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P -SPACES AND INTERMEDIATE RINGS
OF CONTINUOUS FUNCTIONS

WILL MURRAY, JOSHUA SACK AND SALEEM WATSON

ABSTRACT. A completely regular topological space X
is called a P -space if every zero-set in X is open. An
intermediate ring is a ring A(X) of real-valued continuous
functions on X containing all the bounded continuous
functions. In this paper, we find new characterizations of P -
spaces X in terms of properties of correspondences between
ideals in A(X) and z-filters on X. We also show that some
characterizations of P -spaces that are described in terms
of properties of C(X) actually characterize C(X) among
intermediate rings on X.

1. Introduction. Throughout this paper, we let X denote a com-
pletely regular (Hausdorff) topological space, also known as a Tychonoff
space. We say X is a P -space (pseudo-discrete space) if every zero-set
in X is open. Such spaces were introduced by Gillman and Henrik-
sen [8], who used a different but equivalent definition. Their defini-
tion is based on an observation by Kaplansky [11] that the ring C(X)
of continuous functions on a discrete space X has a certain algebraic
property. Further characterizations are given by Gillman and Jeri-
son [9]. An intermediate ring of continuous functions A(X) is a sub-
ring of C(X) that contains C∗(X) (the ring of bounded functions in
C(X)). Intermediate rings have been extensively studied, for exam-
ple, in [2, 3, 5, 6, 7, 12, 13, 14]. This paper examines relationships
between P -spaces and intermediate rings of continuous functions.

For an intermediate ring A(X) there are two natural correspon-
dences, ZA and ZA, between the ideals of A(X) and the z-filters on
X (see [12, 14]). These correspondences extend to all intermediate
rings the well-known correspondences, described in [9, subsections 2.3,
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2L], for C∗(X) and C(X), respectively. We give a new condition that
determines whether X is a P -space in terms of the correspondences
ZA and ZA, namely, X is a P -space if and only if ZA and ZA coincide
for each intermediate ring A(X) (Theorem 2.3). Other new charac-
terizations are given: in terms of the ideals Mp

A and Op
A for p ∈ X

(Theorems 2.5 and 2.8), by the property that ZA maps maximal ideals
to z-ultrafilters (Theorem 2.10), and by the property that every z-filter
is a ZA-filter (Theorem 2.12). We note that the analogous characteri-
zation of P -spaces in terms of ZA-filters does not hold (Example 2.13).

There are a number of alternative characterizations of P -spaces
which are given in terms of algebraic properties of C(X). For example,
X is a P -space if and only if the ring C(X) is (von Neumann) regular,
equivalently, every prime ideal in C(X) is maximal [9, Section 4J].
We show that some properties which characterize P -spaces X in terms
of C(X) actually characterize C(X) among intermediate rings A(X)
when X is a given P -space. For example, the property that A(X) is
a regular ring characterizes C(X) among intermediate rings A(X) on
a given P -space X (Theorem 3.3). Other characterizations of C(X)
when X is a P -space are given: by the property that every z-ideal is a
ZA-ideal (ZA-ideal) (Theorem 3.7), and by the property that Mp

A = Op
A

for every p ∈ βX (Theorem 3.10).

Although the property that every z-filter is a ZA-filter characterizes
P -spaces, we show that this property does not in general characterize
C(X) among intermediate rings when X is a P -space (Example 3.8).
Symmetrically, although the property that every ideal in A(X) is
a ZA-ideal (ZA-ideal) characterizes C(X) among intermediate rings
when X is a P -space, we show that this property does not, for every
intermediate ring A(X), characterize P -spaces (Example 2.15). In the
particular instance of A(X) = C(X), we do know that the property
that every ideal in C(X) is a ZC-ideal characterizes P -spaces (see [9,
4J] and [12, Corollary 2.4]). Furthermore, although our Theorem 2.5
tells us that the property that Mp

A = Op
A for every p ∈ X characterizes

P -spaces, we show that this property does not characterize C(X)
among intermediate rings when X is a P -space (Example 3.11), and,
although the property Mp

A = Op
A for every p ∈ βX characterizes

C(X) among intermediate rings when X is a P -space, we show that
this property does not characterize P -spaces (Example 3.9). In the
particular instance of A(X) = C(X), we do know that the property
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Property
To Characterize F I X B

P -spaces yes no yes no
C(X) among A(X) for X a P -space no yes no yes

that Mp
C = Op

C for every p ∈ βX does characterize P -spaces [9, 7L]. In
order to summarize, we provide the above chart, where we abbreviate
by F the property that every z-filter is a ZA-filter, I the property that
every ideal is a ZA-ideal, X the property that Mp

A = Op
A for each p ∈ X

and B the property that Mp
A = Op

A for each p ∈ βX. We mark by “no”
the boxes where there is an appropriate space X and rings A(X) in
which the property corresponding to the column does not characterize
the property corresponding to the row.

