. Write N to denote the set of
positive integers {1, 2, 3, . . .} and N0 to denote the non-negative integers
{0, 1, 2, 3, . . .}. Given i ∈ N0, a (rational) continued fraction is denoted
by [a0, a1, . . . , ai], where a0 ∈ N0 and, for each k such that 1 ≤ k ≤ i, we
have ak ∈ N. For each k such that 0 ≤ k ≤ i, the numbers ak are called
partial quotients. This definition easily extends to irrational continued
fractions of the form [a0, a1, . . .] corresponding to infinite sequences of
partial quotients.

It is convenient to use the language of sequences to define continued
fractions, where the terms of the sequences correspond to partial
quotients. Given any set A, we write A∗ to denote the collection
of finite sequences composed of elements of A (here we include the
empty sequence ε). For example, we write N∗ and N∗

0 to denote the
collections of finite sequences composed of positive and non-negative
integers, respectively. Thus, we write N0 ×N∗ to denote the collection
of finite sequences of the form (a0, a1, . . . , ai) such that a0 ∈ N0 and,
for each 1 ≤ k ≤ i, we have ak ∈ N. For A ∈ A∗, we write |A| to
denote the number of terms in A, and say that A has length |A|. For
two sequences A and B in A∗, we write AB to denote the concatenation
of A and B. In this case, we say that A is a prefix for the sequence AB.
Given A ∈ A∗ and k ∈ N, we write Ak to denote the concatenation
of k copies of A. We write A to denote the infinite sequence AAA . . .,
and describe such a sequence as periodic, with period A. If there exist
B,C ∈ A∗ such that A = BC, then we say that A is eventually periodic.

The notation NN0 denotes infinite sequences of the form (a0, a1, a2,
. . .) in which every term is a positive integer. For example, given
A ∈ N∗, we have A ∈ NN0 . We write N0 × NN to denote infinite
sequences of the form (a0, a1, a2, . . .), where a0 ∈ N0 and, for each
k ∈ N, we have ak ∈ N.

Given a sequence A ∈ N∗ and any positive real number x, we
denote by Ax the sequence A⌊x⌋A′, where A′ is a prefix of A of length
⌈(x− ⌊x⌋)|A|⌉. Here ⌈x⌉ denotes the smallest integer greater than or
equal to x, and ⌊x⌋ denotes the largest integer less than or equal to x.
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We remind the reader of the bijective correspondence between infi-
nite sequences A ∈ N0 × NN and their corresponding continued frac-
tions [A]. However, given two sequences A and B in N0 × N∗, it may
be the case that A ̸= B while [A] = [B]. For example, [1, 1, 1] = [1, 2].
In order to avoid ambiguities, we will take special care to distinguish
between a given sequence of partial quotients A ∈ N0 × N∗ and the
corresponding continued fraction [A].

Given A = (a0, . . . , ai) ∈ N0 × N∗, for each k such that 0 ≤
k ≤ i, we refer to the numbers [a0, . . . , ak] as convergents. We
write [a0, . . . , ak] = pk/qk, such that pk and qk have no common fac-
tors. Thus, each sequence (a0, . . . , ai) yields a sequence of convergents
(p0/q0, p1/q1, . . . , pi/qi).

Given A = (a0, . . . , ai) ∈ N∗, the reversal of A is defined as

Ã = (ai, . . . , a0). If there exists a number m ∈ N such that [A] = m[Ã],
we say that A is an m-palindrome, or m-palindromic. Note that, when
m = 1, we recover the definition of a palindromic sequence as used
in [4]. In the case of an irrational continued fraction α = [A] =
[a0, a1, . . .], we say that α (equivalently, A) is an m-palindrome, or
is m-palindromic, if there exist infinitely many indices i for which the
prefix (a0, . . . , ai) is an m-palindrome.

3. Auxiliary results. Given i, j ∈ N, our notational convention in
this section shall be to write

A = (a0, . . . , ai) ∈ N0 × N∗

and
B = (b0, . . . , bj) ∈ N0 × N∗.

Furthermore, we shall write (
p0
q0

, . . . ,
pi
qi

)
and (

r0
s0

, . . . ,
rj
sj

)
to denote the sequences of convergents corresponding to A and B,

respectively. The convergents corresponding to Ã and B̃ shall be
denoted by (p̃0/q̃0, . . . , p̃i/q̃i) and (r̃0/s̃0, . . . , r̃j/s̃j), respectively.



