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EXISTENCE OF ROTATING-PERIODIC SOLUTIONS
FOR NONLINEAR SYSTEMS VIA
UPPER AND LOWER SOLUTIONS

XUE YANG, YU ZHANG AND YONG LI

ABSTRACT. This paper concerns the existence of affine-
periodic solutions for nonlinear systems with certain affine-
periodic symmetry. The existence result is actually proved
based on the existence of upper and lower solutions and the
conditions on them. Some applications are also given.

1. Introduction. We consider the following system

(1.1) x′ = f(t, x), ′ =
d

dt
,

where f : R1 × Rn → Rn. Throughout the paper, we assume:

(H1) f : R1 × Rn −→ Rn is continuous.

When system (1.1) is T -periodic, i.e., f(t + T, ·) = f(t, ·) for all t, the
exploration of the existence of T -periodic solutions in qualitative theory
is a standard topic.

In the present paper, we explore the existence of affine-periodic
solutions when system (1.1) possesses affine-periodicity. We introduce
more precise statements as follows.

Definition 1.1. Let Q ∈ GL(n), i.e., Q is a nonsingular matrix of
order n× n. System (1.1) is said to be (T,Q)-affine-periodic if

f(t+ T, x) = Qf(t,Q−1x) for all t ∈ R1, x ∈ Rn.
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System (1.1) is called Q-rotating-periodic if Q ∈ O(n), i.e., Q is an
orthogonal matrix.

Definition 1.2. A map x : R1 → Rn is said to be a (T,Q)-affine-
periodic solution if it is a solution of (1.1) on R1 and

x(t+ T ) = Qx(t) for all t.

When Q ∈ O(n), the solution x(t) is also called the Q-rotating-periodic
solution.

Obviously, a (T,Q)-affine-periodic solution x(t) corresponds, respec-
tively, to a T -periodic, T -anti-periodic, harmonic or quasi-periodic so-
lution when Q = id (the identical matrix), −id, QN = id for some
positive integer N or Q ∈ O(n).

As is well known, the upper and lower solutions method is an
effective tool in the study of periodic solutions. For a survey, see,
for example, [1]–[3], [15]. The main idea is to reduce the existence
of periodic solutions from the existence of upper and lower solutions.
The main aim of this paper is to establish an existence theorem of Q-
rotating-periodic solutions by employing the upper and lower solutions.

First, we introduce some notation. Let x, y ∈ Rn. We denote

x ≤ y (or x < y)⇐⇒ xi ≤ yi (xi < yi) for all i,

where xi and yi are components of x and y, respectively.

Consider the system

(1.2) x′ = g(t, x),

where g : R1 × Rn is continuous.

The following definitions are standard.

Definition 1.3. The C1 functions β, α : R1 → Rn are said to be upper
and lower solutions of (1.2), respectively, if

(i) α(t) ≤ β(t) for all t;

(ii) α′(t) ≤ g(t, α(t)), β′(t) ≥ g(t, β(t)) for all t.
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Definition 1.4. Let

Ω(t) = {p ∈ Rn : α(t) ≤ p ≤ β(t)} for all t.

A function g : R1 × Rn → Rn is said to be a Kemke-type function
relative to Ω(t) if, for all t ∈ R and i = 1, . . . , n,

gi(t, x) ≤ gi(t, y) for all x ≤ y, xi = yi and x, y ∈ Ω(t).

Now, we are in a position to state our main result:

Theorem 1.5. Let Q ∈ O(n), and let system (1.1) be Q-rotating-
periodic. Assume that :

(i) there exist C1 upper and lower solutions β and α of (1.2) for
g = f such that Ω(t) is bounded on R1 and, for some constant l0,
σ > 0 and a Q-rotation-periodic function a(t) with

α(t) ≤ a(t)− σ < a(t) < a(t) + σ ≤ β(t),

β′(t) > −l0(β(t)− a(t)),

α′(t) < l0(a(t)− α(t)) for all t.

(ii) The function f(t, x) is of Kemke type relative to Ω(t).

Then (1.1) admits a Q-rotating-periodic solution x∗(t) with α(t) ≤
x∗(t) ≤ β(t) for all t.

