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RATIONALLY CONNECTED VARIETIES OVER
THE MAXIMALLY UNRAMIFIED EXTENSION

OF p-ADIC FIELDS

BRADLEY DUESLER AND AMANDA KNECHT

ABSTRACT. A result of Graber, Harris and Starr shows
that a rationally connected variety defined over the function
field of a curve over the complex numbers always has a
rational point. Similarly, a separably rationally connected
variety over a finite field or the function field of a curve
over any algebraically closed field will have a rational point.
Here, we show that rationally connected varieties over the
maximally unramified extension of the p-adics usually, in
a precise sense, have rational points. This result is in
the spirit of Ax and Kochen’s result, which states that
the p-adics are usually C2 fields. The method of proof
utilizes a construction from mathematical logic called the
ultraproduct.

1. Introduction. Let X be a proper, smooth variety over a field K
and K an algebraic closure of K. A guiding principle in the study of
K-rational points on X is given by Kollár [18, IV.6.3].

Principle 1.1. If X = X ×Spec(K) Spec(K) is rationally connected,
then X should have many K-points, at least if K is nice, e.g., K is
a finite field, a function field of a curve or a sufficiently large number
field.

The term “nice” has since been replaced by many with the term
quasi-algebraically closed. A field K is said to be quasi-algebraically
closed or C1 if every homogeneous polynomial over K with degree less
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than the number of variables has a nontrivial solution in K. Some well-
known examples are finite fields, function fields in one variable over an
algebraically closed field, the field of Laurent series over an algebraically
closed field and the maximal unramified extension of p-adic fields Qnr

p .

A homogeneous polynomial in n variables over K defines a hyper-
surface in projective (n − 1)-space Pn−1. The hypersurface associ-
ated to a form with degree less than the number of variables, when
smooth, is a Fano variety; thus, it is rationally connected, see [3, 19].
Since smooth rationally connected hypersurfaces defined over quasi-
algebraically closed fields always have a K-rational point, it is natural
to ask:

Question 1.2. [26, 1.11]. Let X be a proper, smooth separably ration-
ally connected variety over a field K where K is a quasi-algebraically
closed field. Is X(K) = ∅?

Affirmative answers to this question have been given when:

(1) K is the function field of a curve defined over an algebraically
closed field of characteristic 0 [13].

(2) K is the function field of a curve defined over an algebraically
closed field of positive characteristic [8].

(3) K is a finite field [11].
(4) K = k((t)) is the field of Laurent series over an algebraically

closed field [6].
(5) If X is a smooth, proper, rational surface over a quasi-

algebraically closed field K, then X(K) ̸= ∅ [5, 21].

Colliot-Thélène and Madore have shown that there exist fields K
of cohomological dimension 1 and del Pezzo surfaces Xd of degrees
d = 2, 3, 4 such that Xd(K) = ∅ [7]. In particular, these fields are
examples of fields of cohomological dimension 1 which are not C1.
This seems to rule out a cohomological proof that separably rationally
connected varieties over C1 fields have points.

We recall some basic facts about rational connectivity. Suppose
that X is a smooth, projective variety defined over an arbitrary field K.
We say that X is separably rationally connected if there is a variety Y
and a morphism u : Y × P1 → X such that

u(2) : (Y × P1) × (Y × P1) −→ X ×X
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is dominant and smooth at the generic point. If the field K is
algebraically closed, we can simplify the definition and say that X is
separably rationally connected if there is a rational curve, called a very
free curve,

f : P1 −→ X

such that f∗TX is ample [18, IV.3.7]. Over an arbitrary field K, we say
that X is rationally connected if there is a family of proper algebraic
curves

g : U −→ Y,

whose geometric fibers are irreducible rational curves with cycle mor-
phism

u : U −→ X

such that u(2) is dominant. If the field K is uncountable and alge-
braically closed, then we say that X is rationally connected if, for very
general closed points x1, x2 ∈ X, there is a morphism

f : P1 −→ X

such that x1, x2 ∈ f(P1), [18, IV.3.6]. Over any field of characteristic 0,
the notions of rationally connected and separably rationally connected
are equivalent [18, IV.3.3].