GENERALIZED PALINDROMIC CONTINUED FRACTIONS 223

The majority of this section (and the paper as a whole) will rely on
the following matrix identity.

Lemma 3.1. Given A = (a0, . . . , ai) ∈ N0 × N∗, we have

(3.1)

(
pi pi−1

qi qi−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·

(
ai 1
1 0

)
.

Proof. See, for example, [9, Lemma 2.8]. �

Lemma 3.1 leads to the following two results of which we will make
frequent use.

Lemma 3.2. Given i,m ∈ N and A = (a0, . . . , ai) ∈ N∗, we have

(3.2)

(
pi qi

pi−1 qi−1

)
=

(
p̃i p̃i−1

q̃i q̃i−1

)
.

Furthermore, A is m-palindromic if and only if

(3.3)

(
pi mqi

pi−1 qi−1

)
=

(
p̃i q̃i

mp̃i−1 q̃i−1

)
.

Equivalently, A is m-palindromic if and only if mqi = pi−1.

Proof. Given [A] = pi/qi, via Lemma 3.1 one can write(
pi pi−1

qi qi−1

)
=

(
a0 1
1 0

)(
a1 1
1 0

)
· · ·

(
ai 1
1 0

)
.

This equality then yields(
pi qi

pi−1 qi−1

)
=

(
pi pi−1

qi qi−1

)t

=

(
p̃i p̃i−1

q̃i q̃i−1

)
.

Here, we write M t for the transpose of a matrix M . Thus, we
verify (3.2).

Assume m[Ã] = [A], so that mp̃i/q̃i = pi/qi. Since pi = p̃i, it follows
that q̃i = mqi. Finally, we have pi−1 = q̃i = mqi = mp̃i−1. Conversely,

if (3.3) is true, then pi/qi = mp̃i/q̃i, and m[Ã] = [A]. We also note
that, if mqi = pi−1, then mp̃i/q̃i = mpi/pi−1 = pi/qi. �
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Lemma 3.3. Given A = (a0, . . . , ai) ∈ N0×N∗ and B = (b0, . . . , bj) ∈
N∗, we have

[AB] =
pi[B] + pi−1

qi[B] + qi−1
=

pirj + pi−1sj
qirj + qi−1sj

.

Proof. This follows from Lemma 3.1 (see [9, Lemma 2.11]). �

We now prove a series of lemmas that will provide methods for
constructing m-palindromes.

Lemma 3.4. For i, j,m ∈ N, suppose A = (a0, . . . , ai) ∈ N∗ and

B = (b0, . . . , bj) ∈ N∗ satisfy m[Ã] = [B]. The sequence BA is m-
palindromic if and only if m[ai, . . . , a1] = [b0, . . . , bj−1].

Proof of Lemma 3.4. From Lemma 3.3, we may write

[ÃB̃] =
p̃ir̃j + p̃i−1s̃j
q̃ir̃j + q̃i−1s̃j

and [BA] =
rjpi + rj−1qi
sjpi + sj−1qi

.

By (3.2), we have p̃ir̃j + p̃i−1s̃j = pirj + qirj−1. From our assumption
that mp̃i/q̃i = rj/sj , we have q̃ir̃j = msjpi. Via (3.2), we have
[ai, . . . , a1] = p̃i−1/q̃i−1 = qi/qi−1. Thus, m[ai, . . . , a1] = [b0, . . . , bj−1]
if and only if mqi/qi−1 = rj−1/sj−1. The equality mqi/qi−1 =
rj−1/sj−1 is in turn equivalent to mqisj−1 = rj−1qi−1 = s̃j q̃i−1. It

follows that, under the stated assumptions, m[ÃB̃] = [BA] if and only
if m[ai, . . . , a1] = [b0, . . . , bj−1]. �

Example 3.5. Given m,n ∈ N, write B = (m2, 1) ∈ N∗ and A =
(m) ∈ N∗. We note that m[A2n] = [Bn] and m[A2n−1] = [Bn−1,m2].
From Lemma 3.4, BnA2n is an m-palindrome.

The next lemma provides a means of constructing m-palindromic
irrational continued fractions with periodic sequences of partial quo-
tients.

Lemma 3.6. For m ∈ N and A ∈ N∗, if A is an m-palindrome, then
A2 is an m-palindrome.