2. Characterizations of P -spaces. For any real-valued continu-
ous function f on X, we define the zero-set of f to be

Z(f)
def
= {x ∈ X | f(x) = 0},

and
Z[X]

def
= {Z(f) | f ∈ C(X)}

to be the set of all zero-sets. The complement of a zero-set is called a
cozero-set. In this article, we use the following topological definition of
a P -space.

Definition 2.1. A completely regular space X is a P -space if every
zero-set in X is open.

An equivalent topological formulation of this definition is: X is a
P -space if every cozero-set in X is C-embedded [9, Section 4J]. There
are numerous characterizations of P -spaces in terms of properties of the
ring of all real-valued continuous functions on the space. For example
a P -space is defined in [9] to be a space X such that every prime ideal
in C(X) is maximal. We know of no previously given characterizations
of P -spaces which are expressed in terms of intermediate rings A(X).
In this section, we introduce several new characterizations of P -spaces,
all of which can be expressed in terms of intermediate rings A(X).
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2.1. The correspondences ZA and ZA. We give a characterization
of P -spaces in terms of the correspondences ZA and ZA.

Let A(X) be an intermediate ring of continuous functions. If
f ∈ A(X) and E is a subset of X, we say that f is E-regular with
respect to A(X) if there exists g ∈ A(X) such that fg ≡ 1 on E. We
use the correspondences ZA and ZA, introduced in [14, 12] respectively,
between ideals of A(X) and z-filters on X, that are defined as follows.
For f ∈ A(X), we have

ZA(f)
def
= {E ∈ Z[X] | f is Ec-regular},

ZA(f)
def
= {E ∈ Z[X] | f is H-regular for every zero-set H ⊆ Ec}.

For each ideal I ⊂ A(X), it is known that

ZA[I]
def
=

∪
{ZA(f) | f ∈ I}

and

ZA[I]
def
=

∪
{ZA(f) | f ∈ I}

are z-filters on X ([12, Proposition 2.2] and [14, Theorem 1]). These
correspondences extend the well-known correspondences E and Z for
C∗(X) and C(X), respectively, which are discussed in [9, subsections
2.3, 2L], to any intermediate ring A(X) ([12, Corollaries 1.3, 2.4]).

We begin with the following lemma, which clarifies the fourth and
fifth lines of the proof of [12, Theorem 2.3].

Lemma 2.2. Let f ∈ C(X) be non-invertible, and let E = Z(f). Let
F ∈ Z[X], such that E ∩ F = ∅. Then, f is F -regular.

Proof. From [9, subsection 1.15], disjoint zero-sets are completely
separated. Let h : X → [0, 1] be a separating function that is 0 on
F and 1 on E. Let k = f2 + h. Then, Z(k) = ∅, and hence, k is
invertible. Since h(x) = 0 for all x ∈ F , k(x) = f2(x) for all x ∈ F .
Let g = k−1 · f . Then, f(x) · g(x) = 1 for all x ∈ F . �

Theorem 2.3. A completely regular space X is a P -space if and only
if for every intermediate ring A(X) we have
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ZA(f) = ZA(f)

for every non-invertible f ∈ A(X).

Proof. We first observe that, if X is a P -space, then every zero-
set is both open and closed. Thus, if E is a zero-set in X, then the
characteristic function on Ec is continuous.

⇒. Let X be a P -space, and let A(X) be an intermediate ring on
X. Suppose f ∈ A(X) and E ∈ ZA(f). Then, f is invertible on every
zero-set H ⊆ Ec. However, since Ec itself is a zero-set, it follows that
f is invertible on Ec. This precisely means that E ∈ ZA(f), which
shows that ZA(f) ⊆ ZA(f). Since the other containment always holds,
it follows that ZA(f) = ZA(f).

⇐. Suppose that, for every intermediate ring A(X) and for every
non-invertible f ∈ A(X), we have ZA(f) = ZA(f). In particular, for
C(X) and for every f ∈ C(X), we have ZC(f) = ZC(f). Now, suppose
that E is a zero-set in X, and let f ∈ C(X) with E = Z(f). From
Lemma 2.2, f is invertible in C(X) on every zero-set H contained
in Ec, and thus, E ∈ ZC(f). It follows (by our hypothesis) that
E ∈ ZC(f), which means that f is invertible on Ec. Therefore, there
exists a g ∈ C(X) such that fg = 1 on Ec, and of course, fg = 0 on
E = Z(f). Since fg is continuous on X, it follows that E is an open
set in X. This shows that every zero-set in X is open, and thus, X is
a P -space. �

Corollary 2.4. A completely regular space X is a P -space if and only
if, for every intermediate ring A(X) and every ideal I in A(X), we
have ZA[I] = ZA[I].

Proof.