The proof that rational connectivity and separable rational con-
nectivity are equivalent over characteristic 0 relies in some way upon
generic smoothness, which fails in characteristic p. In fact, in posi-
tive characteristic, there are smooth, projective varieties for which a
rational curve may be found through any two closed points; however,
the variety does not contain any very free curves [24]. This may be
thought of as rationally connected varieties containing many rigid ratio-
nal curves, while separably rationally connected varieties have rational
curves that freely deform. Another example of a rationally connected
but not separably rationally connected variety over a field of positive
characteristic is given by Kollár [18, V.5.19].

Due to the subtleties between rationally and separably rationally
connected over characteristic p, we had to be careful stating Ques-
tion 1.2. However, in this paper, we consider varieties defined over fields
of characteristic 0 such that the terms are interchangeable. The ques-
tion considered in this article is whether or not a smooth, projective,
rationally connected variety over the maximal unramified extension of
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the p-adics Qnr
p has a rational point. Lang’s theorem asserts that this

is true for Fano hypersurfaces [20]. Here, we prove a partial result.

Theorem 1.3. Fix a numerical polynomial P . There is a finite set of
exceptional primes e(P ), depending only upon P such that, if X is a
smooth, projective, rationally connected variety defined over Qnr

p with
Hilbert polynomial P , then X(Qnr

p ) ̸= ∅ when p /∈ e(P ).

A polynomial P (z) ∈ Q(z) is called a numerical polynomial if P (n)
is an integer for all sufficiently large integers n.

This theorem is similar to Ax and Kochen’s theorem [2] that the
p-adic number fields are almost C2. Artin conjectured that the p-adic
fields Qp are C2. In general, a Ci field K is one for which any form
in K[x1, . . . , xn]d with n > di has a nontrivial 0. In [25], Terjanian
found a counterexample to Artin’s conjecture, see for instance, [23].
However, using methods of logic, Ax and Kochen were able to show
that Qp is almost C2 in the following sense.

Theorem 1.4. [2]. Fix an integer d > 0. Then, there exist a
finite number of primes p0, . . . , pm, such that, for all forms f ∈
Qp[x1, . . . , xn]d with n > d2 and p ̸= p0, . . . , pm, f represents 0 over Qp.

Their method of proof uses mathematical logic to make precise the
analogy that Qp is like Fp((t)). Then, using the fact that the field
Fp((t)) is C2 [14] is sufficient for Ax and Kochen to conclude the above
theorem.

We similarly make an analogy between the asymptotic properties of
Qnr

p when p goes to infinity and the properties of C((t)), the field of
Laurent expansions over the complex numbers. Then, we use the fact
that every rationally connected variety over C((t)) contains a C((t))-
point [6].

It should be noted that, in a recent paper, Denef proved Theorem 1.4
using only algebraic geometry [9].

2. Model theory and algebraic geometry. The main tool from
model theory we will use is the ultraproduct. A more thorough intro-
duction to ultrafilters and ultraproducts is given in [17].
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Definition 2.1. Let S be a set, and let Σ be a collection of non-empty
subsets of S. Then Σ is called a non-principal filter if the following
hold:

(1) S1, S2 ∈ Σ implies S1 ∩ S2 ∈ Σ;
(2) S1 ∈ Σ and S2 ⊃ S1 imply S2 ∈ Σ;
(3) for each s ∈ S, there is a set S1 ∈ Σ such that s /∈ S1.

Σ is called a non-principal ultrafilter if it is maximal among the class
of all non-principal filters on S, or equivalently,

(i) S1 /∈ Σ implies S − S1 ∈ Σ.

Conditions (1), (2) and (i) define an ultrafilter.

A simple, but important, property of ultrafilters to keep in mind is
that, if S is the disjoint union of subsets S1, . . . , Sn, then precisely one
of these subsets is in Σ. This observation follows from properties (1)
and (i), namely, at least one of the Si is in Σ by property (i). Moreover,
two disjoint subsets cannot both be in Σ since then so would their
intersection; however, Σ consists only of nonempty subsets of S.