Proof. Analogous to the proof of Lemma 3.4, we need only show that
p̃ip̃i + p̃i−1q̃i = pipi + pi−1qi and that q̃ip̃i + q̃i−1q̃i = m(qipi + qi−1qi).
These equalities follow from (3.2) and (3.3), respectively. �
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Remark 3.7. Suppose A = (a0, . . . , ai) ∈ N∗ is an m-palindrome.
Lemmas 3.4 and 3.6 imply that m[ai, . . . , a1] = [a0, . . . , ai−1].

Example 3.8. For m,n ∈ N, we note that (mn,n) is m-palindromic.
It follows from Lemma 3.6 that the irrational number [mn,n] is an
m-palindrome.

The final lemma of this section will enable the construction of irra-
tional m-palindromic continued fractions with non-periodic sequences
of partial quotients.

Lemma 3.9. For m ∈ N and A,B ∈ N∗, if A and B are m-
palindromes, then ABA is an m-palindrome.

Proof. By two applications of Lemma 3.3, we have

[ÃB̃Ã] =
p̃ir̃j p̃i + p̃ir̃j−1q̃i + p̃i−1s̃j p̃i + p̃i−1s̃j−1q̃i
q̃ir̃j p̃i + q̃ir̃j−1q̃i + q̃i−1s̃j p̃i + q̃i−1s̃j−1q̃i

.

The lemma then follows from repeated applications of Lemma 3.2, as
in the proofs of Lemma 3.4 and Lemma 3.6. �

4. Extended continued fractions. In this section, we use se-
quences B ∈ N∗

0 to define extended continued fractions. This definition
will enable the construction of Examples 6.4 and 8.2.

Let B = (b0, . . . , bj) ∈ N∗
0. In analogy to Lemma 3.1, we write

(4.1)

(
b0 1
1 0

)
· · ·

(
bj 1
1 0

)
=

(
rj rj−1

sj sj−1

)
and define [B] = rj/sj (provided sj ̸= 0). We again use the term
convergent to refer to the quotient rj/sj . The sequences of continuants
(r0, . . . , rj) and (s0, . . . , sj) satisfy the recurrence relations

(4.2) rk = bkrk−1 + rk−2, sk = bksk−1 + sk−2,

k = 1, 2, . . . , j. Here, we define r−1 = 1 and s−1 = 0.

Given B ∈ N∗
0 such that [B] is defined, we now describe how to

obtain B′ ∈ N0 × N∗ such that [B] = [B′]. We refer to such B′ as
a simplification of B. To this end, let B = (b0, . . . , bj) ∈ N∗

0 be such
that [B] is defined. In the case that bj = 0, we observe that (4.2)
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implies [B] = [b0, . . . , bj−2]. Here, we note that, if j = 1, then [B] is
undefined, and thus, we may assume that j ≥ 2. This observation may
be applied at most finitely many times in order to obtain a sequence
B′′ ∈ N∗

0 such that [B] = [B′′], and such that either the final term of
B′′ is positive or B′′ = (0).

Next, we note that, for two integers x, y ∈ N0, we have

(4.3)

(
x 1
1 0

)(
0 1
1 0

)(
y 1
1 0

)
=

(
x+ y 1
1 0

)
.

Thus, given B′′ ∈ N∗
0 as above, we may apply (4.3) at most finitely

many times to obtain B′ ∈ N0×N∗ such that [B] = [B′′] = [B′]. Thus,
we obtain a desired simplification of B.

Remark 4.1. Since extended continued fractions are defined via (4.1),
it is straightforward to verify that Lemmas 3.2, 3.3, 3.6, and 3.9
are valid for extended continued fractions provided that all extended
continued fractions under consideration are well-defined and positive.

5. Criterion for transcendency. The proof of Theorem 1.2 closely
follows that of Theorem 1.1. In particular, we rely on the following re-
sult of Schmidt (see [4, Theorem 4.1]).

Theorem 5.1 ([13]). Let α be an irrational real number that is not
quadratic. If there exists a real number w > 3/2 and infinitely many
triples of integers (p, q, r) with q > 0 such that

max

{∣∣∣∣α− p

q

∣∣∣∣, ∣∣∣∣α2 − r

q

∣∣∣∣} <
1

qw
,

then α is transcendental.

