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ON n-TRIVIAL EXTENSIONS OF RINGS

D.D. ANDERSON, DRISS BENNIS,
BRAHIM FAHID AND ABDULAZIZ SHAIEA

ABSTRACT. The notion of trivial extension of a ring
by a module has been extensively studied and used in
ring theory as well as in various other areas of research
such as cohomology theory, representation theory, category
theory and homological algebra. In this paper, we extend
this classical ring construction by associating a ring to a
ring R and a family M = (Mi)

n
i=1 of n R-modules for a

given integer n ≥ 1. We call this new ring construction an
n-trivial extension of R by M . In particular, the classical
trivial extension will merely be the 1-trivial extension. Thus,
we generalize several known results on the classical trivial
extension to the setting of n-trivial extensions, and we
give some new ones. Various ring-theoretic constructions and
properties of n-trivial extensions are studied, and a detailed
investigation of the graded aspect of n-trivial extensions is
also given. We finish the paper with an investigation of
various divisibility properties of n-trivial extensions. In this
context, several open questions arise.

1. Introduction. Except for a brief excursion in Section 2, all
rings considered in this paper are assumed to be commutative with
an identity; in particular, R denotes such a ring, and all modules
are assumed to be unitary left modules. Of course, left-modules over
a commutative ring R are actually R-bimodules with mr := rm.
Let Z (respectively, N) denotes the set of integers (respectively, natural
numbers). The set N ∪ {0} will be denoted by N0. The ring Z/nZ of
the residues modulo an integer n ∈ N will be noted by Zn.

Recall that the trivial extension of R by an R-module M is the
ring denoted by R ⋉ M whose underlying additive group is R ⊕ M
with multiplication given by (r,m)(r′,m′) = (rr′, rm′ + mr′). Since
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its introduction by Nagata in [39], the trivial extension of rings (also
called idealization since it reduces questions about modules to ideals)
has been used by many authors and in various contexts in order to
produce examples of rings satisfying preassigned conditions (see, for
instance, [9, 37]).

It is known that the trivial extension R⋉M is related to the following
two ring constructions (see, for instance, [9, Section 2]):

Generalized triangular matrix ring. Let R := (Ri)
n
i=1 be a

family of rings and M := (Mi,j)1≤i<j≤n a family of modules such
that, for each 1 ≤ i < j ≤ n, Mi,j is an (Ri, Rj)-bimodule. Assume
that, for every 1 ≤ i < j < k ≤ n, there exists an (Ri, Rk)-bimodule
homomorphism

Mi,j ⊗Rj Mj,k −→ Mi,k,

denoted multiplicatively such that (mi,jmj,k)mk,l = mi,j(mj,kmk,l) for
every (mi,j ,mj,k,mk,l) ∈ Mi,j ×Mj,k ×Mk,l. Then, the set

R1 M1,2 · · · · · · M1,n−1 M1,n

0 R2 · · · · · · M2,n−1 M2,n

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

0 0 · · · 0 Rn−1 Mn−1,n
0 0 · · · 0 0 Rn


consisting of matrices

m1,1 m1,2 · · · · · · m1,n−1 m1,n

0 m2,2 · · · · · · m2,n−1 m2,n

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

0 0 · · · 0 mn−1,n−1 mn−1,n
0 0 · · · 0 0 mn,n


mi,i ∈ Ri and mi,j ∈ Mi,j , 1 ≤ i < j ≤ n,

with the usual matrix addition and multiplication is a ring called a
generalized (or formal) triangular matrix ring and denoted also by
Tn(R,M ) (see [16, 17]). Then the trivial extension R⋉M is naturally
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isomorphic to the subring of (R M
0 R ) consisting of matrices ( r m

0 r ) where
r ∈ R and m ∈ M (note that, since R is commutative, rm = mr).

Symmetric algebra. Recall that the symmetric algebra associated
to M is the graded ring quotient SR(M) := TR(M)/H, where TR(M)
is the graded tensor R-algebra with Tn

R(M) = M⊗n and H is the
homogeneous ideal of TR(M) generated by {m⊗n−n⊗m | m, n ∈ M}.
Note that

SR(M) =
∞⊕

n=0

Sn
R(M)

is a graded R-algebra with S0
R(M) = R and S1

R(M) = M and, in
general, Si

R(M) is the image of T i
R(M) in SR(M). Then, R⋉M and

SR(M)/
⊕
n≥2

Sn
R(M)

are naturally isomorphic as graded R-algebras.

It is also worth recalling that, when M is a free R-module with
a basis B, the trivial extension R ⋉ M is also naturally isomorphic
to R[{Xb}b∈B ]/({Xb}b∈B)2, where {Xb}b∈B is a set of indeterminates
over R. In particular, R⋉R ∼= R[X]/(X2).

Inspired by the above facts, we introduce an extension of the classical
trivial extension of rings to extensions associated to n modules for any
integer n ≥ 1.

In the literature, particular cases of such extensions have been used
to solve some open questions. In [10], the authors introduced an
extension for n = 2, and they used it to give a counterexample of
the so-called Faith conjecture. Also, in the case n = 2, an extension
is introduced in [31] to give an example of a ring which has a non-
self-injective injective hull with compatible multiplication. This gave
a negative answer to a question posed by Osofsky. In [42], the
author introduced and studied a particular extension for the case
n = 3 to obtain a Galois covering for the enveloping algebras of
trivial extension algebras of triangular algebras. In addition, there
is a master’s thesis [38] which introduced and studied factorization
properties of an extension of the trivial extension of a ring by itself (i.e.,
self-idealization). In this paper, we introduce the following extension
ring construction for an arbitrary integer n ≥ 1.
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Let M = (Mi)
n
i=1 be a family of R-modules and φ = {φi,j} i+j≤n

1≤i,j≤n−1

a family of bilinear maps such that each φi,j is written multiplicatively:

φi,j : Mi ×Mj −→ Mi+j

(mi,mj) 7−→ φi,j(mi,mj) := mimj .

In particular, if all Mi are submodules of the same R-algebra L, then
the bilinear maps, if they are unspecified, are merely the multiplication
of L (see the examples in Section 2). The n-φ-trivial extension of R by
M is the set denoted by R⋉φM1⋉ · · ·⋉Mn, or simply R⋉φM , whose
underlying additive group is R ⊕ M1 ⊕ · · · ⊕ Mn with multiplication
given by

(m0, . . . ,mn)(m
′
0, . . . ,m

′
n) =

( ∑
j+k=i

mjm
′
k

)
for all (mi), (m

′
i) ∈ R⋉φ M . We could also define the product

φi,j : Mi ×Mj −→ Mi+j

as an R-bimodule homomorphism

φ̃i,j : Mi ⊗Mj −→ Mi+j ,

see Section 2 for details. For the sake of simplicity, it is convenient to
set M0 = R. In what follows, if no ambiguity arises, the n-φ-trivial
extension of R by M will simply be called an n-trivial extension of R
by M and denoted by R⋉n M1 ⋉ · · ·⋉Mn or R⋉n M .

While, in general, R ⋉n M need not be a commutative ring, in
Section 2, we give conditions on the maps φi,j that force R ⋉n M
to be a ring. Unless otherwise stated, we assume the maps φi,j have
been defined so that R ⋉n M is a commutative associative ring with
identity. Thus, R ⋉n M is a commutative ring with the identity (1, 0,
. . . , 0). Moreover, R⋉nM is naturally isomorphic to the subring of the
generalized triangular matrix ring

R M1 M2 · · · · · · Mn

0 R M1 · · · Mn−1
...

. . .
. . .

. . .
...

0 0 0 · · · M1

0 0 0 · · · R
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consisting of matrices1
r m1 m2 · · · · · · mn

0 r m1 · · · mn−1
...

. . .
. . .

. . .
...

0 0 0 · · · m1

0 0 0 · · · r

 ,

where r ∈ R and mi ∈ Mi for every i ∈ {1, . . . , n}.
When, for every k ∈ {1, . . . , n}, Mk = Sk

R(M1), the ring R ⋉n M is
naturally isomorphic to

SR(M1)/
⊕

k≥n+1

Sk
R(M1).

In particular, if M1 = F is a free R-module with a basis B, then
the n-trivial extension R ⋉ F ⋉ S2

R(F )⋉ · · ·⋉ Sn
R(F ) is also naturally

isomorphic to R[{Xb}b∈B ]/({Xb}b∈B)n+1, where {Xb}b∈B is a set of
indeterminates over R, namely, when F ∼= R,

R⋉n R⋉ · · ·⋉R ∼= R[X]/(Xn+1).

In addition, in [13], the trivial extension of a ring R by an ideal I is
connected to the Rees algebra R+ associated to R and I, which is pre-
cisely the following graded subring of R[t], where t is an indeterminate
over R:

R+ :=
⊕
n≥0

Intn.

Using [13, Lemma 1.2 and Proposition 1.3], we obtain, similar to [13,
Proposition 1.4], the following diagram of extensions and isomorphisms
of rings:

R � � // R+/(I
n+1tn+1) �

� //

∼=
��

R[t]/(tn+1)

∼=
��

R � � // R⋉n I ⋉ I2 ⋉ · · ·⋉ In �
� // R⋉n R⋉ · · ·⋉R.

In this paper, we study some properties of the ring R⋉n M , extending
well-known results on the classical trivial extension of rings. The paper
is organized as follows.
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In Section 2, we carefully define the n-trivial extension R ⋉n M ,
giving conditions on the maps φi,j so that R ⋉n M is actually a com-
mutative ring with identity. In particular, we investigate the situation
in greater generality, where R is not assumed to be commutative and
Mi is an R-bimodule for i = 1, . . . , n. We conclude the section with a
number of examples.

In Section 3, we investigate some ring-theoretic constructions of
n-trivial extensions. We begin by showing that R ⋉n M may be
considered as a graded ring for three different grading monoids, in
particular, R ⋉n M may be considered as N0-graded ring or Zn+1-
graded ring. We then show how R ⋉n M behaves with respect to
polynomials (Corollary 3.4) and power series (Theorem 3.5), extensions
and localization (Theorem 3.7). In Theorem 3.9, we show that the n-
trivial extension of a finite direct product of rings is a finite direct
product of n-trivial extensions. We finish with two results on inverse
limits and direct limits of n-trivial extensions (Theorems 3.10 and 3.11).

In Section 4, we present some natural ring homomorphisms related
to n-trivial extensions (see Proposition 4.3). Also, we study some basic
properties of R⋉nM , namely, we extend the characterization of prime
and maximal ideals of the classical trivial extension to R ⋉n M (see
Theorem 4.7). As a consequence, the nilradical and the Jacobson
radical are determined (see Corollary 4.8). Finally, as an extension of
[9, Theorems 3.5 and 3.7], the set of zero divisors, the set of units
and the set of idempotents of R ⋉n M are also characterized (see
Proposition 4.9).

In Section 5, we investigate the graded aspect of n-trivial extensions.
The motivation behind this study is that, in the classical case (where
n = 1), the study of trivial extensions as Z2-graded rings has led
to some interesting properties (see [9]) and has shed more light on
the structure of ideals of the trivial extensions. In Section 5, we
extend some of the results given in [9], and we provide some new
ones, namely, among other results, we characterize the homogeneous
ideals of R ⋉n M (Theorem 5.1) and we investigate some of their
properties (Propositions 5.2 and 5.3). We devote the remainder of
Section 5 to investigating the question “when is every ideal of a given
class I of ideals of R ⋉n M homogeneous?” (see the discussion after
Proposition 5.3). In this context, various results and examples are
established.
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Section 6 is devoted to some classical ring-theoretic properties,
namely, we characterize when R ⋉n M is, respectively, Noetherian,
Artinian, (Manis) valuation, Prüfer, chained, arithmetical, a π-ring, a
generalized ZPI-ring or a PIR. We conclude the section with a remark
on a question posed in [2] concerning m-Boolean rings.

Finally, in Section 7, we study divisibility properties of n-trivial
extensions. We are mainly interested in showing how the results could
be extended on the classical trivial extension presented in [9, Section 5]
to the context of n-trivial extensions.

2. The general n-trivial extension construction and some ex-
amples. The purpose of this section is to formally define the n-trivial
extension (n ≥ 1) R⋉n M1 ⋉ · · ·⋉Mn, where R is a commutative ring
with identity and each Mi is an R-module, and to give some interest-
ing examples of n-trivial extensions. However, to better understand
the construction and the underlying multiplication maps

φi,j : Mi ×Mj −→ Mi+j ,

we begin in the more general context of R being an associative ring
(not necessarily commutative) with identity and the Mi’s being R-
bimodules. In addition, since there is a significant difference in the
cases n = 1, n = 2 and n ≥ 3, we handle these three cases separately.

LetR be an associative ring with identity andM1, . . . ,Mn unitaryR-
bimodules (in the case where R is commutative, we will always assume
that rm = mr unless stated otherwise).

Case n = 1. R ⋉1 M1 = R ⋉ M1 = R ⊕ M1 is merely the trivial
extension with multiplication (r,m)(r′,m′) = (rr′, rm′ + mr′). Here,
R⋉1 M1 is an associative ring with identity where the associative and
distributive laws follow from the ring and R-bimodule axioms. For R
commutative, we write (r,m)(r′,m′) = (rr′, rm′ + r′m) as r′m = mr′.
Now, R⋉1 M1 is an N0-graded or a Z2-graded ring isomorphic to

TR(M1)/
⊕
i≥2

T i
R(M1) or SR(M1)/

⊕
i≥2

Si
R(M1)

and to the matrix ring representation mentioned in the introduction.
Note that we could drop the assumption that R has an identity and
M1 is unitary. We then obtain that R ⋉1 M1 has an identity, namely,
(1, 0), if and only if R has an identity and M1 is unitary.
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Case n = 2. Here, R⋉2 M1 ⋉M2 = R⊕M1 ⊕M2 with coordinate-
wise addition and multiplication

(r,m1,m2)(r
′,m′1,m

′
2) = (rr′, rm′1 +m1r

′, rm′2 +m1m
′
1 +m2r

′)

where m1m
′
1 := φ1,1(m1,m

′
1) with the map

φ1,1 : M1 ×M1 −→ M2.

We readily see that R ⋉2 M1 ⋉ M2 satisfying the distributive laws is
equivalent to φ1,1 being additive in each coordinate. Since R is assumed
to be associative and M1 and M2 to be R-bimodules, R⋉2 M1 ⋉M2 is
associative precisely when

(rm1)m
′
1 = r(m1m

′
1),

(m1r)m
′
1 = m1(rm

′
1)

and

(m1m
′
1)r = m1(m

′
1r)

for r ∈ R and m1,m
′
1 ∈ M1. This is equivalent to

φ1,1(rm1,m
′
1) = rφ1,1(m1,m

′
1),

φ1,1(m1r,m
′
1) = φ1,1(m1, rm

′
1)

and

φ1,1(m1,m
′
1)r = φ1,1(m1,m

′
1r).

For R-bimodules M , N and L, we call a function

f : M ×N −→ L

a pre-product map if it is additive in each coordinate, is middle linear
(i.e., f(mr,m′) = f(m, rm′)) and is left and right homogeneous (i.e.,
f(rm,m′) = rf(m,m′) and f(m,m′r) = f(m,m′)r). Note that a pre-
product map f : M ×N → L uniquely corresponds to an R-bimodule
homomorphism

f̃ : M ⊗R N −→ L

with f(m,n) = f̃(m⊗ n). Thus, a pre-product map

φ1,1 : M1 ×M1 −→ M2
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corresponds to an R-bimodule homomorphism

φ̃1,1 : M1 ⊗R M1 −→ M2.

Hence, we may equivalently define m1m
′
1 := φ̃1,1(m1 ⊗m′1).

Therefore, R ⋉2 M1 ⋉ M2 is an (associative) ring with identity
precisely when φ1,1 is a pre-product map or φ̃1,1 : M1 ⊗R M1 → M2

is an R-bimodule homomorphism. We can identify R ⋉2 M1 ⋉ M2

with the matrix representation given in the introduction: (r,m1,m2)
is identified with r m1 m2

0 r m1

0 0 r

 .

However, the relationship with a tensor or symmetric algebra is more
difficult. When R ⋉2 M1 ⋉M2 is an associative ring, we can define a
ring epimorphism

TR(M1 ⊕M2)/ ⊕
i≥3

T i
R(M1 ⊕M2) −→ R⋉2 M1 ⋉M2

by

(
r, (m1,m2),

l∑
i=1

(m1,i,m2,i)⊗ (m′1,i,m
′
2,i)

)
+ ⊕

i≥3
T i
R(M1 ⊕M2)

7−→
(
r,m1,m2 +

l∑
i=1

m1,im
′
1,i

)
.

For the commutative case, we get a similar ring epimorphism

SR(M1 ⊕M2)/ ⊕
i≥3

Si
R(M1 ⊕M2) −→ R⋉2 M1 ⋉M2.

In order for R⋉2M1⋉M2 to be a commutative ring with identity, R
must be commutative with identity and m1m

′
1 = m′1m1 for m1,m

′
1 ∈

M1, or φ1,1(m1,m
′
1) = φ1,1(m

′
1,m1). Thus, for R commutative,

R⋉2 M1 ⋉M2 is a commutative ring if and only if φ1,1 is a symmetric
R-bilinear map, or equivalently, φ̃1,1(m1 ⊗m′1) = φ̃1,1(m

′
1 ⊗m1).

Case n ≥ 3. Here again, R is an associative ring with identity and
M1, . . . ,Mn, n ≥ 3, are R-bimodules. Thus, R ⋉n M1 ⋉ · · · ⋉ Mn =
R ⊕ M1 ⊕ · · · ⊕ Mn with coordinate-wise addition. Assume that we
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have pre-product maps

φi,j : Mi ×Mj −→ Mi+j ,

or equivalently, the corresponding R-bimodule homomorphism

φ̃i,j : Mi ⊗R Mj −→ Mi+j

for 1 ≤ i, j ≤ n− 1 with i+ j ≤ n. As usual, set

mimj := φi,j(mi,mj) = φ̃i,j(mi ⊗mj)

for mi ∈ Mi and mj ∈ Mj . Setting R = M0, we can write the mul-
tiplication in R ⋉n M1 ⋉ · · · ⋉ Mn as (m0, . . . ,mn)(m

′
0, . . . ,m

′
n) =

(m′′0 , . . . ,m
′′
n) where

m′′i =
∑

j+k=i

mjm
′
k.