Given any subset S0 ⊂ S, it will be useful to know whether we can
find a non-principal ultrafilter on S containing S0. Certainly, if S0 is a
finite set, then properties (3) and (i) of Definition 2.1 will prevent us
from finding a non-principal ultrafilter containing S0. However, this is
the only obstruction as the next lemma asserts.

Lemma 2.2. Given any infinite subset S0 ⊂ S, there exists a non-
principal ultrafilter containing S0.

Proof. Let Σ consist of all of the subsets of S that contain all but
a finite number of points in S0. It is easy to verify that Σ is a non-
principal filter on S containing S0. The desired non-principal ultrafilter
is any maximal filter containing Σ. �

Our usage of ultrafilters will be for an auxiliary construction called
the ultraproduct. In particular, given a collection of fields indexed by
a set S, and an ultrafilter Σ on S, we construct a new field via the
ultraproduct. We use a similar construction for modules.
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Definition 2.3. Given an ultrafilter Σ on S and a collection of rings
{Ri}i∈S , we can form a new ring denoted∏

i∈S

Ri/Σ,

defined by componentwise addition and multiplication under the equiv-
alence condition that

a, b ∈
∏
i∈S

Ri

are equivalent if they agree on a set of indices in Σ. This new ring is
called the ultraproduct of the Ris with respect to Σ. The same definition
may be used for groups, modules, etc.

A nice aspect of ultraproducts is that an ultraproduct of fields
is itself a field. Moreover, statements in the language of fields can
be transferred between the ultraproduct and its components, which
leads to the fundamental property of ultraproducts. Let {kp}p∈S be
a collection of fields. Then  Loš’s theorem [12, 7.7.1] applied to the
particular cases of an ultraproduct of fields can be stated as:

Theorem 2.4. A first-order formula in the language of rings is true
in the ultraproduct of fields ∏

p∈S

kp/Σ,

if and only if the set of indices p such that the formula is true in the
field kp is a member of Σ.

Intuitively, a first-order formula is one that quantifies only over
elements of the field, not over subsets, sets of subsets, etc. In order
to get a feeling for why  Loš’s theorem is true, even for structures more
general than fields, consider the next lemma.

Lemma 2.5. Let N be a positive integer. For each i ∈ S, let Mi be a
free module of rank less than N over a ring Ri. Then, an ultraproduct
of the Mis is a free module of rank less than N over the corresponding
ultraproduct of the Ris.
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Proof. First, assume that the rank of the Mis are all m > 0. Then,
for any ultrafilter Σ on S,

M :=
∏
i∈S

Mi/Σ

will be a free module of rank m over

R :=
∏
i∈S

Ri/Σ.

In order to see this, let ei1, . . . , eim be an Ri basis for Mi. Then, note
that M has basis (ei1)i∈S , . . . , (eim)i∈S over R.

Now, generally, consider the subsets Sk ∈ S consisting of those
i ∈ S such that the rank of Mi is k. Then, S is the disjoint union
of S1, . . . , SN . By the remarks on the definition of ultrafilter, there is
only one such subset contained in Σ, say Sm ∈ Σ. It follows that M
has rank m over R. �

The success of Lemma 2.5 is based upon the boundedness of the
statement (that the rank is less than N). The similar statement that
the ultraproduct of finite rank free modules is of finite rank is actually
false (say, if the rank of the free modules keeps increasing).  Loš’s
theorem does not apply to such a statement since it is not a first-order
statement.

Next, we develop some basic algebraic geometry over a general ultra-
product of fields

F =
∏
i∈S

Fi/Σ

of characteristic 0. Suppose that we are given a scheme X of finite type
over F . There is a natural process for obtaining schemes Xi of finite
type over Fi, and for almost every i ∈ S, Xi is nicely related to X.
However, the Xi are not unique.

We first assume that X is an affine scheme corresponding to the
F -algebra

F [x0, . . . , xn]/I(X).