Proof of Theorem 1.2. Suppose α = [A] for A = (a0, a1, . . .) ∈ NN0 .
Let i denote an index for which m[ai, . . . , a0] = [a0, . . . , ai]. By
Lemma 3.2, we note that pi−1 = mqi. We then observe that∣∣∣∣α2 − mpi

qi−1

∣∣∣∣ = ∣∣∣∣α2 − pi
qi

pi−1

qi−1

∣∣∣∣ ≤ ∣∣∣∣α− pi
qi

∣∣∣∣∣∣∣∣α+
pi−1

qi−1

∣∣∣∣+ α

qiqi−1
,

where the final inequality follows from the fact that(
α−pi

qi

)(
α+

pi−1

qi−1

)
=α2+α

(
pi−1

qi−1
−pi
qi

)
−pi
qi

pi−1

qi−1
=α2+

α(−1)i

qiqi−1
−pi
qi

pi−1

qi−1
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(see [9, Corollary 2.15]). Since, |α− pi/qi| ≤ 1, we have∣∣∣∣α2 − mpi
qi−1

∣∣∣∣ < (1 + 2α)

∣∣∣∣α− pi
qi

∣∣∣∣+ α

qiqi−1
.

From [9, Theorem 2.25], we know that |α− pi/qi| < 1/(qiqi−1), which
yields

(5.1)

∣∣∣∣α2 − mpi
qi−1

∣∣∣∣ < 1 + 3α

qiqi−1
<

1 + 3α

q2i−1

.

Let w denote any real number strictly between 3/2 and 2. There
exists an index i0 (determined by α and the choice of w) such that any
index i satisfying (5.1) such that i ≥ i0 will also satisfy

(5.2)

∣∣∣∣α2 − mpi
qi−1

∣∣∣∣ < 1

qwi−1

.

By assumption, there are infinitely many indices i ≥ i0 satisfying (5.1),
and thus, (5.2). Since we have |α−pi−1/qi−1| < 1/q2i−1 < 1/qwi−1 (again,
see [9, Theorem 2.25]), we appeal to Theorem 5.1 in light of the triples
(pi−1, qi−1,mpi) to conclude that α is transcendental or quadratic.

For the remainder of the proof we assume that α = [A] is a quadratic
irrational. By Lagrange’s theorem, A is eventually periodic. In other
words, there exist sequences U,W ∈ N∗ such that A = UW . Here,
we can assume that U does not end in a copy of W . To prove
that α/m is reduced, we proceed as follows. By assumption, there
exists a subsequence ik → +∞ such that, for each k ∈ N, we have
m[aik , . . . , a0] = [a0, . . . , aik ]. Since

[a0, . . . , aik ] −→ α as k → +∞,

we also have

[aik , . . . , a0] −→ α/m as k → +∞.

By taking a subsequence of the subsequence (ik)
+∞
k=1, if necessary, we

can assume that, for every k ∈ N, we have [a0, . . . , aik ] = [UW jkW ′],
where jk is a non-decreasing sequence of positive integers tending to
+∞, and W ′ is a prefix of W . Here, we allow for the possibility that

W ′ = W . Since jk → +∞, taking a limit yields Ã = XY , where we

write X = W̃ ′ and Y = W̃ .
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Suppose W = (w1, w2, . . . , wn) and W ′ = (w1, . . . , wr) for some

r ≤ n. If r = n, then Ã is purely periodic, with period Y = W̃ . If r < n,

then Ã is purely periodic, with period Z = (wr, . . . , w1, wn, . . . , wr+1).

In either case, Galois’s theorem allows us to conclude that [Ã] = [A]/m
is reduced. �

In order to construct transcendental m-palindromes, we utilize
Lemma 3.9 along with generalized perturbed symmetries (see [8, 12]).
Given A ∈ N∗, we define the generalized perturbed symmetry

SA : N∗ −→ N∗

to be SA(X) = XAX. Given a non-decreasing sequence of positive
integers nk, we also define

SA,k : N∗ −→ N∗

to be

(5.3) SA,k(X) = XAnkX.

and
TA,k(X) = SA,k ◦ SA,k−1 ◦ · · · ◦ SA,1(X) ∈ N∗.

Set τA,k(X) = [TA,k(X)], and write τA(X) = [TA(X)] to denote the
irrational continued fraction such that, for every k ∈ N, the sequence
TA,k(X) is a prefix of TA(X). Note that TA(X) is well defined since,
for any Y ∈ N∗, the sequence SA,k(Y ) begins in Y . From Lemmas 3.6
and 3.9, for each k ∈ N, the sequence TA,k(X) is an m-palindrome if A,
X ∈ N∗ are m-palindromes. Therefore, the same is true of TA(X).