⇒. From Theorem 2.3, ZA(f) = ZA(f) for every f ∈ I, hence
ZA[I] =

∪
f∈I ZA(f) =

∪
f∈I ZA(f) = ZA[I].

⇐. Suppose that ZA[I] = ZA[I] for every intermediate ring A(X)
and every ideal I in A(X). Consider the principal ideals If = ⟨f⟩,
for each non-invertible f ∈ A(X). For any non-invertible f ∈ A(X)
and for any g ∈ A(X), we have ZA(fg) ⊆ ZA(f) (this follows from
[12, Lemma 1.5 (a)], which states that ZA(fg) = ZA(f)∧ZA(g)) and
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ZA(fg) ⊆ ZA(f) (this similarly follows from [16, Corollary 13 (a)],
which states that ZA(fg) = ZA(f) ∧ ZA(g)). It follows that

ZA[If ] = ZA(f)

and

ZA[If ] = ZA(f).

Thus, by hypothesis, ZA(f) = ZA(f) for every non-invertible f ∈
A(X). Then, by Theorem 2.3, X is a P -space. �

From [12, Theorem 3.1], we know that ZA(f) = khZA(f) for each
non-invertible f ∈ A(X), where, for any z-filter F , the hull hF of F
is the set of all z-ultrafilters containing F , and, for every set U of z-
ultrafilters, the kernel kU of U is the intersection of all z-ultrafilters in
U. Thus, Theorem 2.3 is equivalent to saying that X is a P space if and
only if, for every intermediate ring A(X) and non-invertible function
f ∈ A(X),

ZA(f) = khZA(f).

From Theorem 2.3, we know that, for any P -space X and any
intermediate ring A(X), ZA = ZA. Conversely, we do not know that X
is a P -space, given that ZA = ZA for some arbitrary A(X). However,
the proof of Theorem 2.3 shows that, if ZC = ZC , then X must be a
P -space.

2.2. The ideals Mp
A and Op

A for p ∈ X. We consider, for each
p ∈ X and intermediate ring A(X), the fixed maximal ideal Mp

A

of functions that vanish at p, and the ideal Op
A of functions that

vanish on a neighborhood of p. (A fixed ideal is an ideal I for which∩
{Z(f) | f ∈ I} ≠ ∅.) In notation, for each p ∈ X, let

Mp
A

def
= {f ∈ A(X) : p ∈ Z(f)}

Op
A

def
= {f ∈ A(X) : p ∈ intZ(f)}.

In Section 3.3, we examine extensions of these to p ∈ βX. In the case
where A(X) = C(X) it is known that X is a P -space if and only if
Mp

A = Op
A for all p ∈ X [9, Section 4J]. We extend this result to all

intermediate rings.



P -SPACES 2763

Theorem 2.5. Let A(X) be an intermediate ring. Then, X is a P -
space if and only if Mp

A = Op
A for every p ∈ X.

Proof.

⇒. Suppose that X is a P -space, and let f ∈ Mp
A, p ∈ X. So

f(p) = 0. However, since X is a P -space, Z(f) is an open set containing
p. Thus, f ∈ Op

A. Therefore, Mp
A ⊆ Op

A. Since the other containment
is always true, it follows that Mp

A = Op
A for all p ∈ X.

⇐. Suppose that Mp
A = Op

A for all p ∈ X. Let E be a zero-set
in X. Since E is a zero-set, there is an f ∈ C(X) with Z(f) = E;
we may assume (by replacing f with (f ∧ 1) ∨ −1, if necessary) that
f ∈ C∗(X) ⊆ A(X). Now, for every p ∈ E, we have f ∈ Mp

A = Op
A, so

E is a neighborhood of each of its points. Thus, E is open. Therefore,
X is a P -space. �

We will show that ZA preserves this characterization, that is, X is
a P -space if and only if ZA(M

p
A) = ZA(O

p
A). However, first we provide

for p ∈ X a lemma and general results regarding the images of Mp
A and

Op
A under the correspondences ZA and ZA.

Lemma 2.6. If p ∈ X and E is a zero-set neighborhood of p, then
there exists a continuous function h : X → [0, 1] such that h = 1 on Ec

and h = 0 on some zero-set neighborhood of p.

Proof. Let H
def
= clX Ec. Since p /∈ H, it follows by complete

regularity that there is a function

f : X −→ [0, 1], f(p) = 0, f = 1 on H.

The sets

F1 = {x ∈ X : f(x) ≤ 1
2}

and

F2 = {x ∈ X : f(x) = 1}

are disjoint zero-sets in X; thus, they are completely separated, that
is, there exists an

h : X −→ [0, 1]
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such that h = 0 on F1 and h = 1 on F2. Clearly Ec ⊆ F2, and F1 is a
zero-set neighborhood of p. �

The first part of the next lemma is the special case where p ∈ X
of [5, Theorem 4.1]; however, we give here a shorter and more direct
proof of this case.

