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MIXED CHORD-INTEGRALS OF INDEX i AND
RADIAL BLASCHKE-MINKOWSKI

HOMOMORPHISMS

YIBIN FENG, SHANHE WU AND WEIDONG WANG

ABSTRACT. In this paper, two Brunn-Minkowski type
inequalities for mixed chord-integrals of index i are estab-
lished, which are related to the radial Blaschke-Minkowski
homomorphisms of star bodies. Moreover, two inequalities
similar to Giannopoulos, Hartzoulaki and Paouris’s inequal-
ity are also considered.

1. Introduction and main results. Let Kn be the set of convex
bodies, which are compact, convex subsets of Rn with nonempty
interiors. Sn−1 denotes the unit sphere in Rn. Denote by V (K) the
n-dimensional volume of the body K. For the standard unit ball B in
Rn, we write ωn = V (B) to denote its volume.

If K is a compact star-shaped (about the origin) set in Rn, then its
radial function

ρK = ρ(K, ·) : Rn \ {0} −→ [0,∞)

is defined by [11, 32]

ρ(K,u) = max{λ ≥ 0 : λu ∈ K}, u ∈ Sn−1.

A set K in Rn is said to be a star body about the origin if the line
segment from the origin to any point x ∈ K is contained inK andK has
a continuous and positive radial function ρK . The set of all star bodies
(about the origin) in Rn is denoted by Sn. Two star bodies K,L ∈ Sn
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are said to be dilates of each other if ρK(u)/ρL(u) is independent of
u ∈ Sn−1.

Lutwak [23] introduced the notion of mixed width-integrals of con-
vex bodies. Motivated by Lutwak’s ideas, the notion of mixed chord-
integrals of star bodies was recently defined in [20]. For K1, . . . ,Kn ∈
Sn, the mixed chord-integral, C(K1, . . . ,Kn), of K1, . . . ,Kn is defined
by

(1.1) C(K1, . . . ,Kn) =
1

n

∫
Sn−1

c(K1, u) · · · c(Kn, u) dS(u),

where dS(u) is the (n − 1)-dimensional volume element on Sn−1, and
c(K,u) denotes the half chord of K in direction u, namely, c(K,u) =
ρ(K,u)/2 + ρ(K,−u)/2.

When taking K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn = B
in (1.1), we write Ci(K) for

C(K, . . . ,K,︸ ︷︷ ︸
n−i

B · · ·B︸ ︷︷ ︸
i

),

which will be called the mixed chord-integrals of index i whose integral
representation is

(1.2) Ci(K) =
1

n

∫
Sn−1

c(K,u)n−idS(u),

The map
Ci : Sn −→ R

is continuous, positive and homogeneous of degree n − i. Note that
it is not invariant under any motion. In particular, it is not even
invariant under translation. If there exists a constant λ > 0 such that
c(K,u) = λc(L, u) for all u ∈ Sn−1, then we say that K and L have
similar chords.

Schuster [33] introduced the definition of radial Blaschke-Minkowski
homomorphisms as follows: a map

Ψ : Sn −→ Sn

is called a radial Blaschke-Minkowski homomorphism if it satisfies the
following conditions.

(a) Ψ is continuous.
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(b) For all K,L ∈ Sn,

Ψ(K+̆L) = ΨK+̃ΨL.

(c) For all K ∈ Sn and ϑ ∈ SO(n),

Ψ(ϑK) = ϑΨK.

Here, ΨK+̃ΨL is the radial Minkowski sum, see (2.5), of ΨK and ΨL,
and K+̆L denotes the radial Blaschke sum of K,L ∈ Sn, see (2.6).

Radial Blaschke-Minkowski homomorphisms are an important no-
tion in the theory of real-valued valuations. A systematic study was
initiated by Blaschke in the 1930s and continued by Hadwiger, cul-
minating in his famous classification of continuous and rigid motion
invariant valuations on convex bodies. The surveys, [26, 27] and the
book [17] are excellent sources for the classical theory of valuations.
For some of the more recent results, see [1, 2, 3, 4, 13, 14, 15, 16,
21, 22, 30, 31, 34, 35, 36].

The classical Brunn-Minkowski inequality states that, if K,L ∈ Kn,
then

V (K + L)1/n ≥ V (K)1/n + V (L)1/n,

with equality if and only if K and L are homothetic. Here, K + L
denotes the Minkowski sum of K and L, see (2.3).