We note that τA(X) is quite similar to the continued fractions
produced by generalized perturbed symmetry systems as defined in [7,
Section 7]. Yet, since the collection {SA,k}+∞

k=1 need not be finite, τA(X)
need not fall within the immediate purview of [7, Theorem 7.1].

We also note that continued fractions of the form τA(X) are Maillet-
Baker continued fractions, as described in [6, Section 3]. Therefore,
by satisfying certain conditions on the sequence {nk}+∞

k=1 used in the
construction of τA(B), continued fractions of the form τA(B) can be
analyzed via [6, Theorem 3.1]. However, these conditions are not
always satisfied, as in Example 5.2.
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Example 5.2. We now construct an irrational 2-palindrome of the
form τA(B) that does not satisfy the assumptions of [6, Theorem 3.1]
or of [7, Theorem 7.1]. In particular, we will see that

nk/|TA,k−1(B)| −→ 0 as k → +∞

(thus failing the assumptions of [6, Theorem 3.1]), and the construction
of τA(B) will require an infinite collection of generalized perturbed
symmetries (thus failing the assumptions of [7, Theorem 7.1]).

To this end, let A = (2, 1) and B = (2, 1, 1, 3, 1). Note that both A
and B are 2-palindromic. Define the sequence {nk}+∞

k=1 as in (5.3) to
be nk = k. Then, we have

τA(B) = [TA(B)] = [BABAABABAAABABAABAB . . .]

= [2, 1, 1, 3, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, . . .].

From the remarks above, τA(B) is a 2-palindrome. Furthermore, it is
straightforward to verify that |TA,k−1(B)| > 2k−1 − 1, and thus, we
have

nk/|TA,k−1(B)| < k/(2k−1 − 1) −→ 0 as k → +∞.

We also note that the collection {SA,k}+∞
k=1 consists of infinitely many

distinct generalized perturbed symmetries. In order to verify that
τA(B) is transcendental, we observe that, given any k ∈ N, the sequence
TA(B) contains a copy of Ak. It follows that TA(B) is not eventually
periodic, and thus, τA(B) is not quadratic. Theorem 1.2 then implies
that τA(B) is transcendental.

6. Stammering continued fractions. In this section we investi-
gate the relationship between m-palindromes and so-called stammer-
ing continued fractions, as defined in the work of Adamczewski and
Bugeaud. We focus on the following three versions of stammering con-
tinued fractions as described in [2, 6, 7].

Definition 6.1. For any real number w > 1, we say that an irrational
continued fraction α = [A] satisfies condition (∗)w, provided that α is
not quadratic and there exist sequences Vk ∈ N∗ such that
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(1) for k ∈ N, the sequence V w
k is a prefix of A, and

(2) the sequence {|Vk|}+∞
k=1 is strictly increasing.

Definition 6.2. For any real number w > 1, we say that an irrational
continued fraction α = [A] satisfies condition (∗)ŵ, provided that α is
not quadratic and there exist sequences Vk ∈ N∗ such that

(1) for k ∈ N, the sequence V w
k is a prefix of A,

(2) the sequence {|Vk+1|/|Vk|}+∞
k=1 is bounded, and

(3) the sequence {|Vk|}+∞
k=1 is strictly increasing.

Definition 6.3. For any real numbers w > 1 and w′ ≥ 0, we say that
an irrational continued fraction α = [A] satisfies condition (∗∗)w,w′ ,
provided that α is not quadratic and there exist sequences Uk, Vk ∈ N∗

such that

(1) for k ∈ N, the sequence UkV
w
k is a prefix of A,

(2) the sequence {|Uk|/|Vk|}+∞
k=1 is bounded above by w′, and

(3) the sequence {|Vk|}+∞
k=1 is strictly increasing.

We note that the continued fraction τA(B) from Example 5.2 satisfies
condition (∗)ŵ for w = 2 (cf., [6, page 887]). Therefore, it can be
analyzed via [2, Theorem 1] (see also [6, Theorem 2.1]). However,
[2, Theorem 1] relies on the Schmidt subspace theorem (see [14]),
and thus, Theorem 1.2 provides a theoretically simpler transcendency
criterion for τA(B).