Then, R⋉nM1⋉ · · ·⋉Mn satisfies the distributive laws since the maps
φi,j are additive in each coordinate. Hence, R⋉nM1⋉ · · ·⋉Mn is a not
necessarily associative ring with identity (1, 0, . . . , 0) (see Example 2.2
for a case where R ⋉n M1 ⋉ · · · ⋉ Mn is not associative). Note
that R ⋉n M1 ⋉ · · · ⋉ Mn is associative precisely when (mimj)mk =
mi(mjmk) for mi ∈ Mi, mj ∈ Mj and mk ∈ Mk with 1 ≤ i, j, k ≤ n−2
and i+ j + k ≤ n. In terms of the pre-product maps, this means that
φi+j,k(φi,j(mi,mj),mk) = φi,j+k(mi, φj,k(mj ,mk)), or equivalently,

φ̃i+j,k ◦ (φ̃i,j ⊗ idMk
) = φ̃i,j+k ◦ (idMi ⊗φ̃j,k)

where idMl
is the identity map on Ml for l ∈ {1, . . . , n}, in other words,

the diagram below commutes:

Mi ⊗Mj ⊗Mk

idMi
⊗φ̃j,k //

φ̃i,j⊗idMk

��

Mi ⊗Mj+k

φ̃i,j+k

��
Mi+j ⊗Mk

φ̃i+j,k

// Mi+j+k

We call a family {φi,j} i+j≤n
1≤i,j≤n−1

(or {φ̃i,j} i+j≤n
1≤i,j≤n−1

) of pre-product maps

satisfying the previously stated associativity condition a family of prod-
uct maps. Thus, when {φi,j} i+j≤n

1≤i,j≤n−1

(or equivalently {φ̃i,j} i+j≤n
1≤i,j≤n−1

)

is a family of product maps, R ⋉n M1 ⋉ · · · ⋉ Mn is an associative
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ring with identity. Further, for R ⋉n M1 ⋉ · · · ⋉ Mn to be a commu-
tative ring with identity, R must be commutative with identity and
φi,j(mi,mj) = φj,i(mj ,mi) for every 1 ≤ i, j ≤ n − 1 with i + j ≤ n,
or equivalently, φ̃i,j = φ̃j,i ◦ τi,j where

τi,j : Mi ⊗Mj −→ Mj ⊗Mi

is the “flip” map defined by τi,j(mi ⊗ mj) = mj ⊗ mi for every
mi ⊗mj ∈ Mi ⊗Mj , in other words, the diagram below commutes:

Mi ⊗Mj

φ̃i,j //

τi,j

��

Mi+j

Mj ⊗Mi

φ̃j,i

99ttttttttt

.

In this case, the family {φi,j} i+j≤n
1≤i,j≤n−1

(or {φ̃i,j} i+j≤n
1≤i,j≤n−1

) will be called

a family of commutative product maps. Thus, when R is commutative
and {φi,j} i+j≤n

1≤i,j≤n−1

(or equivalently {φ̃i,j} i+j≤n
1≤i,j≤n−1

) is a family of com-

mutative product maps, R ⋉n M1 ⋉ · · · ⋉ Mn is a commutative ring
with identity.

As in the case n = 2, when R ⋉n M1 ⋉ · · ·⋉Mn is an (associative)
ring with identity, we can identify R⋉nM1⋉ · · ·⋉Mn with the matrix
representation given in the introduction: (r,m1, . . . ,mn) is identified
with 

r m1 m2 · · · · · · mn

0 r m1 · · · mn−1
...

. . .
. . .

. . .
...

0 0 0 · · · m1

0 0 0 · · · r

 .

Also, as in the case n = 2, when R⋉nM1⋉ · · ·⋉Mn is an associative
ring, we can define a ring epimorphism

TR(M1⊕ · · ·⊕Mn)/
⊕

i≥n+1

T i
R(M1⊕ · · ·⊕Mn) −→ R⋉nM1⋉ · · ·⋉Mn,

and we have a similar result concerning the symmetric algebra when
R⋉n M1 ⋉ · · ·⋉Mn is commutative.
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Remark 2.1.

(1) Let R1 and R2 be two rings and H an (R1, R2)-bimodule. It is
well known that every generalized triangular matrix ring is naturally
isomorphic to the trivial extension of R1×R2 by H where the actions of
R1×R2 on H are defined as follows: (r1, r2)h = r1h and h(r1, r2) = hr2
for every (r1, r2) ∈ R1 × R2 and h ∈ H. Below, we see that an
observation on the product of two matrices of the generalized triangular
matrix ring shows that this fact can be extended to n-trivial extensions.

Consider the generalized triangular matrix ring

Tn(R,M ) =



R1 M1,2 · · · · · · M1,n−1 M1,n

0 R2 · · · · · · M2,n−1 M2,n

...
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

...
...

0 0 · · · 0 Rn−1 Mn−1,n
0 0 · · · 0 0 Rn


,

where R = (Ri)
n
i=1 is a family of rings and M = (Mi,j)1≤i<j≤n is

a family of modules such that, for each 1 ≤ i < j ≤ n, Mi,j is an
(Ri, Rj)-bimodule. Assume, for every 1 ≤ i < j < k ≤ n, that there
exists an (Ri, Rk)-bimodule homomorphism

Mi,j

⊗
Rj

Mj,k −→ Mi,k

denoted multiplicatively such that

(mi,jmj,k)mk,l = mi,j(mj,kmk,l)

for every (mi,j ,mj,k,mk,l) ∈ Mi,j ×Mj,k ×Mk,l.

Consider the finite direct product of rings R = R1 × · · · × Rn and
set, for 2 ≤ i ≤ n, Mi = M1,i ×M2,i+1 × · · · ×Mn−(i−1),n, for i = n,
Mn = M1,n. We must define an action of R on each Mi and a family of
product maps so that R⋉n−1M2⋉ · · ·⋉Mn is an n−1-trivial extension
isomorphic to Tn(R,M ).

First, note that, for every matrix A = (ai,j) of Tn(R,M ) and for ev-
ery 2 ≤ i ≤ n, the ith diagonal above the main diagonal of A naturally
corresponds to the following (n−i+1)-tuple (a1,i, a2,i+1, . . . , an−(i−1),n)
of Mi. On the other hand, consider two matrices A = (ai,j) and
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B = (bi,j) of Tn(R,M ), and denote the product AB by C = (ci,j).
Then, using the above correspondence for 2 ≤ i ≤ n, the ith diagonal
above the main diagonal of C may be seen as the (n − i + 1)-tuple
ci = (cj,i+j−1)j ∈ Mi such that, for every 1 ≤ j ≤ n− i+ 1,

cj,i+j−1 =

i+j−1∑
k=j

aj,kbk,i+j−1 =

i∑
k=1

aj,k+j−1bk+j−1,i+j−1.

Then,

ci =

( i∑
k=1

aj,k+j−1bk+j−1,i+j−1

)
j

=
i∑

k=1

(aj,k+j−1bk+j−1,i+j−1)j .

Thus, the cases k = 1 and k = i allow us to define the left and right
actions of R on Mi as follows: For every (rl)l ∈ R and (mj,i+j−1)j ∈
Mi,

(rl)l(mj,i+j−1)j := (rjmj,i+j−1)j

and

(mj,i+j−1)j(rl)l := (mj,i+j−1ri+j−1)j .

The other cases of k may be used to define the product maps Mk ×
Mi−k −→ Mi as follows: fix k, 1 < k < i, and consider ek =
(ej,k+j−1)1≤j≤n−k+1 ∈ Mk and fi−k = (fj,i−k+j−1)1≤j≤n−i+k+1 ∈
Mi−k. Then,

ekfi−k := (ej,k+j−1fk+j−1,i+j−1)1≤j≤n−i+1.

Therefore, endowed with these products, R ⋉n−1 M2 ⋉ · · ·⋉Mn is an
n−1-trivial extension naturally isomorphic to the generalized triangular
matrix ring Tn(R,M ).

(2) It is known that the generalized triangular matrix ring Tn(R,M )
can be seen as a generalized triangular 2×2 matrix ring,2 namely, there
is a natural ring isomorphism between Tn(R,M ) and T2(S,N), where

S =
(
Tn−1((Ri)

n−1
i=1 , (Mi,j)1≤i<j≤n−1), Rn

)



2452 D.D. ANDERSON, D. BENNIS, B. FAHID AND A. SHAIEA

and

N =


M1,n

M2,n

...
Mn−1,n

 .

However, an n-trivial extension is not necessarily a 1-trivial extension.
For that, consider, for instance, the 2-trivial extension S = Z/2Z ⋉2

Z/2Z ⋉ Z/2Z. It may easily be verified that S cannot be isomorphic
to any 1-trivial extension.

We conclude this section with a number of examples.

Example 2.2. Suppose that R is a commutative ring, and consider
R⋉n R⋉ · · ·⋉R, n ≥ 1, with a family of product maps

φi,j : Rei × Rej −→ Rei+j ,

where, for k ∈ {1, . . . , n}, ek = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the k+1th
place.

For n = 1, R⋉1 R ∼= R[X]/(X2).

Suppose that n = 2 and e21 = r1,1e2. Then,

R⋉2 R⋉R ∼= R[X,Y ]/(X2 − r1,1Y,XY, Y 2),

whereX and Y are commuting indeterminates. Thus, in the case where
r1,1 = 1, we obtain

R⋉2 R⋉R ∼= R[X,Y ]/(X2 − Y,XY, Y 2) ∼= R[X]/(X3).

The case n = 3 is more interesting. Now, for 1 ≤ i, j ≤ 2 with
i+ j ≤ 3,

φi,j : R×R −→ R

with φi,j(r, s) = rφi,j(1, 1)s. Set φi,j(1, 1) = ri,j such that (rei)(sej) =
rri,jsei+j . Now, R⋉3R⋉R⋉R is commutative if and only if e1e2 = e2e1
or r1,2 = r2,1; and, R ⋉3 R ⋉ R ⋉ R is associative if and only if
(e1e1)e1 = e1(e1e1) or r1,1r2,1 = r1,2r1,1. Thus, if R ⋉3 R ⋉ R ⋉ R
is commutative, it is also associative. However, if R is a commutative
integral domain and r1,1 ̸= 0, R⋉3R⋉R⋉R is associative if and only
if it is commutative. Thus, if we take R = Z, r1,1 = 1, r1,2 = 1 and
r2,1 = 2, R⋉3 R⋉R⋉R is a non-commutative, non-associative ring.
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For n = 4, the reader can easily verify that R ⋉4 R ⋉ R ⋉ R ⋉ R is
commutative if and only if ri,j = rj,i for 1 ≤ i, j ≤ 3 with i+j ≤ 4, and
that R⋉4 R⋉R⋉R⋉R is associative if and only if r1,1r2,1 = r1,2r1,1,
r2,1r3,1 = r2,2r1,1, r1,2r3,1 = r1,3r2,1, and r1,1r2,2 = r1,3r1,2. Thus, if R
is a commutative integral domain with r1,1 ̸= 0, then r1,1r2,1 = r1,2r1,1
if and only if r2,1 = r1,2. Hence, if r1,1 ̸= 0 and r1,2 ̸= 0, then r1,2r3,1
= r1,3r2,1 if and only if r3,1 = r1,3. Thus, if r1,1 ̸= 0 and r1,2 ̸= 0, then
the fact that R⋉4R⋉R⋉R⋉R is associative forces R⋉4R⋉R⋉R⋉R
to be commutative and, in this case, R⋉4 R⋉R⋉R⋉R is associative
if and only if r1,1r2,2 = r1,3r1,2. Therefore, if three of the numbers
r1,1, r2,2, r1,3 and r1,2 are given and nonzero, then there is only one
possible choice for the remaining ri,j for R ⋉4 R ⋉ R ⋉ R ⋉ R to be
associative. If we take R = Z and r1,1 = 1, r2,1 = r1,2 = 2, r2,2 = 3
and r1,3 = r3,1 = 4, then the resulting ring is commutative but not
associative.

For n ≥ 5, the reader can easily write conditions on the ri,j =
φi,j(1, 1) for R⋉n R⋉ · · ·⋉R to be commutative or associative.

Example 2.3. Let R be a commutative ring, and let N1, . . . , Nn be
R-submodules of an R-algebra T with NiNj ⊆ Ni+j for 1 ≤ i, j ≤ n−1
with i+j ≤ n. Then, using the multiplication from T , R⋉nN1⋉· · ·⋉Nn

is a ring which is commutative if T is commutative. Following are some
interesting special cases:

(a) Let R be a commutative ring and I an ideal of R. Then,
R⋉n I⋉ I2⋉ · · ·⋉ In is the quotient of the Rees ring R[It]/(In+1tn+1)
mentioned in the introduction.

(b) Let R be a commutative ring, T an R-algebra and J1 ⊆ · · · ⊆ Jn
ideals of T . Then, R ⋉n J1 ⋉ · · · ⋉ Jn is an example of an n-trivial
extension since JiJj ⊆ Ji ⊆ Ji+j for i+ j ≤ n. For example, we could
take R⋉2 XR[X]⋉R[X].

(c) Suppose that R1 ⊆ · · · ⊆ Rn are R-algebras, where R is a
commutative ring. Let N be an Rn−1-submodule of Rn (in particular,
we could take N = Rn). Then, R ⋉n R1 ⋉ · · · ⋉ Rn−1 ⋉ N with the
multiplication induced by Rn is a ring. For example, we could take
Z ⋉3 Q⋉ R ⋉N where N is the R-submodule of R[X] of polynomials
of degree ≤ 5.
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Example 2.4. Let R be a commutative ring and M an R-module. Let
S := R ⋉n R ⋉ · · · ⋉ R ⋉M with φi,j : R × R → R be the usual ring
product in R for i + j ≤ n − 1, but, for i + j = n and i, j ≥ 1, φi,j is
the zero map. Thus,

(r0, . . . , rn−1,mn)(r
′
0, . . . , r

′
n−1,m

′
n)

= (r0r
′
0, r0r

′
1 + r1r

′
0, . . . , r0r

′
n−1 + · · ·+ rn−1r

′
0, r0m

′
n + r′0mn).

Then, S ∼= R[X]/(Xn)⋉M , where M is considered as an R[X]/(Xn)-

module with f(X)m = f(0)m.

Example 2.5. Let R be a commutative ring and T an R-algebra. Let
J1 ⊆ · · · ⊆ Jn be ideals of T . Then, take R ⋉n T/J1 ⋉ · · · ⋉ T/Jn,
where the product

T/Ji × T/Jj −→ T/Ji+j

is given by (ti + Ji)(tj + Jj) = titj + Ji+j for i+ j ≤ n.

Example 2.6. Let R be a commutative ring, N1, . . . , Nn−1 ideals of R
and Nn = Ra a cyclic R-module. Then, consider R⋉n N1 ⋉ · · ·⋉Nn,
where the products

Ni ×Nj −→ Ni+j

are the usual products for R when i + j ≤ n − 1, and for i + j = n,
define ninj = ninja.

In what follows, we adopt the following notation.

Notation 2.7. Unless otherwise specified, R denotes a non-trivial ring
and, for an integer n ≥ 1, M = (Mi)

n
i=1 is a family of R-modules with

bilinear maps as indicated in the definition of the n-trivial extension
defined such that R ⋉n M is a commutative associative ring with
identity. Thus, R ⋉n M is indeed a commutative ring with identity.
Let S be a nonempty subset of R and N = (Ni)

n
i=1 a family of sets such

that, for every i, Ni ⊆ Mi. Then, as a subset ofR⋉nM , S×N1×· · ·×Nn

will be denoted by S ⋉n N1 ⋉ · · ·⋉Nn or simply S ⋉n N .

3. Some ring-theoretic constructions of n-trivial extensions.
In this section, we investigate some ring-theoretic constructions of n-
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trivial extensions. First, we investigate the graded aspect of n-trivial
extensions.

For the reader’s convenience, we recall the definition of graded rings.
Let Γ be a commutative additive monoid. Recall that a ring S is said
to be a Γ-graded ring if there is a family of subgroups of S, (Sα)α∈Γ,
such that S = ⊕α∈ΓSα as an abelian group, with SαSβ ⊆ Sα+β for
all α, β ∈ Γ. In addition, an S-module N is said to be Γ-graded
if N = ⊕α∈ΓNα (as an abelian group) and SαNβ ⊆ Nα+β for all
α, β ∈ Γ. Note that S0 is a subring of S and each Nα is an S0-module.
When Γ = N0, a Γ-graded ring (respectively, a Γ-graded module) will
simply be called a graded ring (respectively, a graded module). See, for
instance, [40, 41] for more details regarding graded rings, although [40]
deals with group graded rings.

Now,
R⋉n M1 ⋉ · · ·⋉Mn = R⊕M1 ⊕ · · · ⊕Mn

may be considered as a graded ring for the following three different
grading monoids:

As an N0-graded ring. In this case, we set Mk = 0 for all k ≥ n+1,
and we extend the definition of φi,j to all i, j ≥ 0 as follows: for i or
j = 0,

φ0,j : R×Mj −→ Mj

(r,mj) 7−→ φ0,j(r,mj) := rmj

and

φi,0 : Mi ×R −→ Mi

(mi, r) 7−→ φi,0(mi, r) := mir

are just the multiplication of R when i = j = 0 or the R-actions on Mj

and Mi, respectively, when j > 0 and i > 0, respectively. For i, j ≥ 0
such that i+ j ≥ n+ 1, we define

φi,j : Mi ×Mj −→ Mi+j

by φi,j(mi,mj) = 0 for all (mi,mj) ∈ Mi×Mj . Thus, R⋉nM1⋉ · · ·⋉
Mn is an N0-graded ring ⊕∞i=0Ri where R0 = R and Ri = Mi for i ∈ N.
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As a Zn+1-graded ring. In this case, we consider, for a ∈ Z,
the least nonnegative integer â with â ≡ a mod (n + 1), and we set
Mā := Mâ. Then, for a, b ∈ Z, we define maps

φā,b : Mā ×Mb̄ −→ M a+b by φā,b̄ = φâ,b̂

when â + b̂ ≤ n and φā,b̄ to be the zero map when â + b̂ > n. Then,
R ⋉n M1 ⋉ · · ·⋉Mn is a Zn+1-graded ring R0̄ ⊕ R1̄ ⊕ · · · ⊕ Rn̄ where
R0̄ = R and Rā = Ma for a = 1, . . . , n.

As a Γn+1-graded ring. Here, Γn+1 = {0, 1, . . . , n} is a commuta-
tive monoid with addition i +̂j := i + j if i + j ≤ n and i +̂j := 0 if
i + j > n (thus, Z2 and Γ2 are isomorphic). In this case, we define
maps φ̂i,j , for i, j ∈ Γn+1, by φ̂i,j = φi,j when i = j = 0 or i +̂j ̸= 0
and

φ̂i,j : Mi ×Mj −→ M0 = R

to be the zero map when i +̂j = 0. Then, R ⋉n M1 ⋉ · · · ⋉ Mn is a
Γn+1-graded ring R0 ⊕R1 ⊕ · · · ⊕Rn, where R0 = R and Ri = Mi for
1 ≤ i ≤ n.

Note that each of these gradings have the same set of homogeneous
elements.

We have observed that R ⋉n M1 ⋉ · · · ⋉ Mn is an N0-graded ring
⊕∞i=0Ri, where R0 = R, Ri = Mi for i = 1, . . . , n and Ri = 0 for i > n.
Thus, R⋉n M1 ⋉ · · ·⋉Mn is a graded ring isomorphic to

∞⊕
i=0

Ri /
⊕

i≥n+1

Ri.

The next result presents the converse implication, namely, it shows
that n-trivial extensions can be realized as quotients of graded rings.

Proposition 3.1. Let ⊕∞i=0Si be an N0-graded ring and m ∈ N. Then,
S0 ⋉m S1 ⋉ · · · ⋉ Sm with the product induced by ⊕∞i=0Si is naturally
an N0-graded ring isomorphic to

∞⊕
i=0

Si /
⊕

i≥m+1

Si.
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Proof. Obvious. �

The next result presents a particular case of Proposition 3.1.

Proposition 3.2. For an R-module N , we have the following two
natural ring isomorphisms:

TR(N)/
⊕

i≥n+1

T i
R(N) ∼= R⋉n N ⋉ T 2

R(N)⋉ · · ·⋉ Tn
R(N)

and

SR(N)/
⊕

i≥n+1

Si
R(N) ∼= R⋉n N ⋉ S2

R(N)⋉ · · ·⋉ Sn
R(N).