Suppose that f1, . . . , fk are generators for I(X). We may write each
generator as

fj =
∑

aj,Ix
I , I ∈ Nn+1.
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Let
(aij,I)i∈S ∈

∏
i∈S

Fi

be a representative for aj,I . Setting

f i
j =

∑
aij,Ix

I ,

we define Xi as the affine scheme associated to the ideal generated by
the f i

j . These schemes are not unique as they depend on the choice of
representatives for the aj,I .

We can perform a similar construction in reverse, namely, given
schemes Xi defined over Fi for each i ∈ S, we can define their
ultraproduct

X =
∏
i∈S

Xi/Σ

by taking the f i
j and lifting them to f ∈ F [x0, . . . , xn]. This new object

is not necessarily pretty, for example, when the degrees of the f i
j are

not bounded. However, we will see that, under certain circumstances,
the ultraproduct is a scheme of finite type, and other nice properties
of the Xis will be inherited by X.

Let X ⊆ Pn be a projective variety defined over a field F with
homogeneous ideal J(X), and let S(X) = F [x0, . . . , xn]/J(X) denote
its homogeneous coordinate ring. For each integer ℓ, we define the
Hilbert function φX of X by

φX(ℓ) = dimF S(X)ℓ.

A theorem of Hilbert and Serre ([15, I.7.5]) states that there exists a
unique numerical polynomial P (z) ∈ Q[z] such that φX(ℓ) = P (ℓ) for
all l ≫ 0. By definition, the degree of the Hilbert polynomial is the
dimension of the variety X. Chardin and Moreno-Soćıas characterize,
in terms of their coefficients, which numerical polynomials are Hilbert
polynomials of some projective scheme [4].

Lemma 2.6. Given a collection of projective varieties Xi ⊂ Pn
Fi
, all

with Hilbert polynomial P , the ultraproduct X is a projective variety in
Pn
F with Hilbert polynomial P .
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Proof. Let Ji ⊂ Fi[x0, . . . , xn] be the homogeneous ideal of Xi ⊂
Pn
Fi

. For each degree d > 0, consider the Fi-vector space Ji,d of the
homogeneous polynomials of degree d in Ji.

Now, define

Jd :=
∏
i∈S

Ji,d/Σ.

A property of the Hilbert polynomial ensures that, for sufficiently
large d, the rank of Ji,d is the same for each i ∈ S, i.e., the Hilbert
functions of the Xi are equal for sufficiently large d [18, I.1.5]. Then,
the proof of Lemma 2.5 shows that, for d ≫ 0, the rank of Jd equals
the rank of Ji,d. This yields a homogeneous ideal

J :=
⊕
d>0

Jd ⊂ F [x0, . . . , xn].

The corresponding projective variety X, denoted by

X :=
∏
i∈S

Xi/Σ,

has Hilbert polynomial P . �

Other desirable results on properties of varieties preserved under the
ultraproduct may be found in [1, 22].

3. Proof of the main theorem. Now that we have established
some basic knowledge of ultraproducts, we can prove the main theorem
of this paper, Theorem 1.3, in a manner similar to that of Ax and
Kochen’s proof of Theorem 1.4. First, we must recall a theorem of Ax,
Kochen and Ers̆ov [2, 10].

Theorem 3.1. [2, 10]. Let K and K ′ be two Henselian-valued fields
of residual characteristic 0. Assume that their residue fields k, k′ and
their value groups Γ, Γ′ are elementary equivalent, that is, they have
the same set of true sentences in the language of rings, respectively,
ordered abelian groups. Then, K and K ′ are elementary equivalent,
that is, they satisfy the same set of formulae in the language of valued
fields.
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Proof of Theorem 1.3. Fix a numerical polynomial P . Let Qnr
p de-

note the maximally unramified extension of the p-adics, and let S be
the set of all primes. Suppose, by way of contradiction, that there is
an infinite subset of primes e(P ) ⊂ S such that, for each p ∈ e(P ),
there is a smooth, projective, rationally connected variety Xp ∈ Pn

defined over Qnr
p having Hilbert polynomial P and X(Qnr

p ) = ∅. Now,
by Lemma 2.2 there is a non-principal ultrafilter Σ containing e(P ),
and we can define the non-principal ultraproduct

K =
∏
p∈S

Qnr
p /Σ.