In [4, Section 7], Adamczewski and Bugeaud point out that any non-
quadratic irrational 1-palindromic continued fraction that has positive
palindromic density satisfies condition (∗)w for some w > 1. In order
to confirm that the analogous statement is not true for m-palindromes
when m ≥ 2, we define m-palindromic density as follows. Given any
irrational m-palindromic continued fraction α = [A], let {Pk(A)}+∞

k=0

denote a sequence of m-palindromic prefixes (a0, . . . , aik) for A such
that, for each k ∈ N, there is no index j such that ik−1 < j < ik and
for which (a0, . . . , aj) is an m-palindrome. Define the m-palindromic
density of α to be the number

dm(α) = lim sup
k→+∞

|Pk(A)|
|Pk+1(A)|

.
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Example 6.4. Here, we provide an example of a transcendental 2-
palindrome with bounded partial quotients and positive 2-palindromic
density that does not satisfy condition (∗)w for any w > 1. To this end,
define the 2-palindromic sequences C = (1, 1, 0) and D = (2, 1). For
each k ∈ N, define Uk = TC,k(D) ∈ N∗

0 using the sequence nk = k as
in (5.3). Note that, for each k ∈ N, the extended continued fractions

[Uk] and [Ũk] are well-defined and positive. Therefore, by Remark 4.1,
we may apply Lemma 3.9 to conclude that, for each k ∈ N, the sequence
Uk is a 2-palindrome. We claim that the simplification of each Uk

remains 2-palindromic. To verify this claim, define E = (1, 1, 3, 1) ∈
N∗, and, for each k ∈ N, define Fk = (1, 2, . . . , 2, 3) ∈ N∗. Here, the
middle k terms of Fk are all equal to 2. For each k ∈ N, we use E and
Fk to define

Gk = (2, SFk
◦ · · · ◦ SF1(E)) ∈ N∗.

A straightforward induction argument confirms that, for each k ∈ N,
the sequences Gk and G̃k are simplifications of Uk+1 and Ũk+1, respec-

tively. In particular, for each k ∈ N, we have 2[G̃k] = 2[Ũk+1] =
[Uk+1] = [Gk].

Let G ∈ NN0 denote the sequence such that, for every k ∈ N, the
sequence Gk is a prefix for G. Note that G is well defined since each
Gk+1 begins with Gk. Due to the fact that, for every k ∈ N, the
sequence Gk is a 2-palindrome, we conclude that the sequence G is also
a 2-palindrome.

In order to see that [G] has positive 2-palindromic density, we
first note that, for each k ∈ N, we have |Gk| > 2k. Furthermore,
|Gk| = 2|Gk−1|+O(k). It follows that |Gk|/|Gk+1| −→ 1/2 as k → +∞,
and thus, d2([G]) ≥ 1/2.

Fix k ∈ N, and let X denote a particular appearance of C in
TC,k+1(D). The maximal string of Cs containing X is defined to be the
longest sequence of the form Cj containing X, where j ∈ N. Clearly,
every maximal string of Cs is followed by a copy of D. Furthermore,
it can be inductively verified that every appearance of D in TC,k+1(D)
is preceded by a copy of C (except for the first appearance of D).
Therefore, we conclude that the only appearance of the sequence (2, 1)
in the simplification Gk occurs in its first two terms. It follows that [G]
does not satisfy condition (∗)w or (∗)ŵ for any real number w > 1.
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Example 6.5. Next, we provide an example of a transcendental 2-
palindrome that fails to satisfy condition (∗)w, (∗)ŵ, or (∗∗)w,w′ for
any real numbers w > 1 and w′ ≥ 0. In other words, we exhibit a
2-palindrome that exhibits no large repetitive patterns. To this end,
let {lk}+∞

k=1 denote a strictly increasing sequence of positive integers.
For each k ≥ 2, define

Bk =

dk∏
i=1

(2(lk−1 + i), lk−1 + i)

dk−1∏
i=0

(2(lk − i), lk − i)

= (b
(k)
0 , b

(k)
1 , . . . , b(k)rk

) ∈ N∗.

Here, dk = lk − lk−1 and, for Xi ∈ N∗, the product

n∏
i=1

Xi

denotes X1 · · ·Xn ∈ N∗. Note that, if i ̸= j, the set of odd-index terms
in Bi is disjoint from the set of odd-index terms in Bj .