Proposition 2.7. Let A(X) be an intermediate ring of continuous
functions. Then the following both hold for every p ∈ X:

(a) ZA[O
p
A] = ZA[M

p
A].

(b) ZA[O
p
A] = ZA[O

p
A].

Proof.

(a) Since Op
A ⊆ Mp

A, it is clear that

ZA[O
p
A] ⊆ ZA[M

p
A].

For the other containment, suppose that E ∈ ZA[M
p
A]. Then, there

exists an f ∈ Mp
A such that E ∈ ZA(f). It follows that there is a

g ∈ A(X) such that fg = 1 on Ec. Now, the set

F = {x ∈ X : |fg(x)| ≤ 1
2}

is a zero-set neighborhood of p. Let

H = {x ∈ X : |fg(x)| ≥ 1}.

Since F and H are disjoint zero-sets, they are completely separated
[9, subsection 1.15]; thus, there is a function h : X → [0, 1] such that
h = 0 on F and h = 1 on H. Clearly, h ∈ Op

A and E ∈ ZA(h); thus,
E ∈ ZA[O

p
A].

(b) For each f ∈ A(X), we have

ZA(f) ⊆ ZA(f);

thus,
ZA[O

p
A] ⊆ ZA[O

p
A].

For the other containment, let p ∈ X, and suppose that E ∈ ZA[O
p
A].

Then, E ∈ ZA(f) for some f ∈ Op
A. Thus, Z(f) is a zero-set

neighborhood of p, and, since E contains Z(f) by [18, Lemma 3.1]
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(which asserts that Z(f) =
∩
{E | E ∈ ZA(f)}), it follows that E is a

zero-set neighborhood of p. From Lemma 2.6, there exists an

h : X −→ [0, 1]

such that h = 0 on some zero-set neighborhood of p and h = 1 on Ec.
Since h = 0 on a zero-set neighborhood of p, and since h is bounded,
it follows that h ∈ Op

A. Further, since h = 1 on Ec, it is clear that h
is Ec-regular. By definition, this means that E ∈ ZA(h). Therefore,
E ∈ ZA[O

p
A]. �

Theorem 2.8. A completely regular space X is a P -space if and
only if, for every intermediate ring A(X) and every p ∈ X, we have
ZA[M

p
A] = ZA[O

p
A].

Proof.

⇒. If X is a P -space, then, by Theorem 2.5, for each p ∈ X,
Mp

A = Op
A, and hence, ZA[M

p
A] = ZA[O

p
A].

⇐. Let A(X) be an intermediate ring. We claim that every E in
ZA[M

p
A] is also a neighborhood of p. We first show that every E in

ZA[O
p
A] is a neighborhood of p. Toward this end, let E ∈ ZA[O

p
A].

Then, E ∈ ZA(f) for some f ∈ Op
A. We always have Z(f) ⊆ E.

However, f ∈ Op
A; thus, Z(f) is a neighborhood of p. Therefore, E is

a neighborhood of p. It follows, by our hypothesis, that

ZA[M
p
A] = ZA[O

p
A],

and that every E in ZA[M
p
A] is also a neighborhood of p. This completes

the proof of the claim. In particular, the claim holds for A(X) = C(X).

Now, suppose that g ∈ Mp
C . Thus, g(p) = 0. From Lemma 2.2, g is

invertible in C(X) on every zero-set in the complement of Z(g); thus,
it follows that Z(g) ∈ ZA(g). Therefore, Z(g) ∈ ZA[M

p
C ], and thus, by

the claim, Z(g) is a neighborhood of p. It follows that every zero-set
in X is a neighborhood of each of its points. Therefore, every zero-set
in X is open, and thus, X is a P -space. �

2.3. Mapping maximal ideals to z-ultrafilters. The next theorem
characterizes P -spaces as those spaces X where, for any intermediate
ring A(X), the image under ZA of a maximal ideal in A(X) is a z-
ultrafilter on X.
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Lemma 2.9. If X is a P -space and E a zero-set in X, there exists a
function f ∈ A(X) such that E = Z(f) and ZA(f) = ⟨Z(f)⟩.

Proof. Let E be a zero-set in X, and let f be the characteristic
function of Ec. By definition, E ∈ ZA(f), and hence, ZA(f) ⊇ ⟨Z(f)⟩.
From [15, Proposition 2.2], which asserts that

Z(f) =
∩

{E | E ∈ ZA(f)},

we have that ZA(f) ⊆ ⟨Z(f)⟩. �

The proof of the next theorem uses the following definition. For any
intermediate ring A(X) and z-filter F , let

Z←A [F ]
def
= {f ∈ A(X) | ZA(f) ⊆ F}.