Moreover, suppose that N is a free R-module with a basis B. Then,
R⋉nN ⋉S2

R(N)⋉ · · ·⋉Sn
R(N) is (graded) isomorphic to R[{Xb}b∈B ]/

({Xb}b∈B)n+1. In particular, R ⋉n R⋉ · · ·⋉R with the natural maps
is isomorphic to R[X]/(Xn+1).

Proof. Obvious. �

Our next result shows that the n-trivial extension of a graded ring
by graded modules has a natural grading. It is an extension of [9,
Theorem 4.5].

Theorem 3.3. Let Γ be a commutative additive monoid. Assume that

R =
⊕
α∈Γ

Rα

is Γ-graded and

Mi =
⊕
α∈Γ

M i
α

is Γ-graded as an R-module for every i ∈ {1, . . . , n}, such that

φi,j(M
i
α,M

j
β) ⊆ M i+j

α+β .

Then, R⋉n M1 ⋉ · · ·⋉Mn is a Γ-graded ring with

(R⋉n M1 ⋉ · · ·⋉Mn)α = Rα ⊕M1
α ⊕ · · · ⊕Mn

α .

Proof. Similar to the proof of [9, Theorem 4.5]. �
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In the case where R is either a polynomial ring or a Laurent
polynomial ring, we get the following result in which the first assertion
is an extension of [9, Corollary 4.6 (1)].

Corollary 3.4. The following statements are true.

1. (R ⋉n M1 ⋉ · · · ⋉ Mn)[{Xα}] ∼= R[{Xα}] ⋉n M1[{Xα}] ⋉ · · · ⋉
Mn[{Xα}] for any set of indeterminates {Xα} over R.

2. (R⋉nM1⋉ · · ·⋉Mn)[{X±1α }] ∼= R[{X±1α }]⋉nM1[{X±1α }]⋉ · · ·⋉
Mn[{X±1α }] for any set of indeterminates {Xα} over R.

In addition, as in the classical case, we get the related (but not
graded) power series case. It is a generalization of [9, Corollary 4.6 (2)].
First recall that, for a given set of analytic indeterminates {Xα}α∈Λ
over R, we can consider three types of power series rings (see [43] for
further details about generalized power series rings):

R[[{Xα}α∈Λ]]1 ⊆ R[[{Xα}α∈Λ]]2 ⊆ R[[{Xα}α∈Λ]]3.

Here,

R[[{Xα}α∈Λ]]1= ∪{R[[{Xα1 , . . . , Xαn}]]|{α1, . . . , αn} ⊆ Λ},

R[[{Xα}α∈Λ]]2=
{ ∞∑

i=0

fi | fi∈R[{Xα}α∈Λ] is homogeneous of degree i

}
and

R[[{Xα}α∈Λ]]3

=

{ ∞∑
i=0

fi | fi is a possibly infinite sum of monomials of degree i

with at most one monomial of the form rα1,...,αnX
i1
α1

· · ·Xin
αn

for each set {α1, . . . , αn} with i1 + · · ·+ in = i

}
.

More generally, given a partially ordered additive monoid (S,+,≤),
the generalized power series ring R[[X,S≤]] consists of all formal sums

f =
∑
s∈S

asX
s,
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where supp(f) = {s ∈ S | as ̸= 0} is Artinian and narrow (i.e.,
has no infinite family of incomparable elements) where addition and
multiplication are carried out in the standard manner. If Λ is a well-
ordered set,

S =
⊕
λ∈Λ

N0,

and ≤ is the reverse lexicographic order on S, then R[[X,S≤]] ∼=
R[[{Xα}]]3.

Note that, in a similar manner, we can define three types of power
series over a module. The routine proof of the next theorem is left to
the reader.

Theorem 3.5.

(1) Let {Xα}α∈Λ be a set of analytic indeterminates over R. Then,
for i = 1, 2, 3,

(R⋉n M)[[{Xα}α∈Λ]]i ∼= R[[{Xα}α∈Λ]]i ⋉n M1[[{Xα}α∈Λ]]i
⋉ · · ·⋉Mn[[{Xα}α∈Λ]]i.

(2) Let (S,+,≤) be a partially ordered additive monoid. Then

(R⋉n M)[[X,S≤]] ∼= R[[X,S≤]]⋉n M1[[X,S≤]]

⋉ · · ·⋉Mn[[X,S≤]].

Now, we give, as an extension of [9, Theorem 4.1], the following
result which investigates the localization of an n-trivial extension. For
this, we need the next technical lemma.

Lemma 3.6. For every (mi) ∈ R⋉n M and k ∈ {1, . . . , n},

(m0, 0, . . . , 0,mk,mk+1, . . . ,mn)(m0, 0, . . . , 0,−mk, 0, . . . , 0)

= (m2
0, 0, . . . , 0, ek+1, . . . , en)

where el = m0ml−mkml−k for every l ∈ {k+1, . . . , n}. Consequently,
there is an element (fi) of R⋉n M such that

(mi)(fi) = (m2n

0 , 0, . . . , 0).
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We will denote the element (fi) in Lemma 3.6 by (m̃i); thus,
(mi)(m̃i) = (m2n

0 , 0, . . . , 0).

Theorem 3.7. Let S be a multiplicatively closed subset of R and
N = (Ni) a family of R-modules where Ni is a submodule of Mi for
each i ∈ {1, . . . , n} and NiNj ⊆ Ni+j for every 1 ≤ i, j ≤ n − 1 and
i + j ≤ n. Then, the set S ⋉n N is a multiplicatively closed subset of
R⋉n M , and we have a ring isomorphism

(R⋉n M)SnnN
∼= RS ⋉n MS ,

where MS = (MiS).

Proof. It is trivial to show that S ⋉n N is a multiplicatively closed
subset of R ⋉n M . Now, in order to show the desired isomorphism,
we need to make, as done in the proof of [9, Theorem 4.1 (1)], the
following observation: let (mi) ∈ R ⋉n M and (si) ∈ S ⋉n N . Then,
using the notation of Lemma 3.6,

(mi)

(si)
=

(mi)(s̃i)

(S0, 0, . . . , 0)
=

(m′i)

(S0, 0, . . . , 0)

where (m′i) = (mi)(s̃i) and S0 = s2
n

0 . Then, the map

f : (R⋉n M)SnnN −→ RS ⋉n MS

(mi)

(si)
7−→

(
m′0
S0

,
m′1
S0

, . . . ,
m′n
S0

)
is the desired isomorphism. �

As a simple, but important, specific case of Theorem 3.7, we get
the following result which extends [9, Theorem 4.1, Corollary 4.7].
In Theorem 4.7, we will show that, if P is a prime ideal of R, then
P ⋉nM is a prime ideal of R⋉nM . This fact is used in the next result
to show that the localization of an n-trivial extension at a prime ideal
is isomorphic to an n-trivial extension. In what follows, we use T (A)
to denote the total quotient ring of a ring A. In Proposition 4.9, we
will prove that S ⋉n M , where

S = R− (Z(R) ∪ Z(M1) ∪ · · · ∪ Z(Mn))
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is the set of all regular elements of R⋉n M . Thus,

T (R⋉n M) = (R⋉n M)SnnM .

Corollary 3.8. The following assertions are true.

(1) Let P be a prime ideal of R. Then, we have a ring isomorphism

(R⋉n M)PnnM
∼= RP ⋉n MP ,

where MP = (MiP ).

(2) We have a ring isomorphism

T (R⋉n M) ∼= RS ⋉n MS ,

where S = R− (Z(R) ∪ Z(M1) ∪ · · · ∪ Z(Mn)).

(3) For an indeterminate X over R, we have a ring isomorphism

(R⋉n M1 ⋉ · · ·⋉Mn)(X) ∼= R(X)⋉n M1(X)⋉ · · ·⋉Mn(X).

Proof. All of the proofs are similar to those corresponding to the
classical case. �

Our next result generalizes [9, Theorem 4.4]. It shows that the
n-trivial extension of a finite direct product of rings is a finite direct
product of n-trivial extensions. For the reader’s convenience, we recall
some known facts on the structure of modules over a finite direct
product of rings. Let

R =
s∏

i=1

Ri

be a finite direct product of rings where s ∈ N. For j ∈ {1, . . . , s}, we
set

Rj := 0× · · · × 0×Rj × 0× · · · × 0

and, for an R-module N , Nj := RjN . Then, Nj is a submodule of N ,
and we have N = N1 ⊕ · · · ⊕ Ns, namely, every element x in N can
be written in the form x = x1 + · · · + xs where xj = ejx ∈ Nj for
every j ∈ {1, . . . , s} (here, ej = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the jth
place). Note that each Nj is also an Rj-module, and N1 × · · · ×Ns is
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an R-module isomorphic to N via the following R-isomorphisms:

N −→ N1 × · · · ×Ns∑
ejx = x 7−→ (e1x1, . . . , esxs)

and

N1 × · · · ×Ns −→ N

(y1, . . . , ys) 7−→
∑

yj .

Now, consider the family of commutative product maps φ =
{φi,j} i+j≤n

1≤i,j≤n−1

, and define the following maps:

φj,i,k : Mj,i ×Mj,k −→ Mj,i+k

(mj,i,mj,k) 7−→ φj,i,k(mj,i,mj,k) = ejφi,k(mj,i,mj,k),

where Mj,i := RjMi for j ∈ {1, . . . , s} and i ∈ {1, . . . , n}. It is easily
checked that, for every j ∈ {1, . . . , s}, φj = {φj,i,k} i+k≤n

1≤i,k≤n

is a family

of commutative product maps and

Rj ⋉φj Mj,1 ⋉ · · ·⋉Mj,n

is an n-φj-trivial extension. Furthermore,

φi,k : Mi ×Mk −→ Mi+k

(mi,mk) 7−→ φi,k(mi,mk) =
s∑

j=1

φj,i,k(mj,i,mj,k).

With this notation in mind, we are ready to give the desired result.

Theorem 3.9. Let

R =
s∏

i=1

Ri

be a finite direct product of rings where s ∈ N. Then,

R⋉φ M1 ⋉ · · ·⋉Mn
∼=

s∏
i=1

(Ri ⋉φi Mi,1 ⋉ · · ·⋉Mi,n).
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Proof. It is easily verified that the map

(r,m1, . . . ,mn) 7−→ ((rj ,mj,1, . . . ,mj,n))1≤j≤s

is an isomorphism. �

We conclude this section with two results which investigate the
inverse and direct limits of a system of n-trivial extensions, namely, we
show that, under some conditions, the inverse limit or direct limit of
a system of n-trivial extensions is isomorphic to an n-trivial extension.
The inverse limit case is a generalization of [9, Theorem 4.11].

Let Γ be a directed set, and let {Mα; fαβ} be an inverse system of
abelian groups over Γ (thus, for α ≤ β, fαβ : Mβ → Mα). We know
that the inverse limit lim

←−
Mα is isomorphic to the following subset of

the direct product
∏

αMα:

M∞ := {(xα)α∈Γ | λ ≤ µ =⇒ xλ = fλµ(xµ)}.

In the next result, by lim
←−

Mα, we mean exactly the set M∞.

Theorem 3.10. Let Γ be a directed set and n ≥ 1 an integer. Consider
a family of inverse systems {Mi,α; fi,α,β} over Γ (for i ∈ {0, . . . , n})
which satisfy the following conditions:

(1) for every α ∈ Γ, M0,α = Rα is a ring ;

(2) for every α ∈ Γ and i ∈ {1, . . . , n}, Mi,α is an Rα-module; and

(3) for every α ∈ Γ, Rα⋉nM1,α⋉· · ·⋉Mn,α is an n-trivial extension
with a family of commutative product maps:

φi,j,α : Mi,α ×Mj,α −→ Mi+j,α

which satisfy, for every α ≤ β,

φi,j,α(fi,α,β(mi,β), fj,α,β(mj,β)) = fi+j,α,β(φi,j,β(mi,β ,mj,β)).

Then lim
←−

Rα⋉n lim←−
M1,α⋉ · · ·⋉ lim

←−
Mn,α is an n-trivial extension with

the following family of well-defined commutative product maps:

φi,j,α : lim
←−

Mi,α × lim
←−

Mj,α −→ lim
←−

Mi+j,α

((mi,α)α, (mj,α)α) 7−→ (φi,j,α(mi,α,mj,α))α.
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Moreover, there is a natural ring ismorphism:

lim
←−

(Rα ⋉n M1,α ⋉· · ·⋉Mn,α) ∼= lim
←−

Rα ⋉n lim
←−

M1,α ⋉· · ·⋉ lim
←−

Mn,α.

Proof. The result follows using a standard argument. �

Let Γ be a directed set and {Mγ ; fγλ} a direct system of abelian
groups over Γ (thus, for γ ≤ λ, fγλ : Mγ → Mλ). We know that the
direct limit lim−→Mγ is isomorphic to ⊕γMγ/S, where S is generated by

all elements λβ(fαβ(aα))− λα(aα) where α ≤ β, and

λλ : Mλ −→
⊕
γ

Mγ

is the natural inclusion map for λ ∈ Γ. Since Γ is directed, every
element of ⊕γMγ/S has the form λα(aα) + S for some α ∈ Γ and
aα ∈ Mα.

Theorem 3.11. Let Γ be a directed set and n ≥ 1 an integer. Consider
a family of direct systems {Mi,α; fi,α,β} over Γ (for i ∈ {0, . . . , n})
which satisfy the following conditions:

(1) for every α ∈ Γ, M0,α = Rα is a ring ;

(2) For every α ∈ Γ and i ∈ {1, . . . , n}, Mi,α is an Rα-module; and

(3) For every α ∈ Γ, Rα⋉nM1,α⋉· · ·⋉Mn,α is an n-trivial extension
with a family of commutative product maps:

φi,j,α : Mi,α ×Mj,α −→ Mi+j,α,

which satisfy, for every β ≤ α,

φi,j,α(fi,β,α(mi,β), fj,β,α(mj,β)) = fi+j,β,α(φi,j,β(mi,β ,mj,β)).

Then,
lim−→Rα ⋉n lim−→M1,α ⋉ · · ·⋉ lim−→Mn,α

is an n-trivial extension with the following family of well-defined com-
mutative product maps:

φi,j,α : lim−→Mi,α × lim−→Mj,α −→ lim−→Mi+j,α

((mi,α)α, (mj,α)α) 7−→ (φi,j,α(mi,α,mj,α))α.
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Moreover, there is a natural ring ismorphism:

lim−→(Rα ⋉n M1,α ⋉ · · ·⋉Mn,α) ∼= lim−→Rα ⋉n lim−→M1,α ⋉ · · ·⋉ lim−→Mn,α.

Proof. The result follows using a standard argument. �

4. Some basic algebraic properties of R⋉n M . In this section,
we give some basic properties of n-trivial extensions. Before giving the
first result, we make the following observations regarding situations
where a subfamily of M is trivial.

Observation 4.1.

(1) If there is an integer i ∈ {1, . . . , n − 1} such that Mj = 0 for
every j ∈ {i+ 1, . . . , n}, then there is a natural ring isomorphism

R⋉n M1 ⋉ · · ·⋉Mi ⋉ 0⋉ · · ·⋉ 0 ∼= R⋉i M1 ⋉ · · ·⋉Mi.

If M1 = · · · = Mn−1 = 0, then R⋉nM can be represented as R⋉1Mn.
However, if n ≥ 3 and there is an integer i ∈ {1, . . . , n− 2} such that,
for j ∈ {1, . . . , n}, Mj = 0 if and only if j ∈ {1, . . . , i}, then, in general,
R⋉n 0⋉ · · ·⋉ 0⋉Mi+1 ⋉ · · ·⋉Mn cannot be represented as an n− i-
trivial extension as above. Indeed, if, for example, i satisfies 2i+2 ≤ n,
then R⋉n−iMi+1⋉· · ·⋉Mn is nonsensical (since φi+1,i+1(Mi+1,Mi+1)
is a subset of M2i+2, not of Mi+2).

(2) If M2k = 0 for every k ∈ N with 1 ≤ 2k ≤ n, then R ⋉n M
can be represented as the trivial extension of R by the R-module
M1 × M3 × · · · × M2n′+1, where 2n′ + 1 is the largest odd integer
in {1, . . . , n}, namely, there is a natural ring isomorphism

R⋉n M ∼= R⋉1 (M1 ×M3 × · · · ×M2n′+1).

(3) If M2k+1 = 0 for every k ∈ N with 1 ≤ 2k + 1 ≤ n, then there is
a natural ring isomorphism

R⋉n M ∼= R⋉n′′ M2 ⋉M4 ⋉ · · ·⋉M2n′′ ,

where 2n′′ is the biggest even integer in {1, . . . , n}. In general, for every
cyclic submonoid G of Γn+1 generated by an element g ∈ {1, . . . , n}, if
Mi = 0 if and only if i /∈ G, then there is a natural ring isomorphism

R⋉n M ∼= R⋉s Mg ⋉M2g ⋉ · · ·⋉Msg,

where sg is the biggest integer in G ∩ {1, . . . , n}.
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As observed above, whether a subfamily of M is or is not trivial
leads to various situations. Thus, for the sake of simplicity, we state
the following convention.

Convention 4.2. Unless explicitly stated otherwise, when we consider
an n-trivial extension for a given n, we then implicitly suppose that
Mi ̸= 0 for every i ∈ {1, . . . , n}. This will be used in the sequel without
explicit mention.

Note also that the nature of the maps φi,j can affect the structure of
the n-trivial extension. For example, in case where n = 2, if φ1,1 = 0,
then

R⋉2 M1 ⋉M2
∼= R⋉ (M1 ×M2).

Additionally, if I ⊆ J is an extension of ideals of R, then

R⋉2 I ⋉R/J ∼= R⋉ (I ×R/J).

We begin with the following result which presents some (easily
established) relations among n-trivial extensions.

Proposition 4.3. The following assertions are true.

(1) Let G be a submonoid of Γn+1, and consider the family of R-
modules M ′ = (M ′i)

n
i=1 such that M ′i = Mi if i ∈ G and M ′i = 0 if

i /∈ G. Then, we have the following (natural) ring extensions:

R ↩→ R⋉n M ′ ↩→ R⋉n M.

In particular, for every m ∈ {1, . . . , n}, we have the following (natural)
ring extensions:

R ↩→ R⋉n 0⋉ · · ·⋉ 0⋉Mm ⋉ · · ·⋉Mn ↩→ R⋉n M1 ⋉ · · ·⋉Mn.

The extension R ↩→ R⋉n M1 ⋉ · · ·⋉Mn will be denoted by in.

(2) For every m ∈ {1, . . . , n},

0⋉n 0⋉ · · ·⋉ 0⋉Mm ⋉ · · ·⋉Mn



ON n-TRIVIAL EXTENSIONS OF RINGS 2467

is an ideal of R ⋉n M and an R ⋉j M1 ⋉ · · · ⋉ Mj-module for every
j ∈ {n−m, . . . , n} via the action

(x0, x1, . . . , xj)(0, . . . , 0, ym, . . . , yn)

:= (x0, x1, . . . , xj , 0, . . . , 0)(0, . . . , 0, ym, . . . , yn)

= (x0, x1, . . . , xn−m, 0, . . . , 0)(0, . . . , 0, ym, . . . , yn).

Moreover, the structure of 0⋉n 0⋉ · · ·⋉ 0⋉Mm⋉ · · ·⋉Mn as an ideal
of R ⋉n M is the same as the R ⋉j M1 ⋉ · · · ⋉ Mj-module structure
for every j ∈ {n −m, . . . , n}. In particular, the structure of the ideal
0⋉n 0⋉ · · ·⋉ 0⋉Mn is the same as that of the R-module Mn.