The Brunn-Minkowski inequality is one of the most powerful results
in convex geometry. For extensive and beautiful surveys on it, the
interested reader is referred to [10] in which the history of the Brunn-
Minkowski inequality and some applications in other fields, such as
probability and multivariate statistics, geometric tomography, elliptic
partial differential equations, combinatorics, interacting gases, shapes
of crystals and algebraic geometry, are summarized. Among many
others, it has been key in the development of the Brunn-Minkowski
theory, see [7, 8, 18, 25, 37, 38, 39, 40, 41].

The aim of this paper is to establish the following Brunn-Minkowski
type inequalities for the mixed chord-integrals of index i associated
with the Blaschke-Minkowski homomorphisms.
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Theorem 1.1. If K,L ∈ Sn and i, j ∈ R, then, for i ≤ n− 1 ≤ j ≤ n
and i ̸= j,
(1.3)(

Ci(Ψ(K+̆L))

Cj(Ψ(K+̆L))

)1/(j−i)

≤
(
Ci(ΨK)

Cj(ΨK)

)1/(j−i)

+

(
Ci(ΨL)

Cj(ΨL)

)1/(j−i)

;

for n− 1 ≤ i ≤ n ≤ j and i ̸= j,
(1.4)(

Ci(Ψ(K+̆L))

Cj(Ψ(K+̆L))

)1/(j−i)

≥
(
Ci(ΨK)

Cj(ΨK)

)1/(j−i)

+

(
Ci(ΨL)

Cj(ΨL)

)1/(j−i)

,

with equality in every inequality if and only if ΨK and ΨL have similar
chords.

Here, Ψ (and the Ψ in the following theorems) is a radial Blaschke-
Minkowski homomorphism.

The next result of Giannopoulos, et al., [12] motivated the current
work.

If K is a convex body in Rn and L is an n-ball in Rn, then, for
k = 0, . . . , n− 1,

(1.5)
Wk(K + L)

Wk+1(K + L)
≥ Wk(K)

Wk+1(K)
+

Wk(L)

Wk+1(L)
.

Inequality (1.5) does not hold for any arbitrary pair of nonempty
compact convex sets K and L. However, (1.5) holds for arbitrary K
and L if k = n − 2 or k = n − 1, see [9]. Here, Wk(K) denotes the
quermassintegrals of K ∈ Kn, see (2.1).

We shall establish two analogous versions of the Giannopoulos,
Hartzoulaki, Paouris inequality (1.5), which are related to the radial
Blaschke-Minkowski homomorphisms for the mixed chord-integrals of
index i.

Theorem 1.2. If K and L are two star bodies in Rn, then, for k = n−2
or k = n− 1,

(1.6)
Ck(Ψ(K+̆L))

Ck+1(Ψ(K+̆L))
≤ Ck(ΨK)

Ck+1(ΨK)
+

Ck(ΨL)

Ck+1(ΨL))
.
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Theorem 1.3. Let K be a star body and L an n-ball in Rn. Then, for
all k = 0, . . . , n− 1,

(1.7)
Ck(Ψ(K+̆L))

Ck+1(Ψ(K+̆L))
≤ Ck(ΨK)

Ck+1(ΨK)
+

Ck(ΨL)

Ck+1(ΨL)
.

The proofs of Theorems 1.1–1.3 will be given in Section 3 of this
paper.

2. Preliminaries. We first collect some basic facts concerning the
Brunn-Minkowski theory. For general references, we recommend the
books by Gardner [11] and Schneider [32].

The support function

hK = h(K, ·) : Rn −→ (−∞,∞)

of a convex body K ∈ Kn is defined by

h(K,x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y.

For K ∈ Kn and i = 0, 1, . . . , n − 1, the quermassintegrals Wi(K)
of K are

(2.1) Wi(K) =
1

n

∫
Sn−1

h(K,u) dSi(K,u),

where Si(K, ·) denotes the mixed surface area measure of K. In
addition, we know that

(2.2) W0(K) =
1

n

∫
Sn−1

h(K,u) dS(K,u) = V (K).

ForK1,K2 ∈ Kn and λ1, λ2 ≥ 0 (only one of which is zero), the support
function of the Minkowski linear combination λ1K1 + λ2K2 is

(2.3) h(λ1K1 + λ2K2, ·) = λ1h(K1, ·) + λ2h(K2, ·).

The polar coordinate formula for the volume of a body K ∈ Sn is

(2.4) V (K) =
1

n

∫
Sn−1

ρ(K,u)ndS(u).
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For L1, L2 ∈ Sn and λ1, λ2 ≥ 0 (only one of which is zero), the radial
Minkowski linear combination λ1L1+̃λ2L2 is the star body defined by

(2.5) ρ(λ1L1+̃λ2L2, ·) = λ1ρ(L1, ·) + λ2ρ(L2, ·).