We define Z←A similarly. According to [18, Theorem 5.2], if X is a P -
space and A(X) is a C-ring (a ring A(X) that is isomorphic to C(Y ) for
some completely regular Y ), then ZA maps each maximal ideal in A(X)
to a z-ultrafilter on X. The next theorem strengthens this result not to
depend upon A(X) being a C-ring and to give a full characterization
of X being a P -space. It also addresses [18, Problem 5.3].

Theorem 2.10. Let A(X) be an intermediate ring. Then, X is a P -
space if and only if ZA[M ] is a z-ultrafilter whenever M is a maximal
ideal in A(X).

Proof.

⇒. Let X be a P -space. From [5, Theorem 3.2(a)], there is a
unique z-ultrafilter U such that ZA[M ] ⊆ U . Now, let E ∈ U . From
Lemma 2.9, there exists an f ∈ A(X) such that ZA(f) = ⟨E⟩ ⊆ U . It
is easy to see that

M ⊆ Z←A [ZA[M ]] ⊆ Z←A [U ].

Since M is maximal, and from [15, Theorem 2.3], Z←A [U ] is a proper
ideal M = Z←A [U ]. It follows that f ∈ M ; thus, E ∈ ZA[M ]. Therefore,
ZA[M ] = U .

⇐. Suppose that ZA[M ] is a z-ultrafilter whenever M is a maximal
ideal in A(X). Let p ∈ X, and consider the maximal ideal Mp

A.
By hypothesis, ZA[M

p
A] is a z-ultrafilter; therefore, it must be that
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ZA[M
p
A] = Up, where Up is the z-ultrafilter consisting of all zero-

sets containing p. From Proposition 2.7, it follows that ZA[O
p
A] =

Up. However, ZA[O
p
A] consists of all zero-set neighborhoods of p,

except that, since ZA[O
p
A] = Up, it follows that Up consists of zero-set

neighborhoods of p. Thus, every zero-set containing p is a neighborhood
of p. Therefore, X is a P -space. �

Theorem 2.10 no longer holds if ZA is replaced by ZA. For example,
by [9, subsection 2.5] and [12, Theorem 2.3], for any completely regular
space X, ZC(M) = Z(M) is a z-ultrafilter for any maximal ideal M of
C(X).

2.4. ZA- and ZA-filters; ZA- and ZA-ideals. By a ZA-filter, we
mean a z-filter F with the property that ZAZ←A [F ] = F . Similarly, F
is a ZA-filter if ZAZ

←
A [F ] = F . The next proposition follows from the

proof of (a) ⇔ (b) of [18, Theorem 4.2] (although [18, Theorem 4.2]
is stated for A(X) a C-ring, the part (a) ⇔ (b) does not require that
A(X) be a C-ring).

Proposition 2.11. The following are equivalent for any intermediate
ring A(X):

(a) Every z-filter on X is a ZA-filter.
(b) For every zero-set E in X, there exists an f ∈ A(X) such that

E = Z(f) and ZA(f) = ⟨Z(f)⟩.

Note that, if A(X) = C(X), then every z-filter is a ZA-filter since,
in this case, ZA = Z, and it is known that ZZ←[F ] = F for every
z-filter F ([9, subsection 2.5]). In general, for intermediate rings, we
have the following result.

Theorem 2.12. Let A(X) be an intermediate ring. Then, X is a
P -space if and only if every z-filter on X is a ZA-filter.

Proof.

⇒. Suppose thatX is a P -space. From Lemma 2.9 and Theorem 2.3,
for every zero-set E, there exists a function f ∈ A(X) such that
E = Z(f) and ZA(f) = ⟨Z(f)⟩. Then, by Proposition 2.11, every
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z-filter is a ZA-filter. From Theorem 2.3, ZA = ZA, and hence, every
z-filter is also a ZA-filter.

⇐. Suppose that A(X) is such that every z-filter on X is a ZA-
filter. Let M be a maximal ideal, and let U be the unique z-ultrafilter
containing ZA[M ], see [5, Theorem 3.2(a)]. From [12, Theorem 4.4],
Z←A [U ] is a maximal ideal. It is easy to see that M = Z←A [U ] (it is
always the case that M ⊆ Z←A ZA[M ]). Since U is a ZA-filter, we then
have that

ZA[M ] = ZAZ←A [U ] = U ,

that is, ZA maps maximal ideals to z-ultrafilters. Hence, it follows by
Theorem 2.10 that X is a P -space. �

The right-to-left direction of this theorem would not be true if we
were to replace ZA by ZA. For A(X) = C(X), every z-filter is a
ZA-filter, even if X is not a P -space. And, if A(X) ̸= C(X), the
right-to-left direction does not hold for ZA-filters, as the next example
shows.