From Lemmas 3.6 and 3.9, each sequence Bk is a 2-palindrome. For
each k ≥ 3, define

Tk = SBk
◦ SBk−1

◦ . . . ◦ SB3(B2).

Again referring to Lemmas 3.6 and 3.9, each Tk is a 2-palindrome.
Since each Tk is a prefix of Tk+1, the sequence {[Tk]}+∞

k=1 converges
to a 2-palindromic continued fraction denoted by [T ]. Since the
sequence T contains arbitrarily large terms, Theorem 1.2 tells us
that [T ] is transcendental.

We now verify that [T ] does not satisfy condition (∗)w, (∗)ŵ, or
(∗∗)w,w′ for any real numbers w > 1 and w′ ≥ 0, provided that the
sequence {lk}+∞

k=1 grows fast enough. Indeed, set l1 = 1 and l2 = 2.

For k ≥ 3, recursively define lk so that |Bk| ≥ 2k|Tk−1|. Let V denote
any finite sequence contained in the sequence T . Let k ∈ N denote the
smallest index such that V is contained in a copy of Tk. We denote this
copy of Tk byX, and writeX = Y UY , where Y is a copy of Tk−1 and U
is a copy of Bk. We note that V intersects U , else the index k is not
minimal. If V does not contain U , then V cannot exhibit nontrivial
repetition in T . This is because nontrivial repetition requires V to
begin and end in distinct copies of Bi, for some i ∈ N. Therefore, we
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can assume that V contains U . Since X is succeeded by a copy of Bk+j ,
for some j ≥ 1, and X does not contain a copy of Bk+j , we conclude
that any repeated prefix of V , denoted V ′, must be contained in the
second copy of Y in X. These observations imply that

|V ′|
|V |

≤ |Y |
|U |

=
|Tk−1|
|Bk|

≤ 1

2k
.

As |V | → +∞, we have k → +∞ in the above inequality. It follows
that [T ] does not satisfy condition (∗)w, (∗)ŵ, or (∗∗)w,w′ for any w > 1,
w′ ≥ 0.

7. Maximal m-palindromic density. It was shown by Fischler
[11] that the Fibonacci sequence (a, b, a, a, b, a, b, a, a, b, a, a, b, . . .) pos-
sesses maximal 1-palindromic density amongst all infinite sequences
that are not eventually periodic. Moreover, the 1-palindromic density
of the Fibonacci word is equal to 1/φ, where φ is the golden ratio. In
this section, we construct m-palindromic sequences, for m ≥ 2, whose
m-palindromic densities are at least 1/φ. We conjecture that, in anal-
ogy with the case m = 1, these sequences achieve the maximal m-
palindromic density amongst all m-palindromic infinite sequences that
are not eventually periodic.

Let m ∈ N be fixed. As in Example 3.8, given any r, s ∈ N such
that r ̸= s, the words (rm, r) and (sm, s) are m-palindromes. Given
a, b ∈ N and any infinite sequence A ∈ {a, b}N0 , one may form a new
sequence by replacing each occurrence of a with the sequence (rm, r),
and each occurrence of b with the sequence (sm, s). Denote this new
sequence by A(m, r, s).

Let F denote the Fibonacci sequence in {a, b}N0 . Thus,

F = (a, b, a, a, b, a, b, a, a, b, a, . . .),

and

F (m, r, s) = (rm, r, sm, s, rm, r, rm, r, sm, s, rm, r, sm, s,

rm, r, rm, r, sm, s, rm, r, . . .).

We claim that dm([F (m, r, s)]) ≥ 1/φ. To verify this claim, for n ∈ N0,
let Sn denote the nth prefix of the Fibonacci sequence. The first few
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such finite sequences are as follows:

S0 = (a) S3 = (a, b, a, a, b)

S1 = (a, b) S4 = (a, b, a, a, b, a, b, a)

S2 = (a, b, a) S5 = (a, b, a, a, b, a, b, a, a, b, a, a, b).

Let S∗
n denote the sequence Sn truncated by the final two digits. It is

well known that, for all n ≥ 2, the sequence S∗
n is a 1-palindrome.