If λ1, λ2 ≥ 0 (only one of which is zero), then the radial Blaschke
linear combination λ1 ◦ L1+̆λ2 ◦ L2 of L1, L2 ∈ Sn is the star body
whose radial function satisfies

(2.6) ρn−1(λ1 ◦ L1+̆λ2 ◦ L2, ·) = λ1ρ
n−1(L1, ·) + λ2ρ

n−1(L2, ·).

3. Proofs of main results. In order to prove Theorems 1.1, 1.2
and 1.3, we first introduce the following lemmas.

The Beckenbach-Dresher inequality [6] is an extension of Becken-
bach’s inequality [5] which was proved by Dresher through the method
of moment-space techniques.

Lemma 3.1. (The Beckenbach-Dresher inequality). If p ≥ 1 ≥ r ≥ 0,
p ̸= r, f, g ≥ 0, and ϕ is a distribution function, then
(3.1)(∫

E(f + g)pdϕ∫
E(f + g)rdϕ

)1/(p−r)

≤
(∫

E f
pdϕ∫

E f
rdϕ

)1/(p−r)

+

(∫
E g

pdϕ∫
E g

rdϕ

)1/(p−r)

,

with equality if and only if the functions f and g are positively propor-
tional.

Here, E is a bounded measurable subset in Rn.

The inverse Beckenbach-Dresher inequality was established in [19].

Lemma 3.2. (The inverse Beckenbach-Dresher inequality). If 1 ≥ p ≥
0 ≥ r, p ̸= r, f, g ≥ 0, and ϕ is a distribution function, then
(3.2)(∫

E(f + g)pdϕ∫
E(f + g)rdϕ

)1/(p−r)

≥
(∫

E f
pdϕ∫

E f
rdϕ

)1/(p−r)

+

(∫
E g

pdϕ∫
E g

rdϕ

)1/(p−r)

,

with equality if and only if the functions f and g are positively propor-
tional.
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Lemma 3.3 ([33]).
Ψ : Sn −→ Sn

is a radial Blaschke-Minkowski homomorphism if and only if there is a
measure µ ∈ M+(S

n−1, ê) such that

(3.3) ρ(ΨK, ·) = ρn−1(K, ·) ∗ µ,

where M+(S
n−1, ê) denotes the set of nonnegative zonal measures on

Sn−1.

Proof of Theorem 1.1. Combining (2.6) with (3.3), we have

Ψ(K+̆L) = ΨK+̃ΨL.

Thus, it follows from (1.2) that, for p ≥ 1 ≥ r ≥ 0,

(3.4)

Cn−p(Ψ(K+̆L)) =
1

n

∫
Sn−1

c(ΨK+̃ΨL, u)pdS(u)

=
1

n

∫
Sn−1

(c(ΨK,u) + c(ΨL, u))pdS(u).

Similarly,

(3.5) Cn−r(Ψ(K+̆L)) =
1

n

∫
Sn−1

(c(ΨK,u) + c(ΨL, u))rdS(u).

From Lemma 3.1, (3.4) and (3.5), we get

(
Cn−p(Ψ(K+̆L))

Cn−r(Ψ(K+̆L))

)1/(p−r)

(3.6)

=

(∫
Sn−1(c(ΨK,u) + c(ΨL, u))pdS(u)∫
Sn−1(c(ΨK,u) + c(ΨL, u))rdS(u)

)1/(p−r)

≤
(∫

Sn−1 c(ΨK,u)pdS(u)∫
Sn−1 c(ΨK,u)rdS(u)

)1/(p−r)

+

(∫
Sn−1 c(ΨL, u)pdS(u)∫
Sn−1 c(ΨL, u)rdS(u)

)1/(p−r)

=

(
Cn−p(ΨK)

Cn−r(ΨK)

)1/(p−r)

+

(
Cn−p(ΨL)

Cn−r(ΨL)

)1/(p−r)

.

Suppose that p = n− i and r = n− j. From 0 ≤ r ≤ 1 ≤ p and p ̸= r,
we have that i ≤ n− 1 ≤ j ≤ n and i ̸= j. Let p = n− i and r = n− j
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in (3.6). Then, inequality (1.3) is given. Similar to the above method,
the inequality (1.4) follows from Lemma 3.2.