Example 2.13. Let X = (0, 1)∪{2, 3, 4, . . .}, and note that a zero-set
E in X is of the form E = E1 ∪E2 where E1 is a zero-set in (0, 1) and
E2 is any subset of {2, 3, 4, . . .}. Let A(X) be the ring of all continuous
functions on X that are bounded on {2, 3, 4, . . .}. Then, for every zero-
set E = E1 ∪ E2, define a function f : X → R as follows:

f(x) =

{
g(x) if 0 < x < 1

χF (x) if x ∈ {2, 3, 4, . . .},

where g is any continuous function on (0, 1) where Z(g) = E1 and χF

is the characteristic function on F = (E2)
c. Clearly, f ∈ A(X). More-

over, Z(f) = E and ZA(f) = ⟨Z(f)⟩. Then, from Proposition 2.11,
every z-filter on X is a ZA-filter. However, X is not a P -space.

An ideal I is a ZA-ideal if Z←A ZA[I] = I; equivalently, I is a ZA-ideal
if f ∈ I whenever ZA(f) ⊆ ZA(I). We analogously define a ZA-ideal.

Theorem 2.14. Let A(X) be an intermediate ring such that every
ideal in A(X) is a ZA-ideal (ZA-ideal). Then, X is a P -space.
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Proof. Suppose that every ideal is a ZA-ideal. Let p ∈ X. From
Proposition 2.7, we have ZA[O

p
A] = ZA[M

p
A]. Hence,

Z←A ZA[O
p
A] = Z←A ZA[M

p
A].

By hypothesis, Op
A and Mp

A are ZA-ideals, which yields the first and
third equalities of:

Op
A = Z←A ZA[O

p
A] = Z←A ZA[M

p
A] = Mp

A.

Thus, X is a P -space by Theorem 2.5.

Now, suppose that every ideal is a ZA-ideal. Again, let p ∈ X, and
consider the ideal Op

A. By hypothesis, Op
A is a ZA-ideal. Thus,

(2.1) Z←A ZA[O
p
A] = Op

A.

From Proposition 2.7, we have ZA[O
p
A] = ZA[M

p
A]; thus, we can write

(2.1) as

(2.2) Z←A ZA[M
p
A] = Op

A.

However, Z←A ZA[M
p
A] = Mp

A also since, by [5, Theorem 3.2(a)],
ZA[M

p
A] is the unique z-ultrafilter containing Mp

A, and thus, by [12,
Proposition 4.4], Z←A ZA[M

p
A] is a maximal ideal which must contain

Op
A (by (2.2)). Therefore, that maximal ideal must be Mp

A, that is,

(2.3) Z←A ZA[M
p
A] = Mp

A.

From (2.2) and (2.3), it follows that Op
A = Mp

A for every p ∈ X. Thus,
X is a P -space by Theorem 2.5. �

The converse of Theorem 2.14 is not true in general; the next
example shows why.

Example 2.15. Let X = N be the set of positive integers, and let
A(X) = C∗(X). Note that X is discrete, and hence, a P -space. Let
I = ⟨1/n⟩ be the ideal generated by f(n) = 1/n. Note that 1/

√
n /∈ I,

for otherwise, there would be a function g such that gf = g/n = 1/
√
n.

However, then g =
√
n, is unbounded, and hence, not in C∗(X).

It is easy to see from the definition that ZA(f) = ZA(f
2) for any

f ∈ A(X), and hence, we have that ZA(1/n) = ZA(1/
√
n). Thus,

ZA(1/
√
n) ∈ ZA(I). We conclude that I is not a ZA-ideal. The same
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argument applies if ZA is replaced by ZA (also recall by Corollary 2.4
that ZA(I) = ZA(I)).

3. Characterizing C(X) among intermediate rings on P -
spaces. Several characterizations of C(X) among its subrings are
known (see [4, 17, 18]). In this section, we show that several of the
characterizations of P -spaces in terms of the ring structure of C(X)
actually characterize C(X) among intermediate rings on the P -spaceX.

3.1. Algebraic characterizations. A commutative ring R is (von-
Neumann) regular if, for every x ∈ R, there exists a y ∈ R such that
x = x2y. We first recall that it is well known that X is a P -space if
and only if C(X) is a regular ring [9, subsection 4J]. We show that any
proper intermediate ring is never a regular ring.

The next lemma is immediate from [19, pages 293, 294, Problem
44C]; however, we give short proof of it here.

Lemma 3.1. If A(X) ̸= C(X), then there exists an f ∈ A(X) such
that f is never zero and f is not invertible in A(X).

Proof. Let g ∈ C(X) \ A(X). It can be assumed that g ≥ 0, for, if

not, g must be replaced by one of g1
def
= g ∨ 0 or g2

def
= −g ∨ 0. (Both g1

and g2 cannot be in A(X), since then g = g1 − g2 would be in A(X).)
Now, g+1 /∈ A(X); thus, let f = 1/(g+1). Then, f ∈ C∗(X) ⊆ A(X),
f never vanishes and f is not invertible in A(X). �

Proposition 3.2. If A(X) ̸= C(X), then A(X) is not a regular ring.