Remark 1.6. In Theorem 1.5, we do not add any “periodicity” on
upper and lower solutions β and α other than boundedness. This is also
an explicit improvement to some classical results for periodic solutions
when Q = id.

Corollary 1.7. Let Q ∈ O(n), and let system (1.1) be Q-rotating-
periodic. Assume that :

(i) there exist C1 upper and lower solutions β and α of (1.2) such
that Ω(t) is bounded on R1 and, for some constant l0, σ > 0 and a
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Q-rotation-periodic function a(t) with

α(t) ≤ a(t)− σ < a(t) < a(t) + σ ≤ β(t),

β′(t) > −l0(β(t)− a(t)),

α′(t) < l0(a(t)− α(t)) for all t.

(ii) The function g(t, x) is of Kemke type relative to Ω(t).

(iii) The following hold :

fi(t, [αi(t)]) ≥ gi(t, [αi(t)]), fi(t, [βi(t)]) ≤ gi(t, [βi(t)]),

for all [αi(t)] = (x1, . . . , xi−1, αi(t), xi+1, . . . , xn)
⊤,

[βi(t)] = (x1, . . . , xi−1, βi(t), xi+1, . . . , xn)
⊤ ∈ Ω(t),

t ∈ R1, i = 1, . . . , n.

Then, (1.1) admits a Q-rotating-periodic solution x∗(t) with α(t) ≤
x∗(t) ≤ β(t) for all t.

Here, x⊤ denotes the transpose of x.

Remark 1.8. Corollary 1.7 (iii) is more flexible in applications, which
is also an improvement to classical results when Q = id.

Theorem 1.5 extends some classical results on periodic or anti-
periodic, when Q = id or −id, see [1]–[3], [15]. In particular, it extends
them to harmonic or quasi-periodic cases.

It should be pointed that some results have been obtained on the
existence of affine-periodic solutions, see [5, 13, 14, 16], which are
based upon topological degree theory and some asymptotical fixed
point theorems. Application of these results, including ours, can lead
to the existence of quasi-periodic solutions with large amplitude under
certain symmetry.

The plan of the paper is as follows. In Section 2, we first give
a Massera-type criterion on (T,Q)-affine-periodic solutions by using
Brouwer’s fixed point theorem. The advantage of the argument is that
it can tell us where the initial value of a (T,Q)-affine-periodic solution
stays. Then, combining Massera’s criterion with the topological degree



ROTATING-PERIODIC SOLUTIONS 2427

theory, we give the proof of Theorem 1.5. Finally, in Section 3, we give
some applications.

2. Massera’s criterion and the proof of Theorem 1.5. Before
proving Theorem 1.5, we first give a Massera-type criterion on the
existence of (T,Q)-affine-periodic solutions for the following (T,Q)-
affine-periodic linear system:

(2.1) x′ = A(t)x+ g(t),

i.e., A : R1 → Rn×n and g : R1 → Rn are continuous and satisfy

(2.2) A(t+ T ) = QA(t)Q−1, g(t+ T ) = Qg(t).

Here, Q ∈ GL(n).

Definition 2.1. A solution x(t) of system (1.1) is said to be (T,Q)-
affine-bounded in forward if {Q−mx(t+mT )}∞m=0 is bounded in R1

+ =
[0,∞).

This yields:

Theorem 2.2 (Massera-type criterion). Assume that x0(t) is a
Q-affine-bounded solution of (T,Q)-affine-periodic system (2.1) in for-
ward. Then, (2.1) has a (T,Q)-affine-periodic solution x∗(t) with x∗(0)
∈ co{Q−mx0(mT )}, where co denotes the usual convex closure of the
set.

Remark 2.3. When Q = id, Theorem 2.2 is the well-known Massera’s
criterion [7]. For further developments, see [4, 6], [8]–[12].

Remark 2.4. The following argument is different from some standard
proofs of Massera’s criterion and is inherently useful since it yields
a (T,Q)-affine-periodic-solution x∗(t) with the initial value x∗(0) ∈
co{Q−mx0(mT )}.