Therefore, it follows from Lemmas 3.6 and 3.9 that each sequence
S∗
n(m, r, s) is an m-palindrome. Furthermore, |S∗

n(m, r, s)| = 2|S∗
n| =

2fn+2 − 4. Here, fn denotes the nth Fibonacci number. Since each
S∗
n(m, r, s) is a prefix to S∗

n+1(m, r, s), we conclude that

dm([F (m, r, s)]) ≥ lim
n→+∞

|S∗
n(m, r, s)|

|S∗
n+1(m, r, s)|

= lim
n→+∞

2fn+2 − 4

2fn+3 − 4
=

1

φ
.

Conjecture 7.1. For m ∈ N and A ∈ NN0 an m-palindromic sequence
that is not eventually periodic, we have dm([A]) ≤ 1/φ. Furthermore,
for r, s ∈ N with r ̸= s, we have dm([F (m, r, s)]) = 1/φ.

8. Quadratic irrational palindromes. Here, we prove Corol-
lary 1.3 via the following the result of Burger. In order to state this
result, we say that two real numbers α and β are equivalent, provided
that there exist integers a, b, c and d such that

α =
a+ bβ

c+ dβ
, ad− bc = ±1.

Theorem 8.1 ([10]). Let α = [A] denote a quadratic irrational con-
tinued fraction. The number α is equivalent to its algebraic conjugate
if and only if A is eventually periodic with period consisting of one or
two 1-palindromes.

Proof of Corollary 1.3. Assume α = [a0, a1, . . .] = [A] is an algebraic
irrational 1-palindrome. Theorem 1.2 tells us via Galois’s theorem
that A must be purely periodic. In particular, A = W for some
W ∈ N∗. We write W = (w1, w2, . . . , wn) for some n ∈ N. Let k
denote any index such that (a0, . . . , ak) = Ak is 1-palindromic. For k
large enough, we may write Ak = W jW ′ for some j ≥ 1. Here, W ′
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is a prefix of W , and we allow for the possibility that W ′ = W . We
consider separately the cases that W ′ = W and W ′ ̸= W .

We first consider the case that W ′ = W . Since Ak is a 1-palindrome,

this implies that W̃ = W , and thus, W is a 1-palindrome, in other
words, α is purely periodic, with a 1-palindromic period. From Theo-
rem 8.1, the number α is equivalent to its algebraic conjugate.

We now consider the case that W ′ ̸= W . Since Ak is a 1-palindrome,

W̃ ′ is a prefix of W , and there exists an r < n such that W̃ ′ =
(w1, w2, . . . , wr). Since W ′ is also a prefix of W , we have W ′ =
(w1, w2, . . . , wr), in other words, W ′ is a 1-palindrome. Write W ′′ =
(wr+1, . . . , wn). Again, using the assumption that Ak is a 1-palindrome,
we find that (wn, . . . , wr+1) = (wr+1, . . . , wn), in other words, W ′′ is
also a 1-palindrome. Therefore, A has period W = W ′W ′′, which
consists of two 1-palindromes. From Theorem 8.1, the number α is
equivalent to its algebraic conjugate. �

Example 8.2. Let α = [A] = [2, D] = [2, 1, 1, 2, 2, 3]. To verify
that α is a 2-palindrome, we proceed as follows. Write B = (2, 1)
and C = (1, 2, 2, 1, 0). For each k ∈ N, define Tk = Sk

C(B). Note
that [C] is a well defined and positive extended continued fraction, and
that the same is true of each [Tk]. From Lemma 3.9 and Remark 4.1,
each sequence Tk is a 2-palindrome. Furthermore, one can verify
by way of induction that, for each k ∈ N, a simplification of Tk

is given by T ′
k = (2, Dnk , 1), where n1 = 1 and, for each integer

i ≥ 2, we recursively define ni = 2ni−1 + 1. Therefore, for every
k ∈ N, the sequence T ′

k is a prefix for A. Finally, one can verify that

T̃ ′
k = (1, D̃nk , 2) is a simplification for T̃k, and thus, 2[T̃ ′

k] = [T ′
k], in

other words, A is a 2-palindrome.

Remark 8.3. We first note that Example 8.2 illustrates Theorem 1.2
in the sense that α/2 has continued fraction expansion [1, 3, 2, 2, 1],
and is therefore reduced, while α itself is not reduced. We then note
that neither α nor α/2 can be written as a continued fraction with
period consisting of two 1-palindromes. From Theorem 8.1, neither α
nor α/2 is equivalent to its algebraic conjugate. As pointed out in
the introduction, this indicates that Corollary 1.3 does not have a
straightforward generalization to m-palindromes when m ≥ 2.
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