Proof. Suppose that A(X) is a regular ring. From Lemma 3.1, there
exists an f ∈ A(X) such that f is never zero and f is not invertible
in A(X). Since A(X) is regular, there exists an f0 ∈ A(X) such that
f2f0(x) = f(x) for all x ∈ X. Since f(x) is never zero on X, we can
divide by f(x) to get ff0(x) = 1. Hence, this means that f is invertible
in A(X), a contradiction. �

Theorem 3.3. Let X be a P -space and A(X) an intermediate ring.
Then, A(X) = C(X) if and only if A(X) is a regular ring.
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Proof. If A(X) = C(X), then A(X) is a regular ring [9, Section 4J].
If A(X) ̸= C(X), then A(X) is not a regular ring by Proposition 3.2.

�

Remark 3.4. From [10, Theorem 1.16], any commutative ring R that
has no non-zero nilpotents is regular if and only if every prime ideal
of R is maximal. Since intermediate rings have no non-zero nilpotents,
an intermediate ring A(X) is regular if and only if every prime ideal
in A(X) is maximal. Thus, Theorem 3.3 is equivalent to the assertion
that, when X is a P -space, then A(X) = C(X) if and only if every
prime ideal in A(X) is maximal.

We now give an alternative proof that, if A(X) ̸= C(X), then there
exists a prime ideal that is not maximal. This property was first
proven in [1] using a different method than that used in this paper.
In the following proof, we specify such a prime ideal. Let A(X) be an
intermediate ring of continuous functions, and let F be a z-filter on X.
Define

(3.1) I0(F)
def
= {f ∈ A(X) : Z(f) ∈ F}.

Note that I0(F) is an ideal in A(X) and, in general, I0(F) ⊆ Z←A (F).
If A(X) = C(X), then I0(F) =Z←A (F) since, in this case, for each
f ∈ C(X), we have ZC(f) = ⟨Z(f)⟩. In general, we have the following.

Proposition 3.5. Let A(X) be an intermediate ring, and let G be a
prime z-filter on X. Then, I0(G) is a prime ideal in A(X).

Proof. Suppose that f, g ∈ A(X) and fg ∈ I0(G). Then Z(fg) ∈ G.
However, Z(fg) = Z(f) ∪Z(g) so Z(f) ∪Z(g) ∈ G; and, since G is a
prime z-filter, it follows that Z(f), say, belongs to G. Then, f ∈ I0(G).
Therefore, I0(G) is a prime ideal. �

We use Proposition 3.5 to give an alternative proof for [1, Theorem
3.2].

Proposition 3.6. If A(X) ̸= C(X), then A(X) contains a nonmaxi-
mal prime ideal.
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Proof. If A(X) ̸= C(X), then A(X) contains a non-invertible func-
tion f which never vanishes. Let U be any z-ultrafilter containing
ZA(f). Then, I0(U) is, by Proposition 3.5, a prime ideal, and it is not
maximal since the ideal Z←A [U ] properly contains I0(U) (in particular,
f ∈ Z←A [U ], except that, as f never vanishes, f /∈ I0(U)). �

3.2. ZA- and ZA-ideals; ZA- and ZA-filters. It is known from [9,
Section 4J] that X is a P -space if and only if every ideal in C(X)
is a z-ideal. Noting that the z-ideals coincide with ZC-ideals, we see
that the next theorem shows that C(X) is the only intermediate ring
for which this holds. In particular, we show that the property that
every z-ideal is a ZA-ideal (which guarantees X to be a P -space by
Theorem 2.14) also characterizes C(X) among all intermediate rings
when X is a P -space.

Theorem 3.7. Let X be a P -space and A(X) an intermediate ring.
Then, A(X) = C(X) if and only if every ideal in A(X) is a ZA-ideal
(ZA-ideal).

Proof. Suppose that A(X) = C(X). Then, by [12, Corollary 2.4]
(which states that, for any ideal I in C(X), ZC [I] = Z[I]), any z-ideal
is a ZC-ideal. Since X is a P -space, every ideal is a z-ideal according
to [9, page 211]. Thus, every ideal is a ZC-ideal. From Theorem 2.3,
ZA(f) = ZA(f) for all f ∈ A(X). Hence, every ideal is also a ZC-ideal.

Conversely, suppose that A(X) ̸= C(X). Then, A(X) contains a
non-invertible function f which never vanishes. Let F = ZA(f), and
let I0(F) be defined according to equation (3.1). Now, F ⊆ ZA[I0(F)]
since X is a P -space, and hence, for each E ∈ F , the characteristic
function χEc of the complement of E is in I0(F) and

E ∈ ZA(χEc) ⊆ ZA[I0(F)].