The equality conditions of Lemmas 3.1 and 3.2 imply that equality
holds in inequalities (1.3) and (1.4) if and only if c(ΨK,u) and c(ΨL, u)
are positively proportional, namely, ΨK and ΨL have similar chords.
Therefore, equality holds in every inequality if and only if ΨK and ΨL
have similar chords. �

If j = n in (1.3), then

Cn(Ψ(K+̆L)) = Cn(ΨK) = Cn(ΨL) =
1

n

∫
Sn−1

dS(u) = ωn

is a constant. Thus, we have the following fact.

Corollary 3.4. If K,L ∈ Sn, then, for i ≤ n− 1,

(3.7) Ci(Ψ(K+̆L))1/(n−i) ≤ Ci(ΨK)1/(n−i) + Ci(ΨL)1/(n−i),

with equality if and only if ΨK and ΨL have similar chords.

For K ∈ Sn, the intersection body of K, IK, is the origin symmetric
star body whose radial function on Sn−1 is given by, see [24],

(3.8) ρ(IK, u) =
1

n− 1

∫
Sn−1∩u⊥

ρ(K,u)n−1dλn−2(u),

where dλn−2(u) is an (n− 2)-dimensional spherical Lebesgue measure.
For u ∈ Sn−1, K ∩ u⊥ denotes the intersection of K with the subspace
u⊥ that passes through the origin and is orthogonal to u.

Since the intersection body is a special example of the radial
Blaschke-Minkowski homomorphisms, from Corollary 3.4 we obtain the
following result.

Corollary 3.5. If K,L ∈ Sn, then, for i ≤ n− 1,

(3.9) Ci(I(K+̆L))1/(n−i) ≤ Ci(IK)1/(n−i) + Ci(IL)
1/(n−i),

with equality if and only if IK and IL have similar chords.
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Lemma 3.6 ([20]). If L ∈ Sn, then, for 0 ≤ i ≤ n,

(3.10) Cn
i (L) ≤ ωi

nV (L)n−i,

with equality if and only if L is symmetric with respect to the origin.

Since the intersection body is with respect to the origin, the next
corollary follows from Lemma 3.6 and Corollary 3.5.

Corollary 3.7. If K,L ∈ Sn, then

V (I(K+̆L))1/n ≤ V (IK)1/n + V (IL)1/n,

with equality if and only if IK and IL have similar chords.

Lemma 3.8 ([20]). If K1, . . . ,Kn ∈ Sn and 1 < m ≤ n, then
(3.11)

C(K1, . . . ,Kn)
m ≤

m∏
i=1

C(K1, . . . ,Kn−m,Kn−i+1, . . . ,Kn−i+1),

with equality if and only if Kn−m+1, . . . ,Kn are all of similar chords.

Proof of Theorem 1.2. Suppose that k = n− 2, and B = (B, . . . , B)
is an (n− 2)-tuple of the unit ball B. It follows from Lemma 3.8 that,
for all t, s ≥ 0,

C(ΨK+̃sB,ΨL+̃tB,B)2 − Cn−2(ΨK+̃sB)Cn−2(ΨL+̃tB) ≤ 0.

Since mixed chord-integrals are multilinear with respect to radial
Minkowski linear combination, we obtain

s2[Cn−1(ΨL)2 − ωnCn−2(ΨL)]

+ 2st[ωnC(ΨK,ΨL,B)− Cn−1(ΨK)Cn−1(ΨL)]

+ t2[Cn−1(ΨK)2 − ωnCn−2(ΨK)] + g(s, t) ≤ 0,

where g(s, t) is a linear function of s and t. From Lemma 3.8, it follows
that

Cn−1(ΨK)2 − ωnCn−2(ΨK) ≤ 0(3.12)
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and

Cn−1(ΨL)2 − ωnCn−2(ΨL) ≤ 0.

From (3.12), we have that either

ωnC(ΨK,ΨL,B)− Cn−1(ΨK)Cn−1(ΨL) ≤ 0(3.13)

or

[ωnC(ΨK,ΨL,B)− Cn−1(ΨK)Cn−1(ΨL)]2

≤ [Cn−1(ΨK)2 − ωnCn−2(ΨK)]

× [Cn−1(ΨL)2 − ωnCn−2(ΨL)].(3.14)

From (3.12), the case (3.13) is included in (3.14). Thus, (3.14) always
holds. Now, using (3.14), it follows from the arithmetic geometric
means inequality that

ωnC(ΨK,ΨL,B)− Cn−1(ΨK)Cn−1(ΨL)