Both K and C((t)) are Henselian-valued fields of characteristic 0. The
residue field of C((t)) is simply C, and thus, algebraically closed of
characteristic 0. The residue field of K is a non-principal ultraproduct
of the algebraic closures of the finite fields Fp and is known to be
algebraically closed of characteristic 0 [2, Lemma 4]. Thus, the residue
fields of K and C((t)) are elementary equivalent. Note that the lemma
of Ax and Kochen requires the ultrafilter to be non-principal, which is
the reason e(P ) must be infinite. K has value group a non-principal
ultraproduct of the integers, otherwise known as an ultrapower of Z,
and hence, is elementary equivalent to Z, the value group of C((t)).
Thus, by Theorem 3.1, K and C((t)) are elementary equivalent.

For the numerical polynomial P fixed above, consider all varieties
X ⊂ Pn

k with Hilbert polynomial P . It is possible to choose a uniform
M ≫ 0 such that the Hilbert function φX(M) is equal to P (M) for
all varieties with Hilbert polynomial P [16, 12.47]. Let Gr denote
the Grassmannian of codimension-P (M) subspaces of the space of
polynomials of degree M in n + 1 variables:

Gr := Grass

((
n + M

M

)
− P (M), k[x0, . . . , xn]M

)
.

Let J(X)M ⊂ k[x0, . . . , xn]M denote the degree M polynomials van-
ishing on X. Then, J(X)M defines a point in the Grassmannian Gr,
and the set of all projective varieties with Hilbert polynomial P is
parameterized by a projective variety known as the Hilbert scheme,
HilbP ⊂ Gr. Let g denote the smooth morphism that injects HilbP
into Gr, g : HilbP ↩→ Gr. Note that, since P is a numerical polynomial,
everything here is defined over Q. Over any field L of characteristic 0,
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every projective L-variety X with Hilbert polynomial P is realized as
a fiber gb of g above a point b = J(X)M ∈ Gr. Thus, X has an L-point
if and only if gb has an L-point.

If the fiber gb is rationally connected for some b ∈ Gr, then there is
an open neighborhood b ∈ U ⊂ Gr such that the fiber gu is rationally
connected if u ∈ U [18, IV.3.11]. Thus, over Q, the set Z of points
b ∈ Gr such that the fiber gb is rationally connected is an open subset of
Gr. Since Gr is a variety and Z is an open subset of Gr, over any field L
of characteristic 0, Z(L) is definable in the ring language. Furthermore,
that definition is actually the same one given over Q. Also, for any
field L of characteristic 0 and any rationally connected variety X over L
with Hilbert polynomial P , there is an L-point z ∈ Z(L) such that
X = gz and

X(L) ̸= ∅ ⇐⇒ gz(L) ̸= ∅.

Now, let HL be the set of points b ∈ Gr(L) such that the fiber over b
is rationally connected and contains an L-point:

HL = {b ∈ Gr(L) : b ∈ Z(L), gb(L) ̸= ∅}.

Then, HL ⊂ Z(L) is a definable subset of Gr(L) characterized by the
following formula over Q with an existential quantifier:

b ∈ HL if and only if the formula

b ∈ Z and there exists an x ∈ HilbP such that gP (x) = b

is true in the field L. This formula does not depend on the field L, but
only upon the polynomial P .

The result of Colliot-Thélène [6] C((t)) tells us that the formula

b ∈ Z and there exists an x ∈ AP such that gP (x) = b

is true over C((t)). Then, by elementary equivalence, it holds over the
ultraproduct K. However,  Loš’s theorem tells us that this statement is
false over K by the manner in which our non-principal ultrafilter Σ was
constructed. Thus, we arrive at our contradiction, and we have shown
that the set of primes e(P ) ⊂ S such that, for each p ∈ e(P ), there is a
smooth, projective, rationally connected variety Xp ∈ Pn defined over
Qnr

p having Hilbert polynomial P and X(Qnr
p ) = ∅, is finite. �
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