Proof of Theorem 2.2. Set

S0 = {Q−mx0(mT )}∞m=0, S = coS0,
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where coS0 denotes the convex hull of S0. Define a map

P : Rn −→ Rn

by
P (p) = Q−1x(T, p) for all p ∈ Rn,

where x(t, p) denotes the solution of (2.1) with the initial value condi-
tion x(0) = p. We claim that P : S → S, where S denotes the closure
of S. First, we prove

P : S0 −→ S0.

Indeed, since x(t, x0(0)) = x0(t), by uniqueness, we have

P (x0(0)) = Q−1x(T, x0(0)) = Q−1x0(T ) ∈ S0.

Note that

dx(t+ T, p)

dt
=

dx(t+ T, p)

d(t+ T )

= A(t+ T )x(t+ T, p) + g(t+ T )

= QA(t)Q−1x(t+ T, p) +Qg(t)

= Q(A(t)Q−1x(t+ T, p) + g(t)),

dx0(t+mT )

dt
=

dx0(t+mT )

d(t+mT )

= A(t+mT )x0(t+mT ) + g(t+mT )

= QA(t+ (m− 1)T )Q−1x0(t+mT ) +Qg(t+ (m− 1)T )

= · · ·
= QmA(t)Q−mx0(t+mT ) +Qmg(t)

= Qm(A(t)Q−mx0(t+mT ) + g(t)) for all m ≥ 1.

Thereby, Q−1x(t + T, p) and Q−mx0(t + mT ), m = 1, 2, . . . , are all
solutions of (2.1).

Since

Q−1x(t+ T,Q−(m−1)x0((m− 1)T ))
∣∣
t=−T

= Q−mx0((m− 1)T )

= Q−mx0(t+mT )
∣∣
t=−T

,
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by uniqueness, we obtain

Q−1x(t+ T,Q−(m−1)x0((m− 1)T )) ≡ Q−mx0(t+mT ) for all t

=⇒ P (Q−(m−1)x0((m− 1)T ))

= Q−1x(T,Q−(m−1)x0((m− 1)T )) = Q−mx0(mT ) ∈ S0

=⇒ P : S0 −→ S0.

Note that

x(T, p) = U(T )

(
p+

∫ T

0

U−1(s)g(s) ds

)
,

x(T, q) = U(T )

(
q +

∫ T

0

U−1(s)g(s) ds

)
=⇒ x

(
T,

k∑
i=1

λipi

)
= U(T )

( k∑
i=1

λipi +

∫ T

0

U−1(s)g(s) ds

)

=
k∑

i=1

λiU(T )

(
pi +

∫ T

0

U−1(s)g(s) ds

)

=
k∑

i=1

λix(T, pi)

for all λi ∈ [0, 1],
k∑

i=1

λi = 1, p, q ∈ Rn,

where U(t) denotes the fundamental solution matrix of (2.1) with the
initial value U(0) = id. Also,

p0 ∈ S

⇐⇒ there exists pi ∈ S0, λi ∈ [0, 1],

k∑
i=1

λi=1 such that p0=

k∑
i=1

λipi

=⇒ x(T, p0) = x

(
T,

k∑
i=1

λipi

)
=

k∑
i=1

λix(T, pi) ∈ S

=⇒ P : S −→ S.

By continuity, we have that P : S → S, as desired. Now, by Brouwer’s
fixed point theorem, P has a fixed point p∗ ∈ S, i.e., Q−1x(T, p∗) = p∗.
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Again, by the uniqueness of the solution to the initial value problem,
we obtain

Q−1x(t+ T, p∗) = x(t, p∗) for all t

⇐⇒ x(t+ T, p∗) = Qx(t, p∗) for all t,

which shows that x(t, p∗) is a (T,Q)-affine-periodic solution of (2.1).
The proof is complete. �

Proof of Theorem 1.5. Consider the auxiliary system

(2.3) x′ = −lx+ F (t, x, λ),

where l > l0 and

F (t, x, λ) = λlx+ (1− λ)la(t) + λf(t, x), λ ∈ [0, 1].