≤ [ωnCn−2(ΨK)− Cn−1(ΨK)2]1/2[ωnCn−2(ΨL)− Cn−1(ΨL)2]1/2

≤ 1

2

Cn−1(ΨL)

Cn−1(ΨK)
[ωnCn−2(ΨK)− Cn−1(ΨK)2]

+
1

2

Cn−1(ΨK)

Cn−1(ΨL)
[ωnCn−2(ΨL)− Cn−1(ΨL)2]

=
ωn

2

[
Cn−1(ΨL)

Cn−1(ΨK)
Cn−2(ΨK) +

Cn−1(ΨK)

Cn−1(ΨL)
Cn−2(ΨL)

]
− Cn−1(ΨK)Cn−1(ΨL).

Hence,

2C(ΨK,ΨL,B) ≤ Cn−1(ΨL)

Cn−1(ΨK)
Cn−2(ΨK) +

Cn−1(ΨK)

Cn−1(ΨL)
Cn−2(ΨL).

(3.15)

From the multilinearity of mixed chord-integrals and inequality (3.15),
this implies

Cn−2(ΨK+̃ΨL) = Cn−2(ΨK) + Cn−2(ΨL) + 2C(ΨK,ΨL,B)

≤ Cn−2(ΨK) + Cn−2(ΨL)
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+
Cn−1(ΨL)

Cn−1(ΨK)
Cn−2(ΨK) +

Cn−1(ΨK)

Cn−1(ΨL)
Cn−2(ΨL)

=

[
Cn−2(ΨK)

Cn−1(ΨK)
+
Cn−2(ΨL)

Cn−1(ΨL)

]
(Cn−1(ΨK)+Cn−1(ΨL)).

Thus,

Cn−2(ΨK+̃ΨL)

Cn−1(ΨK+̃ΨL)
≤ Cn−2(ΨK)

Cn−1(ΨK)
+

Cn−2(ΨL)

Cn−1(ΨL)
.

It follows from Ψ(K+̆L) = ΨK+̃ΨL that

Cn−2(Ψ(K+̆L))

Cn−1(Ψ(K+̆L))
≤ Cn−2(ΨK)

Cn−1(ΨK)
+

Cn−2(ΨL)

Cn−1(ΨL)
.

For the case k = n− 1 in (1.6), note that

Cn(Ψ(K+̆L)) = Cn(ΨK) = Cn(ΨL) = ωn.

Hence, inequality (1.6) becomes

Cn−1(Ψ(K+̆L)) ≤ Cn−1(ΨK) + Cn−1(ΨL),

which holds for every pair of star bodies. �

Proof of Theorem 1.3. Let ΨL = tB for t ≥ 0, and define, for every
k = 0, 1, . . . , n− 2,

fk(s) = Ck(ΨK+̃sB).

From the multilinearity of mixed chord-integrals, it follows that

fk(s+ ε) = Ck(ΨK+̃sB+̃εB)

= Ck(ΨK+̃sB) + ε(n− k)Ck+1(ΨK+̃sB) +O(ε2 )

= fk(s) + ε(n− k)fk+1(s) +O(ε2 ).

Thus,

f
′

k(s) = (n− k)fk+1(s).

From Lemma 3.8, it follows that, for k = 0, 1, . . . , n− 2,

Ck+1(ΨK+̃sB)2 ≤ Ck(ΨK+̃sB)Ck+2(ΨK+̃sB).

Hence,
fk+1(s)

2 ≤ fk(s)fk+2(s).
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Define

(3.16) Fk(s) =
fk(s)

fk+1(s)
, k = 0, 1, . . . , n− 2.

This implies

F
′

k(s) =
f

′

k(s)fk+1(s)− fk(s)f
′

k+1(s)

fk+1(s)2

=
fk+1(s)

2 + (n− k − 1)(fk+1(s)
2 − fk(s)fk+2(s))

fk+1(s)2

≤ 1.

Thus,

(3.17) Fk(t) ≤ Fk(0) + t.

Since ΨL = tB,

(3.18)
Ck(ΨL)

Ck+1(ΨL)
=

Ck(tB)

Ck+1(tB)
= t.

It follows from (3.16), (3.17) and (3.18) that, for k = 0, 1, . . . , n− 2,

Ck(Ψ(K+̆L))

Ck+1(Ψ(K+̆L))
≤ Ck(ΨK)

Ck+1(ΨK)
+

Ck(ΨL)

Ck+1(ΨL)
.

When k = n− 1, inequality (1.7) becomes an equality. �
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