(3) For every m ∈ {1, . . . , n}, we have the following natural ring
isomorphism:

R⋉n M/0⋉n 0⋉ · · ·⋉ 0⋉Mm ⋉ · · ·⋉Mn
∼= R⋉m−1 M1 ⋉ · · ·⋉Mm−1

obtained from the natural ring homomorphism:

πm−1 : R⋉n M −→ R⋉m−1 M1 ⋉ · · ·⋉Mm−1

(r, x1, . . . , xn) 7−→ (r, x1, . . . , xm−1)

where, for m = 1, R⋉m−1 M1 ⋉ · · ·⋉Mm−1 = R.

In order to give another example for assertion (1), it can be shown
that, for n = 3, {0, 2} is a submonoid of Γ4. Then, we have the following
(natural) ring extensions:

R ↩→ R⋉M2 ↩→ R⋉3 M1 ⋉M2 ⋉M3.

Remark 4.4. We have seen that, in the case of n = 1, the ideal
structure of 0⋉1M1 is the same as the R-module structure of 0⋉1M1.
Specifically, Nagata [39] used this to reduce the proofs of module-
theoretic results to the ideal case. However, for n ≥ 2, the R-module
structure of 0 ⋉n M1 ⋉ · · · ⋉ Mn need not be the same as the ideal
structure. For instance, consider the 2-trivial extension Z ⋉2 Z ⋉ Z
(with maps induced by the multiplication in Z). Then,

Z(0, 1, 1) = {(0,m,m) | m ∈ Z},
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while the ideal of Z⋉2Z⋉Z generated by (0, 1, 1) is 0⋉2Z⋉Z. However,
according to Proposition 4.3 (2),

(Z ⋉1 Z)(0, 1, 1) = (Z ⋉2 Z ⋉ Z)(0, 1, 1).

The notion of extensions of ideals under ring homomorphisms is a
natural way to construct examples of ideals. In this context, we use
the ring homomorphism im (indicated in Proposition 4.3) to give such
examples.

Proposition 4.5. For an ideal I of R, we have the following asser-
tions:

(1) The ideal I ⋉n IM1 ⋉ · · ·⋉ IMn of R⋉n M is the extension of I
under the ring homomorphism in, and we have the following natural
ring isomorphism:

(R⋉n M)/(I ⋉n IM1 ⋉ · · ·⋉ IMn) ∼= (R/I)⋉n (M1/IM1)

⋉ · · ·⋉ (Mn/IMn)

where the multiplication is well defined as follows:

φi,j : Mi/IMi ×Mj/IMj −→ Mi+j/IMi+j

(mi,mj) 7−→ mi mj := φi,j(mi,mj)

:= φi,j(mi,mj) = mi mj .

(2) The ideal I ⋉n IM1 ⋉ · · ·⋉ IMn is finitely generated if and only
if I is finitely generated.

Proof.

(1) The proof is straightforward.

(2) Using π0, it is clear that, if I ⋉n IM1 ⋉ · · · ⋉ IMn is generated
by the elements (rj ,mj,1, . . . ,mj,n) with j ∈ E for some set E, then
I is generated by the rjs. Conversely, if I is generated by elements rj
with j ∈ E for some set E, then I ⋉n IM1 ⋉ · · ·⋉ IMn is generated by
the (rj , 0, . . . , 0)s. �

Now, we determine the radical, prime and maximal ideals of R⋉nM .
As in the classical case, we show that these ideals are specific cases
of those which are homogenous, characterized in the next section.
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However, we provide these particular cases here due to their simplicity,
which is reflected, using the following lemma, in the fact that they
contain the nilpotent ideal 0⋉n M (of index n+ 1).

Lemma 4.6. Every ideal of R ⋉n M which contains 0 ⋉n M has the
form I ⋉nM for some ideal I of R. In this case, we have the following
natural ring isomorphism:

(R⋉n M)/(I ⋉n M) ∼= R/I.

Proof. Let J be an ideal of R ⋉n M which contains 0 ⋉n M and
consider the ideal I = π0(J) of R where π0 is the surjective ring
homomorphism used in Proposition 4.3. Then J ⊆ I ⋉n M and by
the fact that 0⋉n M ⊆ J , we deduce that J = I ⋉n M . Finally, using
π0 and the fact that π−10 (I) = J , we get the desired isomorphism. �

The following result is an extension of [9, Theorem 3.2].

Theorem 4.7. Radical ideals of R⋉nM have the form I⋉nM where I
is a radical ideal of R. In particular, the maximal (respectively, prime)
ideals of R⋉nM have the form M⋉nM (respectively, P⋉nM) where M
(respectively, P ) is a maximal (respectively, prime) ideal of R.

Proof. Using Lemma 4.6, it is sufficient to note that every radical
ideal contains 0⋉n M since (0⋉n M)n+1 = 0. �

Theorem 4.7 allows us easily to determine both the Jacobson radical
and the nilradical of R⋉n M .

Corollary 4.8. The Jacobson radical J(R ⋉n M) (respectively, the
nilradical Nil(R⋉nM)) of R⋉nM is J(R)⋉nM (respectively, Nil(R)⋉n

M), and the Krull dimension of R⋉n M is equal to that of R.

We end this section with an extension of [9, Theorems 3.5, 3.7] which
determines, respectively, the set of zero divisors Z(R⋉n M), the set of
units U(R⋉n M) and the set of idempotents Id(R⋉n M) of R⋉n M .
It is worth noting that trivial extensions have been used to construct
examples of rings with zero divisors which satisfy certain properties. As
mentioned in the introduction, particular 2-trivial extensions are used
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to settle some questions. Recently, in [14], a 2-trivial extension is used
in the context of zero-divisor graphs to give an appropriate example.

Proposition 4.9. The following assertions are true.

(1) The set of zero divisors of R⋉n M is

Z(R⋉n M) = {(r,m1, . . . ,mn) | r ∈ Z(R) ∪ Z(M1) ∪ · · · ∪ Z(Mn),

mi ∈ Mi for 1 ≤ i ≤ n}.

Hence, S ⋉n M where S = R − (Z(R) ∪ Z(M1) ∪ · · · ∪ Z(Mn)) is the
set of regular elements of R⋉n M .

(2) The set of units of R⋉n M is U(R⋉n M) = U(R)⋉n M .

(3) The set of idempotents of R⋉n M is Id(R⋉n M) = Id(R)⋉n 0.

Proof. All of the proofs are similar to the corresponding ones for the
classical case. For completeness, we give a proof of the first assertion.

Let (r,m1, . . . ,mn) ∈ R ⋉n M be such that r ∈ Z(R) ∪ Z(M1) ∪
· · · ∪ Z(Mn). If r = 0, then (0,m1, . . . ,mn)(0, . . . ,m

′
n) = (0, . . . , 0)

for every m′n ∈ Mn. Hence, (r,m1, . . . ,mn) ∈ Z(R ⋉n M). Suppose
that r ̸= 0. If r ∈ Z(R), then there exists a nonzero element s ∈ R
such that rs = 0; thus, (r, 0, . . . , 0)(s, 0, . . . , 0) = (0, . . . , 0), and hence,
(r, 0, . . . , 0) ∈ Z(R⋉n M). If r ∈ Z(Mi), then, for some i ∈ {1, . . . , n},
there exists a nonzero element m′′i of Mi such that rm′′i = 0. Therefore,

(r, 0, . . . , 0)(0, . . . , 0,m′′i , 0, . . . , 0) = (0, . . . , 0).

Hence, (r, 0, . . . , 0) ∈ Z(R⋉n M). Now, since Z(R⋉n M) is a union of
prime ideals, Nil(R ⋉n M) is contained in each prime ideal and using
the fact that (0,m1, . . . ,mn) ∈ Nil(R⋉n M), we conclude that

(r,m1, . . . ,mn) = (r, 0, . . . , 0) + (0,m1, . . . ,mn) ∈ Z(R⋉n M).

This shows the first inclusion.



ON n-TRIVIAL EXTENSIONS OF RINGS 2471

Conversely, let (r,m1, . . . ,mn) ∈ Z(R ⋉n M). Then, there is an
(s,m′1, . . . ,m

′
n) ∈ R⋉n M − {(0, . . . , 0)} such that

(0, . . . , 0) = (r,m1, . . . ,mn)(s,m
′
1, . . . ,m

′
n)

=
(
rs, rm′1 + sm1, rm

′
2 +m1m

′
1 + sm2, . . . ,

rm′n +
∑

i+j=n

mim
′
j + smn

)
.

If s ̸= 0, then r ∈ Z(R), and if s = 0, we obtain r ∈ Z(M1) if m
′
1 ̸= 0.

Otherwise, we pass to m′2, and so on, until we arrive at s = 0 and
m′i = 0 for all i ∈ {1, . . . , n − 1}. Then, rm′n = 0 and m′n ̸= 0; thus,
r ∈ Z(Mn). This gives the desired inclusion. �

5. Homogeneous ideals of n-trivial extensions. The study of
the classical trivial extension as a graded ring established some interest-
ing properties (see, for instance, [9, Section 3]), namely, in [9], study-
ing homogeneous ideals of the trivial extension shed more light on the
structure of their ideals. Naturally, it would be ideal to extrapolate this
study to the context of n-trivial extensions. In this section, we extend
this study to the context of n-trivial extensions, where here R ⋉n M
is a (N0-)graded ring with, as indicated in Section 3, (R ⋉n M)0 = R,
(R⋉nM)i = Mi, for every i ∈ {1, . . . , n}, and (R⋉nM)i = 0 for every
i ≥ n+ 1. Note that we could also consider R⋉n M as a Zn+1-graded
ring or Γn+1-graded ring as mentioned in Section 3.

For that, it is convenient to recall the following definitions. Let Γ
be a commutative additive monoid and

S =
⊕
α∈Γ

Sα

a Γ-graded ring. Let

N =
⊕
α∈Γ

Nα

be a Γ-graded S-module. For every α ∈ Γ, the elements of Nα are said
to be homogeneous of degree α. A submodule N ′ of N is said to be
homogeneous if one of the following equivalent assertions is true.
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(1) N ′ is generated by homogeneous elements;

(2) if ∑
α∈G′

nα ∈ N ′,

where G′ is a finite subset of Γ and each nα is homogeneous of degree
α, then nα ∈ N ′ for every α ∈ G′; or

(3)

N ′ =
⊕
α∈Γ

(N ′ ∩Nα).

In particular, an ideal J of R⋉n M is homogeneous if and only if

J = (J ∩R)⊕ (J ∩M1)⊕ · · · ⊕ (J ∩Mn).

Note that I := J∩R is an ideal of R and, for i ∈ {1, . . . , n}, Ni := J∩Mi

is an R-submodule of Mi which satisfies IMi ⊆ Ni and NiMj ⊆ Ni+j

for every i, j ∈ {1, . . . , n}.

The next result extends [9, Theorem 3.3 (1)], namely, it determines
the structure of the homogeneous ideals of n-trivial extensions.

In what follows, we use the ring homomorphism Π0 := π0 (used in
Proposition 4.3) and, for i ∈ {1, . . . , n}, the following homomorphism
of R-modules:

Πi : R⋉n M1 ⋉ · · ·⋉Mn −→ Mi

(r,m1, . . . ,mn) 7−→ mi .

Theorem 5.1. The following assertions are true.

(1) Let I be an ideal of R, and let C = (Ci)i∈{1,...,n} be a family
of R-modules such that Ci ⊆ Mi for every i ∈ {1, . . . , n}. Then,
I ⋉n C is a (homogeneous) ideal of R ⋉n M if and only if IMi ⊆ Ci

and CiMj ⊆ Ci+j for all i, j ∈ {1, . . . , n} with i + j ≤ n. Thus, if
I ⋉n C is an ideal of R⋉n M , then Mi/Ci is an R/I-module for every
i ∈ {1, . . . , n}, and we have a natural ring isomorphism

(R⋉n M)/(I ⋉n C1 ⋉ · · ·⋉Cn) ∼= (R/I)⋉n (M1/C1)⋉ · · ·⋉ (Mn/Cn)
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where the multiplication is well defined as:

φi,j :
Mi

Ci
× Mj

Cj
−→ Mi+j

Ci+j

(mi,mj) 7−→ mi mj .

In particular,

(R⋉n M)/(0⋉n C1 ⋉ · · ·⋉ Cn) ∼= R⋉n (M1/C1)⋉ · · ·⋉ (Mn/Cn).

(2) Let J be an ideal of R ⋉n M , and consider K := Π0(J) and
Ni := Πi(J) for every i ∈ {1, . . . , n}. Then:

(a) K is an ideal of R, and Ni is a submodule of Mi for every
i ∈ {1, . . . , n} such that KMi ⊆ Ni and NiMj ⊆ Ni+j for every
j ∈ {1, . . . , n} with i+j ≤ n. Thus, K⋉nN1⋉· · ·⋉Nn is a homogeneous
ideal of R⋉n M1 ⋉ · · ·⋉Mn.

(b) J ⊆ K ⋉n N1 ⋉ · · ·⋉Nn.

(c) The ideal J is homogeneous if and only if J = K⋉nN1⋉· · ·⋉Nn.

Proof.

(1) If I ⋉n C1 ⋉ · · ·⋉ Cn is an ideal of R⋉n M , then

(R⋉n M1 ⋉ · · ·⋉Mn)(I ⋉n C1 ⋉ · · ·⋉ Cn)

= I ⋉n (IM1 + C1)⋉ (IM2 + C2 + C1M1)

⋉ · · ·⋉
(
IMn + Cn +

∑
i+j=n

CiMj

)
.

Thus, IMi ⊆ Ci and CiMj ⊆ Ci+j for every i, j ∈ {1, . . . , n}.
Conversely, suppose that we have IMi ⊆ Ci and CiMj ⊆ Ci+j for

all i, j ∈ {1, . . . , n} with i+ j ≤ n. Then, Mi/Ci is an R/I-module for
every i ∈ {1, . . . , n}, and the map

f : R⋉n M −→ (R/I)⋉n (M1/C1)⋉ · · ·⋉ (Mn/Cn)

(r,m1, . . . ,mn) 7−→ (r + I,m1 + C1, . . . ,mn + Cn)

is a well-defined surjective homomorphism with Ker f = I⋉nC1⋉ · · ·⋉
Cn; thus, I ⋉n C1 ⋉ · · ·⋉ Cn is an ideal of R⋉n M1 ⋉ · · ·⋉Mn, and

(R⋉n M)/(I ⋉n C1 ⋉ · · ·⋉Cn) ∼= (R/I)⋉n (M1/C1)⋉ · · ·⋉ (Mn/Cn).
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In particular,

(R⋉n M1 ⋉ · · ·⋉Mn)/(0⋉n C1 ⋉ · · ·⋉ Cn)

∼= R⋉n (M1/C1)⋉ · · ·⋉ (Mn/Cn).

(2) All three statements are easily verified. �

The next result presents some properties of homogeneous ideals of
R ⋉n M . It is an extension of both [9, Theorem 3.2 (3) and Theorem
3.3 (2), (3)]. In particular, we determine, as an extension of [9, Theo-
rem 3.3 (3)], the form of homogeneous principal ideals. In fact, the
characterization of homogeneous principal ideals plays a key role in
studying homogeneous ideals. This is due to the (easily verified) fact
that an ideal I of a graded ring is homogeneous if every principal ideal
generated by an element of I is homogeneous.

Proposition 5.2. The following assertions are true.

1. Let I⋉nN1⋉· · ·⋉Nn and I ′⋉nN
′
1⋉· · ·⋉N ′n be two homogeneous

ideals of R ⋉n M . Then, we have the following homogeneous ideals of
R⋉n M :

(a) (I ⋉nN1⋉ · · ·⋉Nn)+ (I ′⋉nN
′
1⋉ · · ·⋉N ′n) = (I + I ′)⋉n (N1+

N ′1)⋉ · · ·⋉ (Nn +N ′n),

(b) (I ⋉n N1 ⋉ · · ·⋉Nn)∩ (I ′⋉n N ′1 ⋉ · · ·⋉N ′n) = (I ∩ I ′)⋉n (N1 ∩
N ′1)⋉ · · ·⋉ (Nn ∩N ′n),

(c) (I⋉nN1⋉ · · ·⋉Nn)(I
′⋉nN

′
1⋉ · · ·⋉N ′n) = II ′⋉n (IN

′
1+I ′N1)⋉

(IN ′2 + I ′N2 +N1N
′
1)⋉ · · ·⋉ (IN ′n + I ′Nn +

∑
i+j=nNiN

′
j), and

(d) (I⋉nN1⋉· · ·⋉Nn) : (I
′⋉nN

′
1⋉· · ·⋉N ′n) = ((I :R I ′)∩(N1 :R N ′1)

∩· · ·∩(Nn :R N ′n))⋉n ((N1 :M1 I ′)∩(N2 :M1 N ′1)∩· · ·∩(Nn :M1 N ′n−1))
⋉ · · ·⋉ (Nn :Mn I ′) where (Ni+j :Mi N

′
j) := {mi ∈ Mi | miN

′
j ⊆ Ni+j}

for every i, j ∈ {0, . . . , n} with i + j ≤ n (here M0 = R, N0 = I and
N ′0 = I ′).

2. A principal ideal ⟨(a,m1, . . . ,mn)⟩ of R⋉n M is homogeneous if
and only if

⟨(a,m1, . . . ,mn)⟩ = aR⋉n (Rm1 + aM1)⋉ (Rm2 + aM2 +m1M1)

⋉ · · ·⋉
(
Rmn + aMn +

∑
i+j=n

miMj

)
.
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3. For an ideal J of R ⋉n M ,
√
J =

√
Π0(J)⋉n M . In particular,

if I ⋉n C1 ⋉ · · ·⋉ Cn is a homogeneous ideal of R⋉n M , then√
I ⋉n C1 ⋉ · · ·⋉ Cn =

√
I ⋉n M.

Proof.

1. The proof for each of the first three statements is similar to that
corresponding to [37, Theorem 25.1 (2)]. The last statement easily
follows from the fact that the residual of two homogeneous ideals is
again homogeneous.

2. Apply assertion (1) and Theorem 5.1 (1).

3. The proof is similar to that of [9, Theorem 3.2 (3)]. �

It is a well-known fact that, in the case where n = 1, even if a
homogeneous ideal I ⋉ C is finitely generated, the R-module C is not
necessarily finitely generated (consider Z ⋉ Q and the principal ideal
⟨(2, 0)⟩ = 2Z ⋉ Q as an example). The next result presents, in this
context, some specific cases obtained using standard arguments.

Proposition 5.3. The following assertions are true.

(1) The ideal 0⋉n M of R ⋉n M is finitely generated if and only if
each R-module Mi is finitely generated.

(2) If a homogeneous ideal I ⋉n C1 ⋉ · · ·⋉Cn of R⋉n M is finitely
generated, then I is a finitely generated ideal of R. The converse
implication is true when Ci is a finitely generated R-module for every
i ∈ {1, . . . , n}.

From the previous section, it may be seen that every radical (hence,
prime) ideal of R⋉nM is homogeneous. However, it is well known that
the ideals of classical trivial extensions are not, in general, homogeneous
(see [9]). The following natural questions arise.

Question 5.4. When is every ideal of a given class I of ideals of
R⋉n M homogeneous?