Let

C = {x : R1 → Rn : x(t) is continuous and Q-rotating-periodic},

with the usual norm
∥x∥ = sup

R1

|x(t)|,

where | · | denotes the usual Euclidean norm. Note that

|x(t+ T )| = |Q−1x(t+ T )| = |x(t)|.

Therefore, each x ∈ C is bounded. It is obvious that C is a Banach
space.

For each φ ∈ C, consider the equation

(2.4) x′ = −lx+ F (t, φ(t), λ).

Let x0(t) be the solution of (2.4) with initial value x(0) = 0. Then,

x0(t) = e−lt

∫ t

0

elsF (s, φ(s), λ) ds

=⇒ |x0(t)| ≤ 2e−lt(elt − 1)L

for all t ≥ 0 for some L > 0

=⇒ |Q−mx0(t+mT )| = |x0(t+mT )|

≤ 2e−l(t+mT )(el(t+mT ) − 1)L ≤ 2L for all t ≥ 0.
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According to Theorem 2.2, (2.4) has Q-rotating-periodic solutions. Let
x(t) be a Q-rotating-periodic solution of (2.4). Then,

x(t) = e−lt

(
x(0) +

∫ t

0

elsF (s, φ(s), λ)

)
ds, x(T ) = Qx(0)

=⇒ (e−lT id−Q)x(0) = −e−lT

∫ T

0

elsF (s, φ(s), λ) ds

=⇒ x(0) = −(e−lT id−Q)−1e−lT

∫ T

0

elsF (s, φ(s), λ) ds,

which implies

(2.5) x(t) = e−lt

(
− (e−lT id−Q)−1e−lT

∫ T

0

elsF (s, φ(s), λ) ds

+

∫ t

0

elsF (s, φ(s), λ) ds

)
.

Consequently, x(t) is unique. We define a map

P : C −→ C

by

Pλ(φ)(t) = xφ(t) for all φ ∈ C,

where xφ(t) is the unique Q-rotating-periodic solution of (2.4) with the
form (2.5). By using a standard argument, Pλ is completely continuous.
Set

D = {φ ∈ C : α(t) < φ(t) < β(t) for all t}.

By assumption (i), D is open and bounded in C.

Consider the homotopy

H(φ, λ) = φ− Pλ(φ) on D × [0, 1].

If, for λ = 1, P1 has a fixed point x∗ on D, then x∗(t) is a Q-rotating-
periodic solution of (1.1) with

α(t) ≤ x∗(t) ≤ β(t) for all t,

which proves the theorem. Hence, we assume that

0 /∈ (id− P1)(∂D).
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Thus, it follows from the complete continuity of H(φ, λ) that there
exist △, σ1 > 0 such that

α(t) + σ1 ≤ x(t) ≤ β(t)− σ1 for all t

for every possible Q-rotating-periodic solution x(t) lying in D when
λ ∈ [△, 1].

Now, we are able to prove that

0 /∈ H(∂D × [0,△]).

If this is false, then there exist solutions xk(t) of (2.3) with xk ∈ D,
tk ∈ R1, εk ↘ 0 and i ∈ {1, . . . , n} such that

(xk)i(tk)− βi(tk) = −εk, (xk)
′
i(tk)− β′

i(tk) −→ 0,

or

(xk)i(tk)− αi(tk) = εk, (xk)
′
i(tk)− α′

i(tk) −→ 0.

We only discuss the former since the latter is similar. Since β is an
upper solution of (1.1) and f is of Kamke type, by Definition 1.3 (i)
and (ii), we have

(xk)
′
i(tk) = −(1− λ)l((xk)i(tk)− ai(tk)) + λfi(tk, xk(tk))

= −(1− λ)l0((xk)i(tk)− ai(tk)) + λfi(tk, xk(tk))

− (1− λ)(l − l0)((xk)i(tk)− ai(tk))

= −(1− λ)l0(βi(tk)− ai(tk)) + λfi(tk, [βi(tk)])

+ ((1− λ)l0(βi(tk)− xi(tk))

+ λ(fi(tk, xk(tk))− fi(tk, [βi(tk)]))

− (1− λ)(l − l0)((xk)i(tk)− ai(tk))

≤ (1− λ)β′
i(tk) + λβ′

i(tk) + (1− λ)l0εk

− (1− λ)(l − l0)((xk)i(tk)− ai(tk))

≤ β′
i(tk) +O(εk)− (1− λ)(l − l0)(βi(tk)− ai(tk))

≤ −(1−△)(l − l0)σ + β′
i(xk) +O(εk).