Thus, f ∈ Z←A ZA[I0(F)]. However, f /∈ I0(F) since f never vanishes.
Hence, I0(F) is not a ZA-ideal. The same argument holds when ZA is
replaced by ZA. �

Next, we note that the condition that every z-filter be a ZA-filter
(ZA-filter) does not characterize C(X) among intermediate rings. The
following example provides a reason.
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Example 3.8. Consider X = N, which is discrete, and hence, a P -
space. Consider A(X) = C∗(X). Let E be any subset of X (as X
is discrete, E is a zero-set), and let f = χEc be the binary-valued
characteristic function on the complement of E. Then, Z(f) = E,
and clearly, ZA(f) = ⟨Z(f)⟩. Then, by Proposition 2.11, every z-
filter is a ZA-filter. However, clearly, A(X) ̸= C(X). Hence, the
property that every z-filter be a ZA-filter does not characterize C(X)
among intermediate rings when X is a P -space. From Theorem 2.3, the
property that every z-filter be a ZA-filter does not characterize C(X)
among intermediate rings when X is a P -space either.

3.3. The ideals Mp
A and Op

A for p ∈ βX. The ideals Op
A defined

for p ∈ X in Section 2.3 can be defined for any p ∈ βX by using
the characterization for maximal ideals given in [16], as follows. For
p ∈ βX, let

Mp
A = {f ∈ A(X) | p ∈ hZA(f)}

Op
A = {f ∈ A(X) | p ∈ inthZA(f)}

This coincides with the definition in [5, 13] and agrees with our
definition in subsection 2.2 when p ∈ X.

We know from [9, Section 7L] that the property that X is a P -
space can be characterized by the property that Mp

C = Op
C for all

p ∈ βX, and we know, from [9, §4J], that the property that X is a
P -space can also be characterized by Mp

C = Op
C for all p ∈ X. We

showed in Theorem 2.5 that the characterization in terms of p ∈ X can
be extended from C(X) to all intermediate rings. The next example,
however, shows that the characterization in terms of p ∈ βX does not
extend to all intermediate rings.

Example 3.9. LetX = N, which is discrete, and hence, a P -space. Let
A(X) = C∗(X). We show that a p ∈ βX exists such that Mp

A ̸= Op
A,

and hence, the property Mp
A = Op

A for all p ∈ βX does not characterize
P -spaces. It follows from [9, Section 4K1] that C(βN) is not a regular
ring, and hence, by [9, Section 4J], that βN is not a P -space. From
Theorem 2.5, there is a point p ∈ βX such that Mp

C(βN) ̸= Op
C(βN).

Then, however, as A(X) (which is equal to C∗(N)) is isomorphic to
C(βN), it follows that Mp

A ̸= Op
A for some p ∈ βX.
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In Example 3.9, we could have used Theorem 3.3 instead of [9,
Section 4K1] to show that C(βN) is not a regular ring by observing
that C∗(N) ̸= C(N) (and hence by Theorem 3.3, C∗(N) is not regular)
and that C∗(N) is isomorphic to C(βN).

According to the next theorem, the condition Mp
A = Op

A for p ∈ βX
characterizes C(X) among intermediate rings A(X) when X is a P -
space. This highlights, in the event that A(X) ̸= C(X), the significance
of the two cases p ranging over X and p ranging over βX.

Theorem 3.10. Let X be a P -space and A(X) an intermediate ring.
Then, A(X) = C(X) if and only if, for all p ∈ βX, Mp

A = Op
A.

Proof. If A(X) = C(X), then Mp
A = Op

A for every p ∈ βX [9,
Section 7L]. Suppose that A(X) ̸= C(X). Then, there exists a function
f ∈ A(X) that is not invertible in A(X) but never vanishes. Let Up

be a z-ultrafilter such that Up ⊇ ZA(f). Thus, f ∈ Mp
A. Note that,

as f(x) ̸= 0 for all x ∈ X, ZA(f) (and any z-filter containing it) must
be a free z-filter; hence, hZA(f) ⊆ βX \X. Then, since X is dense in
βX, hZA(f) has empty interior. Thus, by definition, f /∈ Op

A. �

We see that this characterization of C(X) does not hold if the
condition that p ∈ βX is replaced by the condition that p ∈ X.

Example 3.11. Let X = N, and let A(X) = C∗(X). Recall that N
is discrete, and hence, is a P -space. Furthermore, since N is discrete,
for every subset E ⊆ N, E = intE. Hence, by definition, Mp

A = Op
A

for all p ∈ X and for any intermediate ring A(X), in particular, where
A(X) = C∗(X). Clearly, however, C(N) ̸= C∗(N). Therefore, the
condition that Mp

A = Op
A for every p ∈ X does not characterize C(X)

among intermediate rings when X is a P -space.
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