Question 5.5. For a given ring R and a family of R-modules M =
(Mi)

n
i=1, what is the class of all homogeneous ideals of R⋉n M?
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Clearly, these questions depend upon the structure of both R and
eachMi. For instance, for n = 1, if R is a quasi-local ring with maximal
m, then a proper homogeneous ideal of R ⋉ R/m either has the form
I ⋉R/m or I ⋉ 0 where I is a proper ideal of R. In addition, a proper
homogeneous principal ideal of R⋉R/m either has the form 0⋉R/m
or I⋉0 where I is a principal ideal of R. Then, for instance, a principal
ideal of R ⋉ R/m generated by an element (a, e), where a and e are
both nonzero with a ∈ m, is not homogeneous.

Question 5.4 was investigated in [9] for the case where I is the
class of regular ideals of R ⋉1 M [9, Theorem 3.9]. Also, under the
condition that R is an integral domain, a characterization of trivial
extension rings over which every ideal is homogeneous is given (see
[9, Theorem 3.3 and Corollary 3.4]). Our aim in the remainder of this
section is to extend this study to n-trivial extensions. It is worth noting
that, in the classical case (where n = 1), ideals J with Π0(J) = 0 are
homogeneous. This shows that the condition that all ideals J with
Π0(J) ̸= 0 are homogeneous implies that all ideals of R ⋉1 M are
homogeneous. In the context of R⋉n M for n ≥ 2, we show that more
situations can occur.

We begin with the class of ideals J of R⋉n M with Π0(J) ∩ S ̸= ∅
for a given subset S of regular elements of R.

Recall that a ring S is said to be présimplifiable if, for every a and
b in S: ab = a implies a = 0 or b ∈ U(S). Présimplifiable rings were
introduced and studied by Bouvier in a series of papers (see references),
and they have also been investigated in [7, 8]. In [9], the notion of
a présimplifiable ring is used when homogeneous ideals of the classical
trivial extensions were studied. For example, we have that, if R is
présimplifiable but not an integral domain, then every ideal of R⋉1 M
is homogeneous if and only if M1 = 0 (see [9, Theorem 3.3 (4)]). This
is the reason we first consider only subsets of regular elements.

Theorem 5.6. Let S be a nonempty subset of R − Z(R), and let I
be the class of ideals J of R ⋉n M with Π0(J) ∩ S ̸= ∅. Then, the
following assertions are equivalent.

(1) Every ideal in I is homogeneous.

(2) Every principal ideal in I is homogeneous.

(3) For every s ∈ S and i ∈ {1, . . . , n}, sMi = Mi.
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(4) Every principal ideal ⟨(s,m1, . . . ,mn)⟩ with s ∈ S has the form
I ⋉n M where I is a principal ideal of R with I ∩ S ̸= ∅.

(5) Every ideal in I has the form I ⋉n M where I is an ideal of R
with I ∩ S ̸= ∅.

Proof.

(1) ⇒ (2). Obvious.

(2) ⇒ (3). Let s ∈ S and i ∈ {1, . . . , n}. We only need prove that
Mi ⊆ sMi. Consider an element mi of Mi. Since s ∈ S, ⟨(s, 0, . . . , 0,
mi, 0, . . . , 0)⟩ is homogeneous. Then, (s, 0, . . . , 0) ∈ ⟨(s, 0, . . . , 0,mi, 0,
. . . , 0)⟩; thus, there is an (x, e1, . . . , en) ∈ R⋉nM1⋉ · · ·⋉Mn such that

(s, 0, . . . , 0,mi, 0, . . . , 0)(x, e1, . . . , en) = (s, 0, . . . , 0).

Since s is regular, x = 1. Then, mi = (−s)ei, as desired.

(3) ⇒ (4). Let ⟨(s,m1, . . . ,mn)⟩ be a principal ideal of R⋉nM with
s ∈ S. From (3),

(s,m1, . . . ,mn)(0⋉n 0⋉ · · ·⋉ 0⋉Mn) = 0⋉n 0⋉ · · ·⋉ 0⋉Mn.

This implies that 0⋉n 0⋉ · · ·⋉ 0⋉Mn ⊂ ⟨(s,m1, . . . ,mn)⟩. Using this
inclusion and (3), we obtain

0⋉n 0⋉ · · ·⋉ 0⋉Mn−1 ⋉ 0 ⊂ ⟨(s,m1, . . . ,mn)⟩.

Then, inductively, we have

0⋉n 0⋉ · · ·⋉ 0⋉Mi ⋉ 0⋉ · · ·⋉ 0 ⊂ ⟨(s,m1, . . . ,mn)⟩

for every i ∈ {1, . . . , n}. Thus, 0⋉nM1⋉ · · ·⋉Mn ⊂ ⟨(s,m1, . . . ,mn)⟩.
Therefore, by Lemma 4.6 and Proposition 5.2 2, ⟨(s,m1, . . . ,mn)⟩ has
the form I ⋉n M where I = sR.

(4) ⇒ (5). Consider an ideal J in I . Then, there is an element
(s,m1, . . . ,mn) ∈ J such that s ∈ Π0(J) ∩ S. Therefore, using (4) and
Lemma 4.6, we obtain the desired result.

(5) ⇒ (1). Obvious. �

As an example, we may consider the trivial extension S := Z ⋉2

ZW ⋉ Q where ZW is the ring of fractions of Z with respect to the
multiplicatively closed subset W = {2k | k ∈ N} of Z. Then, the prin-
cipal ideal ⟨(3, 1, 0)⟩ of S is inhomogeneous. Suppose this is not true.
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We must have (3, 0, 0) ∈ ⟨(3, 1, 0)⟩. Thus, there is an (a, e, f) ∈ S such
that (3, 0, 0) = (3, 1, 0)(a, e, f). However, this implies that a = 1, and
then, e = −1/3, which is absurd.

The following result is an extension of [9, Theorem 3.9]. Recall that
an ideal is said to be regular if it contains a regular element. Here, from
Proposition 4.9, an ideal of R⋉n M is regular if and only if it contains
an element (s,m1, . . . ,mn) with s ∈ R−(Z(R)∪Z(M1)∪· · ·∪Z(Mn)).

Corollary 5.7. Let S = R − (Z(R) ∪ Z(M1) ∪ · · · ∪ Z(Mn)). Then,
the following assertions are equivalent.

(1) Every regular ideal of R⋉n M is homogeneous.

(2) Every principal regular ideal of R⋉n M is homogeneous.

(3) For every s ∈ S and i ∈ {1, . . . , n}, sMi = Mi (or equivalently,
MiS = Mi).

(4) Every principal ideal ⟨(s,m1, . . . ,mn)⟩ with s ∈ S has the form
I ⋉n M , where I is a principal ideal of R with I ∩ S ̸= ∅.

(5) Every regular ideal of R⋉n M has the form I ⋉n M , where I is
an ideal of R with I ∩ S ̸= ∅.

Consequently, if R⋉nM is root closed (in particular, integrally closed),
then every regular ideal of R⋉n M has the form given in (5).

Proof. The proof is similar to that of [9, Theorem 3.9]. �

Compare the following result with [9, Corollary 3.4].

Corollary 5.8. Assume that R is an integral domain. Then, the
following assertions are equivalent.

(1) Every ideal J of R⋉n M with Π0(J) ̸= 0 is homogeneous.

(2) Every principal ideal J of R ⋉n M with Π0(J) ̸= 0 is homo-
geneous.

(3) For every i ∈ {1, . . . , n}, Mi is divisible.

(4) Every principal ideal ⟨(s,m1, . . . ,mn)⟩ of R⋉nM with s ̸= 0 has
the form I ⋉n M , where I is a nonzero principal ideal of R.

(5) Every ideal J of R⋉n M with Π0(J) ̸= 0 has the form I ⋉n M ,
where I is a nonzero ideal of R.
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(6) Every ideal of R⋉n M is comparable to 0⋉n M .

Proof. Equivalence (5) ⇔ (6) is a simple consequence of Lemma 4.6.
�

The proof of Theorem 5.6 shows that another situation may be
considered. This is given in the following result. We use AnnR(H)
to denote the annihilator of an R-module H.

Theorem 5.9. Let I be the class of ideals J of R⋉nM with Π0(J)∩
S ̸= ∅, where S is a nonempty subset of R − {0} such that, for every
s ∈ S, AnnR(s) ⊆ AnnR(Mi). Then, the following assertions are
equivalent.

(1) Every ideal in I is homogeneous.

(2) Every principal ideal in I is homogeneous.

(3) For every s ∈ S and i ∈ {1, . . . , n}, sMi = Mi.

(4) Every principal ideal ⟨(s,m1, . . . ,mn)⟩ with s ∈ S has the form
I ⋉n M , where I is a principal ideal of R with I ∩ S ̸= ∅.

(5) Every ideal in I has the form I ⋉n M , where I is an ideal of R
with I ∩ S ̸= ∅.

Proof. We only need prove the implication (2) ⇒ (3). Let s ∈ S,
i ∈ {1, . . . , n}, and consider an element mi of Mi − {0}. Since
s ∈ S, ⟨(s, 0, . . . , 0,mi, 0, . . . , 0)⟩ is homogeneous. Then, (s, 0, . . . , 0) ∈
⟨(s, 0, . . . , 0,mi, 0, . . . , 0)⟩; thus, there is an (x, e1, . . . , en) ∈ R⋉nM1⋉
· · ·⋉Mn such that (s, 0, . . . , 0,mi, 0, . . . , 0)(x, e1, . . . , en) = (s, 0, . . . , 0).
Next, sx = s and, by the hypothesis on S, (x − 1)mi = 0. Therefore,
mi = xmi = (−s)ei, as desired. �

For an example of a ring which satisfies the condition of the previous
result, consider a ring R with an idempotent e ∈ R − {1, 0}, and set
S = {e} and Mi = Re for every i ∈ {1, . . . , n}. Thus, since eMi = Mi

for every i ∈ {1, . . . , n}, every ideal J of R ⋉n M with e ∈ Π0(J) is
homogeneous.

Unlike the classical case (where n = 1), the fact that, for every
i ∈ {1, . . . , n}, Mi is divisible does not necessarily imply that every
ideal is homogeneous. For that, we consider the 2-trivial extension
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S := k ⋉2 (k × k) ⋉ (k × k), where k is a field. Then, the principal
ideal ⟨(0, (1, 0), (0, 1))⟩ of S is inhomogeneous. Indeed, if it were ho-
mogeneous, we would have (0, (1, 0), (0, 0)) ∈ ⟨(0, (1, 0), (0, 1))⟩. Thus,
there is an (a, (e, f), (e′, f ′)) ∈ S such that

(0, (1, 0), (0, 0)) = (0, (1, 0), (0, 1))(a, (e, f), (e′, f ′)).

However, this implies that (a, 0) = (1, 0) and (0, 0) = (e, a), which is
absurd.

This example naturally leads us to investigate when every ideal J of
R⋉nM with Π0(J) = 0 is homogeneous. In this context, the notion of
a présimplifiable module is used. For that, recall that an R-module H
is called R-présimplifiable if, for every r ∈ R and h ∈ H, rh = h
implies h = 0 or r ∈ U(R). For example, over an integral domain,
every torsion-free module is présimplifiable (see [3, 7]).

In studying the question when every ideal J of R ⋉n M with
Π0(J) = 0 is homogeneous, several different cases occur. We use the
following lemma for these.

Lemma 5.10. Let J be an ideal of R⋉nM such that, for i ∈ {1, . . . , n},
Π0(J) = 0,. . . ,Πi−1(J) = 0 and Πi(J) ̸= 0. Then, the following
assertions are true.

(1) For i = n, the ideal J is homogeneous, and it has the form
0⋉n 0⋉ · · ·⋉ 0⋉Πn(J).

(2) For i ̸= n, if 0⋉n 0⋉ · · ·⋉ 0⋉Mi+1 ⋉ · · ·⋉Mn ⊂ J , then J is
homogeneous, and it has the form 0 ⋉n 0 ⋉ · · · ⋉ 0 ⋉ Πi(J) ⋉Mi+1 ⋉
· · ·⋉Mn.

Proof. Straightforward. �

Theorem 5.11. Assume that n ≥ 2, and Mj is présimplifiable for a
given j ∈ {1, . . . , n − 1}. Let I be the class of ideals J of R ⋉n M
with Πi(J) = 0 for every i ∈ {0, . . . , j − 1} and Πj(J) ̸= 0. Then, the
following assertions are equivalent.

(1) Every ideal in I is homogeneous.

(2) Every principal ideal in I is homogeneous.
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(3) For every k ∈ {j + 1, . . . , n} and every mj ∈ Mj − {0},
Mk = mjMk−j.

(4) Every principal ideal ⟨(0, 0, . . . , 0,mj , . . . ,mn)⟩ with mj ̸= 0 has
the form 0⋉n 0⋉ · · ·⋉ 0⋉N ⋉Mj+1⋉ · · ·⋉Mn, where N is a nonzero
cyclic submodule of Mj.

(5) Every ideal in I has the form 0⋉n0⋉· · ·⋉0⋉N⋉Mj+1⋉· · ·⋉Mn,
where N is a nonzero submodule of Mj.

(6) Every ideal in I contains 0⋉n 0⋉ · · ·⋉ 0⋉Mj+1 ⋉ · · ·⋉Mn.

Proof. The implication (3) ⇒ (4) is proved similarly to the impli-
cation (3) ⇒ (4) of Theorem 5.6. The implication (6) ⇒ (1) is a sim-
ple consequence of Lemma 5.10. Then, only the implication (2) ⇒ (3)
needs a proof. Let k ∈ {j+1, . . . , n},mj ∈ Mj−{0} andmk ∈ Mk−{0}.
Further, the principal ideal p = ⟨(0, . . . , 0,mj , 0, . . . , 0,mk, 0, . . . , 0)⟩ is
homogeneous. This implies that (0, . . . , 0,mj , 0, . . . , 0) ∈ p, and thus,
there exists an (r, e1, . . . , en) ∈ R⋉n M such that

(0, . . ., 0,mj , 0, . . ., 0) = (r, e1, . . ., en)(0, . . ., 0,mj , 0, . . ., 0,mk, 0, . . ., 0).

Then, rmj = mj and rmk+ek−jmj = 0. Since Mj is présimplifiable, r
is invertible, and then mk = −r−1ek−jmj , as desired. �

For examples of rings which satisfy the conditions of the previous
result, we can consider the following two 2-trivial extensions: Z⋉2 ZW

⋉ Q and Z ⋉2 ZW ⋉ ZW , where ZW is the ring of fractions of Z with
respect to the multiplicatively closed subset W = {2k | k ∈ N} of Z.

The following specific cases are of interest.

Corollary 5.12. Assume that n ≥ 2 and Mn−1 is présimplifiable.
Let I be the class of ideals J of R ⋉n M with Πi(J) = 0 for every
i ∈ {0, . . . , n− 2}. Then, the following assertions are equivalent.

(1) Every ideal in I is homogeneous.

(2) For every mn−1 ∈ Mn−1 − {0}, Mn = mn−1M1.

(3) Every ideal in I is comparable to 0⋉n 0⋉ · · ·⋉ 0⋉Mn.

Proof.

(1) ⇒ (2). This is a specific case of the corresponding one in Theo-
rem 5.11.



2482 D.D. ANDERSON, D. BENNIS, B. FAHID AND A. SHAIEA

(2) ⇒ (3). Let I be an ideal of R⋉n M in I . If Πn−1(I) ̸= 0, then
Theorem 5.11 shows that I contains 0⋉n 0⋉ · · ·⋉ 0⋉Mn. Otherwise,
Πn−1(I) = 0, which means that 0⋉n 0⋉ · · ·⋉ 0⋉Mn contains I.

(3) ⇒ (1). Let I be a nonzero ideal of R⋉nM in I . If Πn−1(I) ̸= 0,
then Theorem 5.11 shows that I is homogeneous. The other case is a
consequence of assertion (1) of Lemma 5.10. �

When n = 2, we obtain the following specific case of Corollary 5.12.

Corollary 5.13. Assume that M1 is présimplifiable, n = 2. Let I be
the class of ideals J of R ⋉2 M with Π0(J) = 0. Then, the following
assertions are equivalent.

(1) Every ideal in I is homogeneous.

(2) For every m1 ∈ M1 − {0}, M2 = m1M1.

(3) Every ideal in I is comparable to 0⋉2 0⋉M2.

When j = 1 in Theorem 5.11, there are additional conditions equiv-
alent to (1)–(6). The study of this case leads us to introduce the
following notion in order to avoid trivial situations.

Definition 5.14. Assume that n ≥ 2. For i ∈ {1, . . . , n − 1} and
j ∈ {2, . . . , n} with product ij ≤ n, Mi is said to be φ-j-integral
(where φ = {φi,j} i+j≤n

1≤i,j≤n−1

is the family of multiplication) if, for any j

elements mi1 , . . . ,mij of Mi, if the product mi1 · · ·mij = 0. Then, at
least one of the miks is zero. If no ambiguity arises, Mi is simply called
the j-integral.

Corollary 5.15. Assume that n ≥ 2, M1 is présimplifiable and k-
integral for every k ∈ {2, . . . , n− 1}. Let I be the class of ideals J of
R⋉nM with Π0(J) = 0 and Π1(J) ̸= 0. Then, the following assertions
are equivalent.

(1) Every ideal in I is homogeneous.

(2) Every principal ideal in I is homogeneous.

(3) For every k ∈ {2, . . . , n} and every m1 ∈ M1 − {0}, Mk =
m1Mk−1.
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(4) For every k ∈ {2, . . . , n} and every nonzero element m11 , . . . ,
m1k−1

∈ M1 − {0}, Mk = m11 · · ·m1k−1
M1.

(5) For every k ∈ {2, . . . , n} and every nonzero element m ∈ M1 −
{0}, Mk = mk−1M1.

(6) Every principal ideal ⟨(0,m1, . . . ,mn)⟩ with m1 ̸= 0 has the form
0⋉n N ⋉M2 · · ·⋉Mn, where N is a nonzero cyclic submodule of M1.

(7) Every ideal in I has the form 0⋉n N ⋉M2 · · ·⋉Mn, where N
is a nonzero submodule of M1.

(8) Every ideal in I contains 0⋉n 0⋉M2 ⋉ · · ·⋉Mn.

Proof. The equivalences (3) ⇔ (4) ⇔ (5) are easily proved. �

The following result shows that, in fact, the conditions of Corol-
lary 5.15 above are necessary and sufficient to show that every ideal J
of R ⋉n M with Π0(J) = 0 is homogeneous. Note that Corollary 5.13
presents the case n = 2. Thus, in the following result, we may assume
that n ≥ 3.

Corollary 5.16. Assume that n ≥ 3 and M1 is présimplifiable and
k-integral for every k ∈ {2, . . . , n − 1}. Then, the following assertions
are equivalent.

(1) Every ideal J of R ⋉n M with Π0(J) = 0 and Π1(J) ̸= 0 is
homogeneous.

(2) For every j ∈ {1, . . . , n − 1}, Mj is présimplifiable, and every
ideal J of R⋉n M with Π0(J) = 0 is homogeneous.

Proof. We only need prove that (1) ⇒ (2). Let j ∈ {1, . . . , n − 1},
and consider mj ∈ Mj − {0}. Let r ∈ R be such that rmj = mj .
From Corollary 5.15 (4), there are m11 , . . . ,m1j ∈ M1 − {0} such that
mj = m11 · · ·m1j . Then, rm11 · · ·m1j = m11 · · ·m1j , which implies
that (rm11 − m11)m12 · · ·m1j = 0. Now, since M1 is k-integral for
every k ∈ {2, . . . , n − 1}, rm11 − m11 = 0. Therefore, r is invertible
since M1 is présimplifiable. Thus, Mj is présimplifiable.