(2.6)

Consequently, for k large enough,

0←− (x∗)
′
ik
(tk)− β′

ik
(tk) < −

1

2
(1−△)(l − l0)σ,
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a contradiction. According to homotopy invariance, we have

deg(H(·, 1), D, 0) = deg(H(·, 0), D, 0).

Note that P0 is a constant map. Thereby, if P0(0) ∈ D, then

deg(H(·, 0), D, 0) = 1.

In fact, let x(t) satisfy P0(x) = x, i.e., x(t) is a Q-rotating-periodic
solution of the equation

x′ = −l(x− a(t)).

Then, we claim that x ∈ D. If this is false, there exist tk ∈ R1, εk ↘ 0
and i ∈ {1, . . . , n} such that

xi(tk)− βi(tk) −→ δ − εk, x′
i(tk)− β′

i(tk) −→ 0,

or

xi(tk)− αi(tk) −→ −δ + εk, x′
i(tk)− α′

i(tk) −→ 0,

where

δ = sup
R1

{xi(t)− βi(t)} ≥ 0,

or

δ = sup
R1

{αi(t)− xi(t)} ≥ 0.

We assume, without loss of generality, that the former holds. Then, it
follows from assumption (i) and the definitions of {tk} and δ that, for k
large enough,

x′
i(tk) = −l(xi(tk)− ai(tk))

= −l0(βi(tk)− ai(tk)) + l0(βi(tk)− xi(tk))

− (l − l0)(xi(tk)− ai(tk))

< β′
i(tk) + l0(−δ + εk)− (l − l0)(βi(tk) + δ − εk − ai(tk))

≤ β′
i(tk) + l(−δ + εk)− (l − l0)(βi(tk)− ai(tk))

≤ β′
i(tk) + l(−δ + εk)− (l − l0)σ

< β′
i(tk) + l0(−δ + εk)− (l − l0)σ

=⇒ x′
i(tk)− β′

i(tk) ≤ l0εk − (l − l0)σ < − 1
2 (l − l0)σ,
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a contradiction. Thus,

deg(H(·, 1), D, 0) = deg(H(·, 0), D, 0) = 1.

Hence, P1 has a fixed point x∗ ∈ D. Then, x∗(t) is the desired Q-
rotating-periodic solution. The proof of Theorem 1.5 is complete. �

Proof of Corollary 1.7. It suffices to modify (2.6) in the proof of
Theorem 1.5 as follows:

(xk)
′
i(tk) = −(1−λ)l((xk)i(tk)− ai(tk)) + λfi(tk, xk(tk))

= −(1−λ)l0(βi(tk)− ai(tk)) + λfi(tk, [βi(tk)])

+ ((1−λ)l0(βi(tk)−xi(tk))+λ(fi(tk, xk(tk))−fi(tk, [βi(tk)]))

− (1−λ)(l − l0)((xk)i(tk)− ai(tk))

≤ −(1−△)(l − l0)σ − (1− λ)l0(βi(tk)− ai(tk))

+ λfi(tk, [βi(xk)]) +O(εk)

≤ −(1−△)(l − l0)σ + β′
i(xk) +O(εk). �

3. Examples.

Example 3.1. Consider the equation

(3.1) x′ + 2x = e−t.

Set f(t, x) = −2x+ e−t. The general solution of (3.1) is

x(t) = e−2tc+ e−t (c is any constant).

Obviously, for a given τ > 0,

f(t+ τ, x) = e−τf(t, eτx),

and any solution x(t) satisfies

|(e−τ )−mx(t+mτ)| = |emτe−2(t+mτ)c+ emτe−(t+mτ)|

≤ e−(2t+mτ)|c|+ 1.

Hence, by Theorem 2.2, (3.1) has an e−τ -periodic solution. This
solution is only x(t) = e−t and different from the usual periodic
solutions.
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Example 3.2. Consider the system

(3.2) x′ = −A(t) diag(|xi|2σ)x+ e(t) = f(t, x),

where σ ≥ 0, A : R1 × Rn×n and e : R1 → Rn are continuous and

A(t+ T ) = A(t), e(t+ T ) = −e(t);

A(t) = (aij(t)), −aij(t) ≥ 0, i ̸= j,
n∑

j=1

aij(t) > 0.

It is easily seen that f(t, x) is of Kamke type for x ∈ Rn, and, for
Q = −id,

f(t+ T, x) = Qf(t,Q−1x).

Set

α(t) = −λ

1
...
1

 , β(t) = λ

1
...
1


for all t, where λ > 0 is a constant such that

n∑
j=1

aii(t)λ
2σ+1 > max

R1
|ei(t)|, i = 1, . . . , n.

Note that

f(t, α) = −A(t) diag(λ2σ)(−λ)

1
...
1

+ e(t)

= λ2σ+1


n∑

j=1

a1j(t)
...

n∑
j=1

anj(t)

+ e(t) > 0 = α′.

Similarly, β′ > f(t, β). Thus,

α′ < f(t, α), β′ > f(t, β),

and by Theorem 1.5, (3.2) has an anti-periodic solution.
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Example 3.3. Consider system (3.2) with

A(t) = diag(Ap(t), Aa(t)),

e(t) = (ep(t), ea(t))
⊤,

Q = diag(id|n1 ,−id|n2),

where id|ni denotes the identical matrix of order ni × ni,

ep(t+ T ) = ep(t) ∈ Rn1 , ea(t+ T ) = −ea(t) ∈ Rn2 ,

A(t+ T ) = A(t), −aij(t) ≥ 0, i ̸= j,
n∑

j=1

aij(t) > 0.

By similar arguments as Example 3.2, (3.2) has Q-rotating-periodic
solutions. Now, a Q-rotating-periodic solution possesses former n1

periodic components and the latter n2 anti-periodic components.

Example 3.4. Consider the system

(3.3) x′ = −|x|2x+


sinω1t
cosω1t

...
sinωmt
cosωmt

 ≡ f(t, x), 2m = n,

where ω1, . . . , ωm are positive constants. Clearly, when ω = (ω1, . . . , ωm)
satisfies

k1ω1 + k2ω2 + · · ·+ kmωm ̸= 0 for all k ∈ Zm\{0},

e(t) = (sinω1t, cosω1t, . . . , sinωmt, cosωmt)⊤ is a quasi-periodic func-
tion with the frequency ω. We fix T > 0 and choose

Q = diag

((
cosω1T sinω1T
− sinω1T cosω1T

)
, . . . ,

(
cosωmT sinωmT
− sinωmT cosωmT

))
.

Then,

e(t+ T ) = Qe(t) for all t =⇒ f(t+ T, x) = Qf(t,Q−1x).

Set

α(t) = −λ

1
...
1

 , β(t) ≡ −α(t) for all t,
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where λ > 1. Consider the system

x′ = −diag(|xi|2)x+


sinω1t
cosω1t

...
sinωmt
cosωmt

 ≡ g(t, x).(3.4)

Then, g(t, x) is of Kamke type on Ω(t), and

α′ = 0 < f(t, α), β′ = 0 > f(t, β).

Hence, Corollary 1.7 (i), (ii) are satisfied. Note that

fi(t, [αi(t)]) = −|[αi(t)]|2αi(t) + sinωjt (or cosωjt)

= λ|[αi(t)]|2 + sinωjt (or cosωjt)

≥ λ|αi(t)|2 + sinωjt (or cosωjt) = gi(t, [αi(t)]),

fi(t, [βi(t)]) = −|[βi(t)]|2βi(t) + sinωjt (or cosωjt)

≤ −|βi(t)|2βi(t) + sinωjt (or cosωjt) = gi(t, [βi(t)]).

Thus, Corollary 1.7 (iii) also holds. Corollary 1.7 implies the existence
of quasi-periodic solution for (3.3) with the frequency ω.
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