Now, to prove that every ideal J of R ⋉n M with Π0(J) = 0
is homogeneous, it suffices to prove that Mk = mjMk−j for every
k ∈ {2, . . . , n}, every j ∈ {1, . . . , k − 1} and every mj ∈ Mj − {0} (by
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Theorem 5.11). The case where k = 2 is trivial. Thus, fix k ∈ {3, . . . , n}
and j ∈ {1, . . . , k − 1}. Consider mj ∈ Mj − {0} and mk ∈ Mk − {0}.
We prove that mk = mjmk−j for some mk−j ∈ Mk−j − {0}. From
Corollary 5.15 (5), mj = mj−1m1 for some m,m1 ∈ M1 − {0}. And,
from Corollary 5.15 (3), mk = m1mk−1 for some mk−1 ∈ Mk−1 − {0}.
In addition, from Corollary 5.15 (5), mk−1 = mk−2m′1 for some
m′1 ∈ M1 − {0}. Then, mk = mk−2m1m

′
1 = (mj−1m1)(m

k−j−1m′1) =
mjmk−j , where mk−j = mk−j−1m′1 ∈ Mk−j − {0}, as desired. �

Finally, we give a case when we can characterize rings in which every
ideal is homogeneous. Note that, when R is a ring with aMi = Mi for
every i ∈ {1, . . . , n − 1}, a ∈ R − {0}, and Mi = mi−1M1 for every
i ∈ {2, . . . , n} and nonzero element m ∈ M1−{0}, then R is an integral
domain and Mi must be torsion-free for every i ∈ {1, . . . , n− 1}.

Corollary 5.17. Suppose that n ≥ 2 and R is an integral domain.
Assume that Mi is torsion-free, for every i ∈ {1, . . . , n − 1}, and that
M1 is k-integral for every k ∈ {2, . . . , n − 1}. Then, the following
assertions are equivalent.

(1) Every ideal of R⋉n M is homogeneous.

(2) The following two conditions are satisfied :

(i) for every i ∈ {1, . . . , n}, Mi is divisible; and
(ii) for every i ∈ {2, . . . , n} and m1 ∈ M1 − {0}, Mi = m1Mi−1.

Proof. Simply use Corollaries 5.8 and 5.15 and Theorem 5.11. �

It is simple to show that the two n-trivial extensions Z⋉nQ⋉ · · ·⋉Q
and Z⋉n Q⋉ · · ·⋉Q⋉Q/Z satisfy the conditions of the above result,
and thus, every ideal of these rings is homogeneous.

We end this section with the following specific case.

Corollary 5.18. Suppose that n ≥ 2. Consider the n-trivial extension
S := k ⋉n E1 ⋉ · · · ⋉ En where k is a field and, for i ∈ {1, . . . , n},
Ei is a k-vector space. Suppose that E1 is k-integral for every k ∈
{2, . . . , n− 1}. Then, the following assertions are equivalent.

(1) Every ideal of S is homogeneous.
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(2) For every k ∈ {2, . . . , n}, j ∈ {1, . . . , k − 1} and ej ∈ Ej − {0},
Ek = ejEk−j.

As a specific case, we may consider a field extension K ⊆ F . Then,
every ideal of S := K ⋉n F ⋉ · · · ⋉ F is homogeneous, namely, every
proper ideal of S has the form 0 ⋉n 0 ⋉ · · · ⋉ 0 ⋉ N ⋉ F ⋉ · · · ⋉ F ,
where N is a K-subspace of F .

6. Some ring-theoretic properties of R ⋉n M . In this section,
we determine when R ⋉n M has certain ring properties such as being
Noetherian, Artinian, Manis valuation, Prüfer, chained, arithmetical, a
π-ring, a generalized ZPI-ring or a PIR. We conclude the section with
a remark on a question posed in [2] concerning m-Boolean rings.

We begin by characterizing when the n-trivial extensions are Noe-
therian (respectively, Artinian). The next result extends [9, Theo-
rem 4.8].

Theorem 6.1. The ring R⋉nM is Noetherian (respectively, Artinian)
if and only if R is Noetherian (respectively, Artinian) and, for every
i ∈ {1, . . . , n}, Mi is finitely generated.

Proof. Similar to the proof of [9, Theorem 4.8]. �

The following result is an extension of [9, Theorem 4.2, Corol-
lary 4.3]. It investigates the integral closure of R ⋉n M in the total
quotient ring T (R⋉n M) of R⋉n M .

Theorem 6.2. Let

S = R− (Z(R) ∪ Z(M1) ∪ · · · ∪ Z(Mn)).

If R′ is the integral closure of R in T (R), then

(R′ ∩RS)⋉n M1S ⋉ · · ·⋉MnS

is the integral closure of R⋉n M in T (R⋉n M). In particular,

(1) If R is an integrally closed ring, then R ⋉n M1S ⋉ · · ·⋉MnS is
the integral closure of R⋉n M1 ⋉ · · ·⋉Mn in T (R⋉n M1 ⋉ · · ·⋉Mn),
and



2486 D.D. ANDERSON, D. BENNIS, B. FAHID AND A. SHAIEA

(2) if Z(Mi) ⊆ Z(R) for all i ∈ {1, . . . , n}, then R⋉nM1S⋉· · ·⋉MnS

is integrally closed if and only if R is integrally closed.

Proof. All statements may be proved similarly to those of [9, The-
orem 4.2, Corollary 4.3]. �

It is worth noting, as in the classical case, that R ⋉n M can be
integrally closed without R being integrally closed (see the example
given after [9, Corollary 4.3]).

Similar to the classical case [9, Theorem 4.16 (1), (2)], as a conse-
quence of Corollary 5.7 and Theorem 6.2, we give the following result
which characterizes when R ⋉n M is a (Manis) valuation and when it
is Prüfer. First, recall these two notions.

Let S be a subring of a ring T , and let P be a prime ideal of S.
Then, (S, P ) is called a valuation pair on T (or S is merely a valuation
ring on T ) if there is a surjective valuation

v : T −→ G ∪ {∞}(v(xy) = v(x) + v(y), v(x+ y) ≥ min{v(x), v(y)},
v(1) = 0 and v(0) = ∞),

where G is a totally ordered Abelian group, with

S = {x ∈ T | v(x) ≥ 0} and P = {x ∈ T | v(x) > 0}.

This is equivalent to the following: if x ∈ T − S, then there exists
an x′ ∈ P with xx′ ∈ S − P . A valuation ring S is called a (Manis)
valuation ring if T = T (S). Also, S is called a Prüfer ring if every
finitely generated regular ideal of S is invertible. This is equivalent to
every overring of S being integrally closed (see [37] for more details).

Corollary 6.3. Let S = R− (Z(R) ∪ Z(M1) ∪ · · · ∪ Z(Mn)).

(1) R⋉nM is a Manis valuation ring if and only if R is a valuation
ring on RS and Mi = MiS for every i ∈ {1, . . . , n}.

(2) R⋉nM is a Prüfer ring if and only if, for every finitely generated
ideal I of R with I ∩ S ̸= ∅, I is invertible and Mi = MiS for every
i ∈ {1, . . . , n}.
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Now, as an extension of [9, Theorem 4.16 (3)], we characterize when
R⋉n M is a chained ring. Recall that a ring S is said to be chained if
the set of ideals of S is totally ordered by inclusion.

As an exception to Convention 4.2, in the following results (Lemma 6.4,
Theorem 6.5, Corollary 6.6, Lemma 6.7 and Theorem 6.8), a module
in the family associated to an n-trivial extension can be zero.

The proof of the desired result uses the next lemma, which gives
another characterization of a particular n-trivial extension with the
property that every ideal is homogeneous.

Lemma 6.4. Assume that R is quasi-local with maximal ideal m.
Suppose also that at least one of the modules of the family M is nonzero.
Then, every ideal of R⋉nM is homogeneous if and only if the following
three conditions are satisfied :

(1) R is an integral domain.

(2) For every i ∈ {1, . . . , n}, Mi is divisible.

(3) For every 1 ≤ i ≤ j ≤ n (when n ≥ 2), if Mi ̸= 0 and Mj ̸= 0,
then Mj−i ̸= 0 and eMi = Mj for every e ∈ Mj−i.

In this case, each ideal has one of the forms I ⋉n M , for some ideal I
of R, or

0⋉n 0⋉ · · ·⋉ 0⋉N ⋉Mj+1 ⋉ · · ·⋉Mn,

where N is a nonzero submodule of Mj for some j ∈ {1, . . . , n}.
Proof.

⇒. Clearly, the first assertion is a simple consequence of the second
one. Then, we only need prove the second and third assertions.

(2) Let r ∈ R − {0} and i ∈ {1, . . . , n}. Consider an element
mi ∈ Mi. If r ̸∈ m, the maximal ideal of R, then r is invertible, and
trivially, we get the result. Next, assume that r ∈ m. By hypothesis,
the ideal ⟨(r, 0, . . . , 0,mi, 0, . . . , 0)⟩ is homogeneous, so there is an
(r′,m′1, . . . ,m

′
n) such that

(r, 0, . . . , 0) = (r, 0, . . . , 0,mi, 0, . . . , 0)(r
′,m′1, . . . ,m

′
n).

Then, rr′ = r and 0 = rm′i + r′mi. Thus, r′ cannot be in m, so r′ is
invertible, and thus, mi = −(r′)−1rm′i, as desired.
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(3) Let 1 ≤ i ≤ j ≤ n be such that Mi ̸= 0 and Mj ̸= 0.
Consider mi ∈ Mi − {0} and mj ∈ Mj − {0}. By hypothesis,
⟨(0, . . . , 0,mi, 0, . . . , 0,mj , 0, . . . , 0)⟩ is homogeneous. Then,

(0, . . ., 0,mj , 0, . . ., 0)=(0, . . ., 0,mi, 0, . . ., 0,mj , 0, . . ., 0)(r
′,m′1, . . .,m

′
n)

for some (r′,m′1, . . . ,m
′
n) ∈ R⋉n M . This implies that

r′mi = 0 and r′mj +mim
′
j−i = mj .

If Mj−i = 0, we obtain r′mi = 0 and (r′ − 1)mj = 0. This is
impossible since either r′ or r′ − 1 is invertible. Then, Mj−i ̸= 0.
Now, suppose that r′ ̸= 0. From (2), there exists an m′′j−i ∈ Mj−i such
that m′j−i = r′m′′j−i. Hence, using the fact that r′mi = 0, the equality
r′mj + mim

′
j−i = mj becomes r′mj = mj . As in the previous case,

this is impossible. Therefore, r′ = 0, and this gives the desired result.

⇐. We only need to prove that every principal ideal ⟨(s,m1, . . . ,mn)⟩
of R ⋉n M is homogeneous. For this, distinguish two cases s ̸= 0,
and s = 0, and follow an argument similar to that of Theorem 5.6
(3) ⇒ (4). �

Theorem 6.5. Assume that n ≥ 2 and that at least one of the modules
of the family M is nonzero. Then, the ring R ⋉n M is chained if and
only if the following conditions are satisfied :

(1) R is a valuation domain;

(2) for every i ∈ {1, . . . , n}, Mi is divisible;

(3) for every 1 ≤ i ≤ j ≤ n, if Mi ̸= 0 and Mj ̸= 0, then Mj−i ̸= 0
and eMi = Mj for every e ∈ Mj−i; and

(4) for every i ∈ {1, . . . , n}, the set of all (cyclic) submodules of Mi

is totally ordered by inclusion.

Proof.

⇒. First, we prove that R is a chained ring. Consider two ideals I
and J of R. Then, I ⋉n M and J ⋉n M are two ideals of R⋉n M . In
addition, they are comparable and so are I and J , as desired. A similar
argument may be used to prove the last assertion.

Now, we prove that every ideal of R ⋉n M is homogeneous. Then,
by Lemma 6.4, we get the other assertions. Consider a nonzero ideal
K of R ⋉n M . If Π0(K) ̸= 0, then necessarily, 0 ⋉n M ⊂ K. Then,
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from Lemma 4.6, K is homogeneous. Now, let i ≥ 1 be the smallest
integer such that Πi(K) ̸= 0. If i = n, then, by the first assertion of
Lemma 5.10, K is homogeneous. If i ̸= n, then necessarily,

0⋉n · · ·⋉ 0⋉Mi+1 ⋉ · · ·⋉Mn ⊂ K.

Thus, by the second assertion of Lemma 5.10, K is homogeneous, as
desired.

⇐. Using Lemma 5.10, we deduce that any two ideals I and J of
R⋉n M have the forms

I = 0⋉n · · ·⋉ 0⋉ Ii ⋉Mi+1 ⋉ · · ·⋉Mn

and
J = 0⋉n · · ·⋉ 0⋉ Jj ⋉Mj+1 ⋉ · · ·⋉Mn

for some i, j ∈ {0, . . . , n}, where Ii and Jj are submodules of Mi and
Mj , respectively (here, M0 = R). If i ̸= j, then obviously, I and J are
comparable. If i = j, then, using the first and the last assertion, we can
show that Ii and Jj are comparable and so are I and J , as desired. �

Using Corollary 3.8 and Theorem 6.5, we obtain an extension of [9,
Theorem 4.16 (4)], which characterizes when R ⋉n M is arithmetical.
Recall that a ring S is arithmetical if and only if SP is chained for each
prime (maximal) ideal P of S. Also, recall that, for a ring S, an S-
module H is called arithmetical if, for each prime (maximal) ideal P of
S, the set of submodules of HP is totally ordered by inclusion. Finally,
recall that the support of an S-module H, supp(H), over a ring S is
the set of all prime ideals P of S such that HP ̸= 0.

Corollary 6.6. The ring R ⋉n M is arithmetical if and only if the
following conditions are satisfied :

(1) R is arithmetical ;

(2) for every i ∈ {1, . . . , n}, Mi is an arithmetical R-module;

(3) for every P ∈ ∪i supp(Mi), RP is a valuation domain;

(4) for every i ∈ {1, . . . , n} and P ∈ supp(Mi), MiP is a divisible
RP -module; and

(5) for every 1 ≤ i ≤ j ≤ n, if P ∈ supp(Mi) ∩ supp(Mj), then
P ∈ supp(Mj−i) and eMiP = MjP for every e ∈ M(j−i)P .
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Recall that a ring S is called a generalized ZPI-ring (respectively, a
π-ring) if every proper ideal (respectively, proper principal ideal) of S
is a product of prime ideals. An integral domain which is a π-ring is
called a π-domain. Clearly, a generalized ZPI-domain is nothing but a
Dedekind domain. It is well known (for example, see [28, Sections
39, 46]) that S is a π-ring (respectively, a generalized ZPI-ring, a
principal ideal ring (PIR)) if and only if S is a finite direct product
of the following types of rings: (1) π-domains (respectively, Dedekind
domains, PIDs) which are not fields, (2) special principal ideal rings
(SPIRs) and (3) fields.

Our next results extend [9, Lemma 4.9, Theorem 4.10]. They char-
acterize when R⋉n M is a π-ring, a generalized ZPI-ring or a PIR.

Lemma 6.7. If R ⋉n M is a π-ring (respectively, a generalized ZPI-
ring, a PIR), then R is a π-ring (respectively, a generalized ZPI-ring,
a PIR). Hence, R = R1 × · · · ×Rs, where Ri is either (1) a π-domain
(respectively, a Dedekind domain, a PID) but not a field, (2) an SPIR,
or (3) a field. Let

Mj,i = (0× · · · 0×Rj × 0× · · · × 0)Mi,

where 1 ≤ i ≤ n and 1 ≤ j ≤ s. If Ri is a domain or SPIR, but not a
field, then Mj,i = 0, while, if Ri is a field, Mj,i = 0 or Mj,i

∼= Ri.

Conversely, if R = R1 × · · · ×Rs and Mi = M1,i × · · · ×Ms,i are as
above and R is a π-ring (respectively, a generalized ZPI-ring, a PIR),
then R⋉n M is a π-ring (respectively, a generalized ZPI-ring, a PIR).

Proof. Using Theorem 3.9, the proof is similar to that of [9,
Lemma 4.9]. �

Theorem 6.8. R ⋉n M is a π-ring (respectively, a generalized ZPI-
ring, a PIR) if and only if R is a π-ring (respectively, a generalized
ZPI-ring, a PIR) and Mi is cyclic with annihilator Pi1 · · ·Pis , where
Pi1 , . . . , Pis are some idempotent maximal ideals of R (if is = 0,
Ann(Mi) = R, that is, Mi = 0).

Proof. Similar to the proof of [9, Theorem 4.10]. �
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We end the section with a remark on a question posed in [2]. Recall
that a ring R is called m-Boolean for some m ∈ N, if charR = 2 and

x1x2 · · ·xm(1 + x1) · · · (1 + xm) = 0

for all x1, . . . , xm ∈ R. Thus, Boolean rings are merely 1-Boolean rings.
It is shown in [2, Theorem 10] that 2-Boolean rings can be represented
as trivial extensions, namely, it is proved that, if R is 2-Boolean, then
R ∼= B ⋉ Nil(R), where B = {b ∈ R | b2 = b} [2, Theorem 10]. Based
on this result, the following natural question is posed (see [2, page 74]):
can [2, Theorem 10] be extended to m-Boolean rings for m ≥ 2?

It may be asked whether the n-trivial extension is the suitable
construction for solving this question. Using [2, Theorem 6], it may
be shown that the amalgamated algebras along an ideal (introduced
in [32]) partially resolve this question. Recall that, given a ring
homomorphism f : A → B and an ideal J of B, the amalgamation of A
with B along J with respect to f is the following subring of A×B:

A ◃▹f B = {(a, f(a) + j) | a ∈ A, j ∈ J}.

Note that A ◃▹f B ∼= A⊕̇J , where A⊕̇J ⊆ A × B is the ring whose
underlying group is A⊕ J with multiplication given by (a, x)(a′, x′) =
(aa′, ax′ + a′x + xx′) for all a, a′ ∈ A and x, x′ ∈ J . Here, J is an
A-module via f , and then, ax′ := f(a)x′ and a′x := f(a′)x (see [32]
for more details). Now, if R is m-Boolean for m ≥ 2, then, from [2,
Theorems 6, 7], R = B ⊕Nil(R), where B = {b ∈ R | b2 = b}. Then,

R ∼= B ⊕̇Nil(R) ∼= B ◃▹i Nil(R),

where i : B ↩→ R is the canonical injection.

From a practical standpoint, any n-trivial extension R ⋉n M may
be seen as the amalgamation of R with R ⋉n M along 0 ⋉n M with
respect to the canonical injection. This leads to the following question
for every m ≥ 2: is any m-Boolean ring an m-trivial extension?

7. Divisibility properties of R⋉nM . Factorization in commuta-
tive rings with zero divisors was first investigated in a series of papers
by Bouvier, Fletcher and Billis (see References), where the focus had
been on the unicity property. Papers [1, 7, 8] marked the start of a
systematic study of factorization in commutative rings with zero divi-
sors. Since then, this theory has attracted the interest of a number of
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authors. The study of divisibility properties of the classical trivial ex-
tension has led to some interesting examples and then to solutions for
several questions (see [9, Section 5]). In this section, we are interested
in extending a part of this study to the context of n-trivial extensions.

First, we recall the following definitions. Let S be a commutative
ring and H an S-module. Two elements e, f ∈ H are said to be
associates (written e ∼ f) (respectively, strong associates (written
e ≈ f), very strong associates (written e ∼= f)) if Se = Sf (respectively,
e = uf for some u ∈ U(S), e ∼ f and either e = f = 0 or e = rf implies
r ∈ U(S)). Taking H = S gives the notions of “associates” in S. We
say that H is strongly associate if, for every e, f ∈ H, e ∼ f ⇒ e ≈ f .
When S is strongly associate as an S-module, we also say that S is
strongly associate. Finally, recall that H is said to be S-présimplifiable
if, for r ∈ S and e ∈ H,

re = e =⇒ r ∈ U(S)

or e = 0. If S is S-présimplifiable, we simply say that S is pré-
simplifiable.

We begin with an extension of [9, Theorem 5.1].

Proposition 7.1. Let R ⊆ S be a ring extension such that U(S)∩R =
U(R).

(1) If S is présimplifiable, then every R-submodule of S is pré-
simplifiable. In particular, R is présimplifiable.

(2) Suppose that S = R⊕N as an R-module, where N is a nilpotent
ideal of S which satisfies either N2 = 0 or

N =
⊕
i∈N

Ni

as an R-module, where

S = R⊕N1 ⊕N2 ⊕ · · ·

is a graded ring. Then, S is présimplifiable if R is présimplifiable and N
is R-présimplifiable.
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Proof.

(1) LetH be an R-submodule of S. Consider e = xe with e ∈ H−{0}
and x ∈ R − {0}. Since S is présimplifiable, x ∈ U(S), and thus,
x ∈ U(S) ∩R = U(R).

(2) Let x = rx + nx ̸= 0 and y = ry + ny be two elements of

R⊕N = S,

where rx, ry ∈ R and nx, ny ∈ N , such that x = yx. Assume that
rx ̸= 0. Then, rx = ryrx implies that ry ∈ U(R) ⊆ U(S), and, since N
is nilpotent, y = ry+ny is invertible in S, as desired. Next, assume that
rx = 0. Then, nx ̸= 0, and thus, nx = rynx+nynx. In the case N2 = 0,
we have nx = rynx. Hence, ry ∈ U(R) since N is présimplifiable, and,
as above, y ∈ U(S). Finally, in the case where

S = R⊕N1 ⊕N2 ⊕ · · ·

is a graded ring, we may set

nx = ni1 + · · ·+ nim

with {i1, . . . , im} ⊂ N and m ∈ N such that i1 ≤ · · · ≤ im and ni1 ̸= 0.
Then, ni1 = ryni1 , which implies that ry ∈ U(R) and similarly, as
above, y ∈ U(S). �

Proposition 7.2. Let R = ⊕i∈N0Ri be a graded ring.

(1) If R is strongly associate, then R0 is a strongly associate ring
and Ri is a strongly associate R0-module for every i ∈ N.

(2) Suppose that there exists an n ∈ N such that Ri = 0 for every
i ≥ n+ 1, that is,

R = R0 ⋉n R1 ⋉ · · ·⋉Rn,

and assume that R0 is a présimplifiable ring and R1, . . . , Rn−1 are
présimplifiable R0-modules. Then, R is strongly associate if and only
if Rn is strongly associate.

Proof.

(1) Let xi, yi ∈ Ri−{0} for i ∈ N0 be such that R0xi = R0yi. Then,
Rxi = Ryi. Hence, there is a

u = u0 + u1 + · · · ∈ U(R)
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such that xi = uyi. Then, u0 ∈ U(R0) and xi = u0yi, as desired.

(2) Let

x = xm + · · ·+ xn and y = ym + · · ·+ yn

be two associate elements of R where m ∈ {0, . . . , n} and xi, yi ∈ Ri

for i ∈ {m, . . . , n} such that xm and ym are nonzero. It follows that
xm ∼ ym. In particular, there is an

α = α0 + · · ·+ αn

such that x = αy. Then, xm = α0ym. Hence, two cases occur.

Case m ̸= n. Since Rm is présimplifiable, α0 ∈ U(R0). Then,
α ∈ U(R), as desired.

Case m = n (i.e., x = xm and y = ym). Here, the result follows
since Rn is strongly associate. �

Now, we can give the extension of [9, Theorem 5.1] to the context
of n-trivial extensions.

Corollary 7.3. The following assertions are true.

(1) R⋉nM1⋉· · ·⋉Mn is présimplifiable if and only if R, M1, . . . ,Mn

are présimplifiable.

(2) If R⋉nM1⋉ · · ·⋉Mn is strongly associate, then R, M1, . . . ,Mn

are strongly associate.

(3) Suppose that R, M1, . . . ,Mn are présimplifiable. Then,

R⋉n M1 ⋉ · · ·⋉Mn

is strongly associate if and only if Mn is strongly associate.

Now, we investigate the extension of [9, Theorem 5.4]. It is
convenient to recall the following definitions. Let S be a commutative
ring. A nonunit a ∈ S is said to be irreducible or an atom (respectively,
strongly irreducible, very strongly irreducible) if a = bc implies a ∼ b or
a ∼ c (respectively, a ≈ b or a ≈ c, a ∼= b or a ∼= c), and a is said to be
m-irreducible if Sa is a maximal element of the set of proper principal
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ideals of S. Note that, for a nonzero nonunit a ∈ S,

a very strongly irreducible =⇒ a is m-irreducible

=⇒ a is strongly irreducible =⇒ a is irreducible;

however, none of these implications can be reversed. In the case of an
S-module H, we say that e ∈ H is S-primitive (respectively, strongly
S-primitive, very strongly S-primitive) if, for a ∈ S and f ∈ H,

e = af =⇒ e ∼ f

(respectively, e ≈ f , e ∼= f). In addition, e is S-superprimitive if
be = af for a, b ∈ S and f ∈ H implies a | b. Note that:

(1) e is S-primitive ⇔ Se is a maximal cyclic S-submodule of H,

(2) e is S-superprimitive ⇒ e is very strongly S-primitive ⇒ e is
strongly S-primitive ⇒ e is S-primitive,

(3) if Ann(e) = 0, e is S-primitive ⇒ e is very strongly S-primitive,
and

(4) e is S-superprimitive ⇒ Ann(e) = 0.

In the following results, the homogeneous element (0, . . . , 0,mi, 0,
. . . , 0) of R⋉n M , where i ∈ {1, . . . , n} and mi ∈ Mi − {0}, is denoted
by mi. The next result extends [9, Theorem 5.4 (1)].

Proposition 7.4. Let i ∈ {1, . . . , n} and mi, ni ∈ Mi − {0}. Then,
mi ∼ ni (respectively, mi ≈ ni, mi

∼= ni) in Mi if and only if mi ∼ ni

(respectively, mi ≈ ni, mi
∼= ni) in R⋉n M .

Proof. The assertion is proved similarly to the corresponding classi-
cal one. �

It is worth noting that the analog of assertion (4) of [9, Theorem 5.4]
does not hold in the context of n-trivial extensions with n ≥ 2. Indeed,
consider the 2-trivial extension S = Z4⋉2Z4⋉Z4. It is simple to show
that 1 is superprimitive in the Z4-module Z4. However, (0, 0, 1) is not
very strongly irreducible in S (since (2, 1, 2)2 = (0, 0, 1)). Moreover,
even if we assume that R is an integral domain, we still do not have
the desired analog. For this, take S = Z ⋉2 Z ⋉ Z. We have that 1
is superprimitive in the Z-module Z. However, (0, 0, 1) is not very
strongly irreducible in S (since (0, 1, 0)2 = (0, 0, 1)). The last example
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also shows that assertion (2) of [9, Theorem 5.4] does not hold in the
context of n-trivial extensions with n ≥ 2, namely, if 0 ̸= mi = mjmk

where (mi,mj ,mk) ∈ Mi ×Mj ×Mk, i ≥ 2, and j, k ∈ {1, . . . , i − 1}
with j + k = i, then mi cannot be irreducible. Indeed, mi = mjmk,

but neither mj nor mk are in

⟨mi⟩ ⊆ 0⋉n · · ·⋉ 0⋉Mi ⋉ · · ·⋉Mn.

In order to extend [9, Theorem 5.1 (2)], we need to introduce the
following definitions.

Definition 7.5. Assume that n ≥ 2 and each multiplication in the
family φ = {φi,j} i+j≤n

1≤i,j≤n−1

is not trivial. Let i ∈ {2, . . . , n}. An element

mi ∈ Mi − {0} is said to be φ-indecomposable (or indecomposable
relative to the family of multiplications φ) if, for every (mj ,mk) ∈
Mj ×Mk (where j, k ∈ {1, . . . , i − 1} with j + k = i), mi ̸= mjmk. If
no ambiguity can arise, φ-indecomposable elements are simply called
indecomposables.

For example, in Z⋉2Z⋉Q, every element in Q−Z is indecomposable.
However, every element x ∈ Z (Z as a submodule of Q) is decomposable
(since (0, 1, 0)(0, x, 0) = (0, 0, x)).

Definition 7.6. Let i ∈ {2, . . . , n}. The R-module Mi is said to be
φ-integral (or integral relative to the family of multiplications φ) if, for
every (mj ,mk) ∈ Mj ×Mk (where j, k ∈ {1, . . . , i− 1} with j + k = i),
mjmk = 0 implies that mj = 0 or mk = 0. If no ambiguity can arise,
a φ-integral R-module is simply called integral.

For example, for Z ⋉2 Z ⋉ Z, M2 = Z is integral. And, for Z ⋉2 Z
⋉ Z/2Z, Z/2Z is not integral since, for instance, φ1,1(1, 2) = 1 2 = 0.

Proposition 7.7. Assume that n ≥ 2. Let i ∈ {1, . . . , n} and
mi ∈ Mi − {0}. If mi is irreducible (respectively, strongly irreducible,
very strongly irreducible) in R⋉nM , then mi is primitive (respectively,
strongly primitive, very strongly primitive) in Mi.

Conversely, three cases occur :
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Case i = 1. The reverse implication holds if R is an integral domain
and Mj is torsion-free for every j ∈ {2, . . . , n}.

Case i = 2 (here, n ≥ 2). The reverse implication holds if R is an
integral domain, Mj is torsion-free for every j ∈ {1, . . . , n} − {2} and
m2 is indecomposable.

Case i ≥ 3 (here, n ≥ 3). The reverse implication holds if R is an
integral domain, Mj is torsion-free for every j ∈ {1, . . . , n} − {i}, Mj

is integral for every j ∈ {2, . . . , i− 1}, and mi is indecomposable.

Proof. We prove only the primitive (irreducible) case. The other two
cases are proved similarly.

⇒. Suppose that mi is irreducible, and let mi = ani for some a ∈ R
and ni ∈ Mi. Then, mi = (a, 0, . . . , 0)ni and thus, (R ⋉n M)mi =
(R⋉n M)ni. This implies that Rmi = Rni, as desired.

⇐. Letmi = (aj)(nj) for some (aj), (nj) ∈ R⋉nM . Then, a0n0 = 0.
First, we show that the case a0 = 0 and n0 = 0 is impossible. Cases
i = 1, 2 are easy and are left to the reader. Thus, assume i ≥ 3.
Suppose that a0 = 0 and n0 = 0. Then, we have the following
equalities: for j ∈ {2, . . . , i− 1},

a1nj−1 + a2nj−2 + · · ·+ aj−1n1 = 0

and

a1ni−1 + a2ni−2 + · · ·+ ai−1n1 = mi.

A recursive argument on these equalities shows that, for l ∈ {2, . . . , i},
there is a k ∈ {0, . . . , l − 1} such that (a0, . . . , ak) = (0, . . . , 0) and
(n0, . . . , nl−(k+1)) = (0, . . . , 0). Indeed, it is clear this is true for l = 2.
Then, suppose this is true for a given l ∈ {2, . . . , i − 1}. Thus, the
equality

a1nl−1 + a2nl−2 + · · ·+ al−1n1 = 0

becomes ak+1nl−(k+1) = 0. Then, since Ml is integral, we obtain the
desired result for l + 1. Thus, for l = i, we get ak+1ni−(k+1) = mi,
which is absurd since mi is indecomposable.

Now, we may assume that a0 ̸= 0 and n0 = 0; thus, a0n1 = 0.
Since M1 is torsion-free, n1 = 0. Recursively, we obtain nj = 0 for
j ∈ {1, . . . , i − 1}. Then, a0ni = mi, and, since mi is primitive, there
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exists a b0 ∈ R such that ni = b0mi. It remains to show that there is a
bj ∈ Mj for j ∈ {1, . . . , n− i} such that ni+j = bjmi, and this implies
that

(ni) = (0, . . . , 0, ni, ni+1, . . .) = (b0, . . . , bn−i, 0, . . . , 0)mi,

as desired. We have a0ni+1+a1ni = 0. Then, using both a0ni = mi and
ni = b0mi, we get a0ni+1+a1b0a0ni = 0. Next, a0(ni+1+a1b0ni) = 0,
so ni+1 + a1b0ni = 0 (since Mi+1 is torsion-free). Then,

ni+1 = −a1b
2
0mi,

and we set b1 = −a1b
2
0. This leads to ni+1 = b1mi. Similarly, using

the equality
a0ni+2 + a1ni+1 + a2ni = 0

with the equalities a0ni = mi and ni = b0mi, we obtain

a0ni+2 + a1b1a0ni + a2b0a0ni = 0.

Therefore, ni+2 + a1b1ni + a2b0ni = 0; then, ni+2 = b2mi, where
b2 = −a1b1b0 − a2b

2
0. Finally, a recursive argument gives the desired

result. �

The following result extends [9, Theorem 5.4 (3)].

Proposition 7.8. Suppose that R has a nontrivial idempotent. Then,
for every i ∈ {1, . . . , n} and mi ∈ Mi − {0}, mi is not irreducible in
R⋉n M .

Proof. The assertion is proved similarly to the corresponding classi-
cal one. �

Now, we are interested in finding some factorization properties.
Recall that a ring S is called atomic if every (nonzero) nonunit of S
is a product of irreducible elements (atoms) of S. Note that, as in the
domain case, the ascending chain condition on principal ideals (ACCP)
implies atomic.

We begin with an extension of [9, Theorem 5.5 (2)] which charac-
terizes when a trivial extension of a ring satisfies ACCP. For this, we
need the next lemma.
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Lemma 7.9. Let i ∈ {0, . . . , n}, and consider two elements a = (0, . . . ,
0, ai, ai+1, . . . , an) and b = (0, . . . , 0, bi, bi+1, . . . , bn) of R ⋉n M with
ai ̸= 0. Then, the implication

⟨a⟩ ( ⟨b⟩ =⇒ bi ̸= 0 and ⟨ai⟩ ( ⟨bi⟩

is true if either (1) 0 ≤ i ≤ n − 1 and Mi is présimplifiable (here
M0 = R) or (2) i = n.

Proof. Since ⟨a⟩ ( ⟨b⟩, there is a c = (c0, . . . , cn) ∈ R⋉nM−U(R⋉n

M) such that a = cb. Then, ai = c0bi and c0 /∈ U(R). This shows that
⟨ai⟩ ( ⟨bi⟩ in both cases. �

Theorem 7.10. Assume that n ≥ 2. Suppose that Mi is présimplifiable
for every i ∈ {0, . . . , n − 1} (here M0 = R). Then, R ⋉n M satisfies
ACCP if and only if R satisfies ACCP and, for every i ∈ {1, . . . , n},
Mi satisfies ACC on cyclic submodules.

Proof. The proof of the direct implication is easy. We prove the
converse. Suppose that R ⋉n M admits a strictly ascending chain of
principal ideals

⟨(a1,i)⟩ ( ⟨(a2,i)⟩ ( · · · .

If there exists a j0 ∈ N such that aj0,0 ̸= 0, then, for every k ≥ j0,
ak,0 ̸= 0. In addition, from Lemma 7.9, we obtain the following strictly
ascending chain of principal ideals of R:

⟨aj0,0⟩ ( ⟨aj0+1,0⟩ ( · · · .

This is absurd since R satisfies ACCP. Now, suppose that aj,0 = 0 for
every j ∈ N and that there exists a j1 ∈ N such that aj1,1 ̸= 0. From
Lemma 7.9, we obtain the following strictly ascending chain of cyclic
submodules of M1:

⟨aj1,1⟩ ( ⟨aj1+1,1⟩ ( · · · .

This is absurd since M1 satisfies ACC on cyclic submodules. We con-
tinue in this manner until the case is reached where we may suppose
that aj,i = 0 for every i ∈ {1, . . . , n − 1} and j ∈ N. Therefore, from
Lemma 7.9, we obtain the desired result. �
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Now, we investigate when R ⋉n M is atomic, namely, we give an
extension of [9, Theorem 5.5 (4)]. Recall that an R-module N is said
to satisfy MCC if every cyclic submodule ofN is contained in a maximal
(not necessarily proper) cyclic submodule of N .

Theorem 7.11. Assume that n ≥ 2. Suppose that Mi is présimplifiable
for every i ∈ {0, . . . , n− 1} (here, M0 = R). Then, R⋉n M is atomic
if R satisfies ACCP, Mi satisfies ACC on cyclic submodules, for every
i ∈ {1, . . . , n− 1}, and Mn satisfies MCC.

Proof. The proof is slightly more technical than that of [9, Theorem
5.5 (4)]. Here, we need to break the proof into the following n+1 steps
such that, in the step number k ∈ {1, . . . , n + 1}, we prove that every
nonunit element (mi) ∈ R ⋉n M with m0 = 0, . . . ,mk−2 = 0 and
mk−1 ̸= 0 is a product of irreducibles.

We use an inductive argument for the first n steps.

Step 1. Suppose that there is a nonunit element (mi) of R ⋉n M
with m0 ̸= 0 and such that (mi) cannot be factored into irreducibles.
Then, there exist (a1,i), (b1,i) ∈ R ⋉n M − U(R ⋉n M) such that
(mi) = (a1,i)(b1,i), and neither (mi) and (a1,i) nor (mi) and (b1,i) are
associate. Since

0 ̸= m0 = a1,0b1,0,

a1,0 ̸= 0 and b1,0 ̸= 0. Clearly, (a1,i) or (b1,i) must be reducible, say
(a1,i). Also, for (a1,i), there are (a2,i), (b2,i) ∈ R ⋉n M − U(R ⋉n M)
such that (a1,i) = (a2,i)(b2,i), and neither (a1,i) and (a2,i) nor (a1,i)
and (b2,i) are associate. As above, a2,0 ̸= 0 and b2,0 ̸= 0, and say (a2,i),
are reducible. Thus we continue until we obtain a strictly ascending
chain

⟨(mi)⟩ ( ⟨(a1,i)⟩ ( ⟨(a2,i)⟩ ( · · · .

Using Lemma 7.9, we get a strictly ascending chain of principal ideals
of R

⟨m0⟩ ( ⟨a1,0⟩ ( ⟨a2,0⟩ ( · · · .

This is absurd since R satisfies ACCP.

Step j. 1 ≤ j ≤ n. Suppose that there is a nonunit element
(mi) ∈ R ⋉n M with m0 = 0,. . . , mj−2 = 0 and mj−1 ̸= 0 which
is not a product of irreducibles. Then, there are (a1,i), (b1,i) ∈
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R ⋉n M − U(R ⋉n M) such that (mi) = (a1,i)(b1,i), and neither (mi)
and (a1,i) nor (mi) and (b1,i) are associate. Then,

a1,0b1,j−1 + a1,1b1,j−2 + · · ·+ a1,j−2b1,1 + a1,j−1b1,0 = mj−1 ̸= 0.

If a1,k = 0 for every k ∈ {0, . . . , j − 2}, then necessarily, b1,0 ̸= 0.
Hence, by the preceding steps, (b1,i) is a product of irreducibles, and
then, by the hypothesis on (mi), (a1,i) is reducible. If a1,k ̸= 0 for some
k ∈ {0, . . . , j − 2}, then (a1,i) is a product of irreducibles and (b1,i) is
reducible. Thus, by symmetry, we may assume that (a1,i) is reducible,
and it is not a product of irreducibles. Thus, necessarily, a1,0 = 0,. . . ,
a1,j−2 = 0 and a1,j−1 ̸= 0. The last argument is repeated so that we
obtain a strictly ascending chain of principal ideals of R⋉n M

⟨(mi)⟩ ( ⟨(a1,i)⟩ ( ⟨(a2,i)⟩ ( · · ·

such that, for every k ∈ N, ak,0 = 0,. . . , ak,j−2 = 0 and ak,j−1 ̸= 0.
Then, from Lemma 7.9, we obtain a strictly ascending chain of cyclic
submodules of Mj−1

⟨mj−1⟩ ( ⟨a1,j−1⟩ ( ⟨a2,j−1⟩ ( · · · ,

which is absurd by hypothesis on Mj−1, as desired.

Step n+1. It remains to prove that every element of R⋉nM of the
form (0, . . . , 0,mn) with mn ̸= 0 is a product of irreducibles. Since Mn

satisfies MCC, Rmn ⊆ Rm, where Rm is a maximal cyclic submodule
of Mn. Then, mn = am for some a ∈ R− {0}, and thus,

(0, . . . , 0,mn) = (a, 0, . . . , 0)(0, . . . , 0,m).

Now, a ̸= 0 shows that (a, 0, . . . , 0) is a product of irreducibles (by
Step 1) and Rm is maximal shows that either (0, . . . , 0,m) is irreducible
or (0, . . . , 0,m) = (ai)(bi), where ak ̸= 0 and bl ̸= 0 for some
k, l ∈ {0, . . . , n − 1}. Then, by the preceding steps, (ai) and (bi) are
products of irreducibles, and hence, so is (0, . . . , 0,m). This concludes
the proof. �

A ring S is said to be a bounded factorial ring (BFR) if, for each
nonzero nonunit x ∈ S, there is a natural number N(x) such that, for
any factorization x = x1 · · ·xs where each xi is a nonunit, we have
s ≤ N(x). For domains, we say BFD instead of BFR. Recall that an
S-module H is said to be a BF-module if, for each nonzero h ∈ H,



2502 D.D. ANDERSON, D. BENNIS, B. FAHID AND A. SHAIEA

there exists a natural number N(h) so that

h = a1 · · · as−1hs (each ai a nonunit) =⇒ s ≤ N(h).

Our next theorem, which is a generalization of [9, Theorem 5.5 (4)],
investigates when R⋉n M is BFR. It is based on the next lemma.

Lemma 7.12. For j ∈ N − {1}, a product of j elements of R ⋉n M
of the form (0, x1, . . . , xn) is of the form (0, . . . , 0, yj , . . . , yn) (where, if
j ≥ n+ 1 the product is zero).

Theorem 7.13. Assume that n ≥ 2, R is an integral domain and Mi is
torsion-free for every i ∈ {1, . . . , n−1}. Then, R⋉nM is a BFR if and
only if R is a BFD, and Mi is a BF-module for every i ∈ {1, . . . , n}.

Proof.

⇒. Clear.

⇐. Let (mi) be a nonzero nonunit element of R⋉n M , and suppose
that we have a factorization into nonunits (mi) = (a1,i) · · · (as,i) for
some s ∈ N. If m0 ̸= 0, m0 = a1,0 · · · as,0 implies that s ≤ N(m0).
Otherwise, there is a j ∈ {1, . . . , n} such that m0 = 0, . . . ,mj−1 = 0
and mj ̸= 0. We may assume that s ≥ j + 1. Since R is an integral
domain, by Lemma 7.12, we may assume that there is a k ∈ {1, . . . , j}
such that al,0 = 0 for every l ∈ {1, . . . , k} and al,0 ̸= 0 for every
l ∈ {k + 1, . . . , s}. Let

(0, . . . , 0, bk, . . . , bn) =

k∏
l=1

(al,i) and (c0, . . . , cn) =

s∏
l=k+1

(al,i).

Since Mi is torsion-free for every i ∈ {1, . . . , j − 1} and

c0 =
s∏

l=k+1

al,0 ̸= 0, bk = 0, . . . , bj−1 = 0,

bj ̸= 0. Then,

mj = c0bj =

s∏
l=k+1

al,0bj .

Therefore, s ≤ N(mj) + k − 1 (since Mj is a BF-module). �
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Now, we investigate the notion of a U -factorization. It was intro-
duced by Fletcher [33, 34] and developed by Axtell, et al., in [11, 12].
Let S be a ring, and consider a nonunit a ∈ S. By a factorization of a,
we mean a = a1 · · · as, where each ai is a nonunit. Recall from [33]
that, for a ∈ S,

U(a) = {r ∈ S | there exists an s ∈ S with rsa = a}
= {r ∈ S | r(a) = (a)}.

A U -factorization of a is a factorization a = a1 · · · asb1 · · · bt, where,
for every 1 ≤ i ≤ s, ai ∈ U(b1 · · · bt) and, for every 1 ≤ i ≤
t, bi /∈ U(b1 · · · b̂i · · · bt). We denote this U -factorization by a =
a1 · · · as⌈b1 · · · bt⌉ and call a1, . . . , as (respectively, b1, . . . , bt) the irrel-
evant (respectively, the relevant) factors.

Our next result investigates when an n-trivial extension is a U -FFR.
First, recall the following definitions.

A ring S is called a finite factorization ring (FFR) (respectively, a
U -finite factorization ring (U -FFR)) if every nonzero nonunit of S has
only a finite number of factorizations (respectively, U -factorizations)
up to order and associates (respectively, associates on the relevant
factors). A ring S is called a weak finite factorization ring (WFFR)
(respectively, a U -weak finite factorization ring (U -WFFR)) if every
nonzero nonunit of R has only a finite number of nonassociate divisors
(respectively, nonassociate relevant factors). We have FFR ⇒ WFFR,
and the converse holds in the domain case. But, Z2 × Z2 is a WFFR
that is not an FFR. However, from [11, Theorem 2.9],

U -FFR ⇐⇒ U -WFFR.

The study of the above notions on the classical trivial extensions
leads to consideration of the following notion, see [11]. Let N be an
S-module. For a nonzero element x ∈ N , we say that Sd1d2 · · · dsx is a
reduced submodule factorization if, for every j ∈ {1, . . . , s}, dj /∈ U(S)
and, with no canceling and reordering of the djs, it is the case that

Sd1d2 · · · dsx = Sd1d2 · · · dtx,

where t < s. The module N is said to be a U -FF module if,
for every nonzero element x ∈ N , there exist only finitely many
reduced submodule factorizations Sx = Sd1d2 · · · dtxk, up to order
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and associates on the di, as well as up to associates on the xk. In this
context, we introduce the following definition.

Definition 7.14. Assume n ≥ 2, and consider i ∈ {1, . . . , n}.
(1) Let mi ∈ Mi − {0}, s ∈ N, and (di1 , . . . , dis) ∈ Mi1 × · · · ×Mis ,

where {i1, i2, . . . , is} ⊆ {0, . . . , n} with i1 + · · ·+ is = i. We say that

Rdi1di2 · · · dismi ⊆ Mi

is a φ-reduced submodule factorization if, for every j ∈ {1, . . . , s} such
that ij = 0, dij /∈ U(R) and, with no canceling and reordering of the
dj ’s, it is the case that

Rdi1di2 · · · dis = Rdi1di2 · · · dit ,

where t < s. If no ambiguity can arise, a φ-reduced submodule
factorization is simply called a reduced submodule factorization.

(2) The R-module Mi is said to be a φ-U -FF module (or simply
U -FF module) if, for every nonzero element x ∈ Mi, there exist only
finitely many reduced submodule factorizations Rx = Rdi1di2 · · · dis ,
up to order and associates on the dij .

It is clear that, for i = 1, the notion of the U -FF module defined
here is the same as that of Axtell.

Based on the proof of [11, Theorem 4.2], it is asserted in [12,
Theorem 3.6] that, if R ⋉1 M1 is a U -FFR, then, for every nonzero
nonunit d ∈ R, there are only finitely many distinct principal ideals
⟨(d,m)⟩ in R⋉1M1. However, a careful reading of this proof shows that
the case of ideals ⟨(d,m)⟩ with dM1 = 0 should also be treated. The
validity of this assertion may be confirmed for reduced rings. However,
the context of n-trivial extensions seems to be more complicated.
Nevertheless, under some certain conditions, we next investigate when
R⋉n M is a U -FFR.

Lemma 7.15. Assume that n ≥ 2 and Mn is integral. Then, for every
nonzero nonunit d ∈ R, the following assertions are true.

(1) For every i ∈ {1, . . . , n − 1}, the following assertions are equiv-
alent :
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(a) dMi = 0.
(b) dmi = 0 for some mi ∈ Mi − {0}.
(c) dMn−i = 0.
(d) dmn−i = 0 for some mn−i ∈ Mn−i − {0}.

(2) The following assertions are equivalent :

(a) dMi = 0 for some i ∈ {1, . . . , n− 1}.
(b) dMi = 0 for every i ∈ {1, . . . , n− 1}.

(3) If dMn = 0, then dMi = 0 for every i ∈ {1, . . . , n− 1}.
(4) If Mn is torsion-free, then Mi is torsion-free for every i ∈

{1, . . . , n− 1}.
Proof.

(1) For the implications (1)(a) ⇒ (1)(b) and (1)(c) ⇒ (1)(d), there
is nothing to prove.

(1)(b) ⇒ (1)(c). Let m ∈ Mn−i. Then, dmim = 0 ∈ Mn. Therefore,
dm = 0 (since Mn is integral and mi ̸= 0).

(1)(d) ⇒ (1)(a). Similar to the previous proof.

(2) For the implication (2)(b) ⇒ (2)(a), there is nothing to prove.

(2)(a) ⇒ (2)(b). First, we prove that dM1 = 0. For every
m1 ∈ M1 − {0}, dmi

1 = 0 ∈ Mi, and thus, dmn
1 = 0 ∈ Mn.

Therefore, dm1 = 0 (since Mn is integral and m1 ̸= 0). Now, consider
any j ∈ {1, . . . , n − 1} and any mj ∈ Mj − {0}. Then, for every

m1 ∈ M1 − {0}, dmjm
n−j
1 = 0 ∈ Mn which shows that dmj = 0.

(3) This is proved as above.

(4) If there are m1 ∈ M1 − {0} and r ∈ R− {0} such that rm1 = 0,
then rmn

1 = 0 ∈ Mn. Since Mn is torsion-free and r ̸= 0, mn
1 = 0 ∈ Mn

so m1 = 0 (since Mn is integral). This is absurd since m1 ̸= 0. Finally,
by assertions (1) and (2), we conclude that Mi is torsion-free for every
i ∈ {1, . . . , n− 1}. �

Theorem 7.16. Assume that n ≥ 2. If R ⋉n M is a U -FFR
(equivalently, a U -WFFR), then the following conditions are satisfied :

(1) R is an FFR.

(2) Mi is a U -FF module for every i ∈ {1, . . . , n}.
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Moreover, if R is an integral domain and Mn is integral and torsion-
free, then:

(3) for every nonzero nonunit d ∈ R, there are only finitely many
distinct principal ideals ⟨(d,m1, . . . ,mn)⟩ in R⋉n M .

(4) For every i ∈ {1, . . . , n − 1} and m ∈ Mi − {0}, there are only
finitely many distinct principal ideals of the form ⟨(0, . . . , 0,m,mi+1, . . .,
mn)⟩ in R⋉n M .

Conversely, if R is an integral domain and Mn is integral and
torsion-free, then assertions (1)–(4) imply that R⋉n M is a U -FFR.

Proof. The proof of the “converse” part is similar to that of [11,
Theorem 4.2].

⇒. The proof of each (1) and (2) is similar to that given in [11,
Theorem 4.2].

(3) Suppose, by contradiction, there exists a nonzero nonunit d ∈ R
for which there is a family of distinct principal ideals of the form
⟨(d,mj,1, . . . ,mj,n)⟩, where j is in an infinite indexing set Γ. We prove
this is impossible by showing that, for every j ̸= k in Γ, there exists
(1, x1, . . . , xn) ∈ R⋉n M such that

(d,mj,1, . . . ,mj,n) = (1, x1, . . . , xn)(d,mk,1, . . . ,mk,n).

A recursive argument shows that the fact that every equation dX = bi,
with bi ∈ Mi, admits a solution X ∈ Mi, implying the existence of the
desired (1, x1, . . . , xn). Note that, from Lemma 7.15, Mi is torsion-free
for every i ∈ {1, . . . , n}. First, consider an element bn ∈ Mn−{0}. For
every j ∈ Γ, (d,mj,1, . . . ,mj,n)(0, . . . , 0, bn) = (0, . . . , 0, dbn). Then,

(0, . . . , 0, dbn) = (d,mj,1, . . . ,mj,n)⌈(0, . . . , 0, bn)⌉

is the only possible corresponding U -factorization of (0, . . . , 0, dbn)
(since R ⋉n M is a U -FFR), so there exists an r ∈ R such that
bn = drbn. This shows that the above equation admits a solution for
i = n. Now, consider k ∈ {1, . . . , n − 1} and any bk ∈ Mk. For every
bn−k ∈ Mn−k − {0}, bkbn−k ∈ Mn − {0}, and thus, there is an r ∈ R
such that bkbn−k = drbkbn−k. Then, (bk − drbk)bn−k = 0. Therefore,
bk = drbk (since Mn is integral).

(4) Let i ∈ {1, . . . , n − 1}. Suppose, by contradiction, that there
exists an m ∈ Mi − {0}, for which there is a family of distinct
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principal ideals of the form ⟨(0, . . . , 0,m,mj,i+1, . . . ,mj,n)⟩, where j
is in an infinite indexing set Γ. Let mn−i ∈ Mn−i − {0}. Necessarily,
mmn−i ̸= 0. Then,

(0, . . ., 0,m,mj,i+1, . . .,mj,n)(0, . . ., 0,mn−i, 0, . . ., 0)=(0, . . ., 0,mmn−i),

and

(0, . . ., 0,mmn−i)=(0, . . ., 0,m,mj,i+1, . . .,mj,n)⌈(0, . . ., 0,mn−i, 0, . . ., 0)⌉

is the only possible corresponding U -factorization of (0, . . . , 0,mmn−i)
(since R ⋉n M is a U -FFR); thus, there exists an (ri) ∈ R ⋉n M such
that

(0, . . . , 0,m,mj,i+1, . . . ,mj,n)(ri)(0, . . . , 0,mn−i, 0, . . . , 0)

= (0, . . . , 0,mn−i, 0, . . . , 0),

equivalently (0, . . . , 0, r0mmn−i) = (0, . . . , 0,mn−i, 0, . . . , 0), which is
absurd. �

A ring S is called a U -bounded factorization ring (U -BFR) if, for each
nonzero nonunit x ∈ S, there is a natural number N(x) such that, for
any factorization x = a⌈b1 · · · bt⌉, we have t ≤ N(x). An S-module H
is said to be a U -BF module if, for every h ∈ H − {0}, there exists a
natural number N(h) such that, if Sh = Sd1 · · · dth′, where dj ̸∈ U(S),
t > N(h) and h′ ∈ H, then, after cancelation and reordering of some
of the dj ’s, we have Sh = Sd1 · · · dsh′ for some s ≤ N(h).

The question of when the classical trivial extension is a U -BFR is
still open. However, there is an answer to this question for an integral
domain D [11, Theorem 4.4]: for a D-module N , D⋉N is a U -BFR if
and only if D is a BFD and N is a U -BF R-module. Two more general
results for the direct implication were established in [12, Theorem 3.7,
Lemma 3.8]. Here, we extend these results to our context. For this, we
need to introduce the following definition.

Definition 7.17. Assume that n ≥ 2, and consider i ∈ {1, . . . , n}.
The R-module Mi is said to be a φ-U -BF module (or simply a U -BF
module) if, for every nonzero element x ∈ Mi, there exists a natural
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number N(x) so that, if

Rx = Rdi1di2 · · · dit where t ∈ N,
(di1 , . . . , dit) ∈ Mi1 × · · · ×Mit

for some {i1, i2, . . . , it} ⊆ {0, . . . , n}, with i1 + · · ·+ it = i, dij ̸∈ U(R)
when ij = 0, and t > N(x), then, after cancelation and reordering of
some of the dij ’s in R, we have Rx = Rdi1di2 · · · dis for some s ≤ N(h).

Theorem 7.18. If R ⋉n M is a U -BFR, then R is a U -BFR and
Mi is a U -BF module for every i ∈ {1, . . . , n}. Moreover, if R is
présimplifiable, then R is a BFR.

Conversely, assume R to be an integral domain. If R is a BFD and,
for every i ∈ {1, . . . , n}, Mi is a U -BF module, then R ⋉n M is a
U -BFR.

Proof. Similar to the classical case. �

A ring S is called U -atomic if every nonzero nonunit element of S
has a U -factorization in which all the relevant factors are irreducibles.
The question of when the classical trivial extension is U -atomic is still
unsolved. In [11, Theorem 4.6], Axtell gave an answer to this question
for an integral domain D with ACCP: for a D-module N , D ⋉ N is
atomic if and only if D ⋉ N is U -atomic. In [12, Theorem 3.15], it
is shown that the condition that the ring is an integral domain could
be replaced by the ring is présimplifiable. The following result extends
[12, Theorem 3.15] to the context of n-trivial extensions.

Theorem 7.19. Assume that n ≥ 2. Suppose that Mi is présimplifiable
for every i ∈ {0, . . . , n− 1} (here, M0 = R), R satisfies ACCP and Mi

satisfies ACC on cyclic submodules for every i ∈ {1, . . . , n− 1}. Then,
R⋉n M is atomic if and only if R⋉n M is U -atomic.

Proof.

⇒. Clear.

⇐. Suppose that R ⋉n M is not atomic. Then, by the proof of
Theorem 7.11, there exists an

mn := (0, . . . , 0,mn) ∈ R⋉n M



ON n-TRIVIAL EXTENSIONS OF RINGS 2509

with mn ̸= 0 which is not a product of irreducibles. Since R ⋉n M is
U -atomic, mn admits a U -factorization of the form

mn = a1 · · · as⌈b1 · · · bt⌉

such that the bls are irreducibles. Since mn cannot be a product of
irreducibles and, by the proof of Theorem 7.11, necessarily s = 1 and
a1 has the form xn := (0, . . . , 0, xn). However, xn⟨b1 · · · bt⟩ = ⟨b1 · · · bt⟩,
and thus, b1 · · · bt has the form yn := (0, . . . , 0, yn). This is impossible
since mn = xnyn = 0. �

ENDNOTES

1. When R is a field and Mi = R for every i ∈ {1, . . . , n}, these
matrices are well known as upper triangular Toeplitz matrices. In [38],
the author used the same terminology for such matrices with entries in
a commutative ring.

2. We are indebted to J.R. Garćıa Rozas (Universidad de Almeŕıa,
Spain) who pointed out this remark.
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sation unique, C.R. Acad. Sci. Paris 268 (1969), 372–375.

19. , Demi-groupes de type (R), C.R. Acad. Sci. Paris 270 (1969), 561–
563.

20. , Factorisation dans les demi-groupes de fractions, C.R. Acad. Sci.
Paris 271 (1970), 924–925.

21. , Factorisation dans les demi-groupes, C.R. Acad. Sci. Paris 271
(1970), 533–535.
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