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GLOBAL EXISTENCE AND UNIQUENESS
OF A CLASSICAL SOLUTION TO

SOME DIFFERENTIAL EVOLUTIONARY SYSTEM

LUCJAN SAPA

ABSTRACT. Theorems of global existence and unique-
ness of a classical solution to a nonlinear differential evolu-
tionary system with initial conditions are proved. This sys-
tem is composed of one partial hyperbolic second-order equa-
tion and an ordinary subsystem with a parameter. In the
proof of the theorems we use the Picard iteration method,
the monotone method of lower and upper solutions, the
integral form of the differential problem, weak differential
inequalities and the Arzeli-Ascola lemma.

1. Introduction. Let the functions f : R+
0 × R2+k → R, g =

(g1, . . . , gk) : R+
0 × R2+k → Rk of variables (t, x, p, r) ∈ R+

0 × R2+k,
φ0, φ1 : R → R, ψ0 = (ψ01, . . . , ψ0k) : R → Rk and a constant c ∈ R be
given, where R+

0 = [0,∞). Consider a nonlinear second-order partial
differential system of (1 + k) equations of the form

(1.1)

{
utt − uxx + cut = f(t, x, u, v) (t, x) ∈ R+

0 × R,
vt = g(t, x, u, v) (t, x) ∈ R+

0 × R,

with the initial conditions

(1.2)


u(0, x) = φ0(x) x ∈ R,
v(0, x) = ψ0(x) x ∈ R,
ut(0, x) = φ1(x) x ∈ R,
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where v = (v1, . . . , vk). The equations are weakly coupled. If c > 0,
then the first hyperbolic wave equation in (1.1) is called the telegraph
equation. The other equations in (1.1) are of first-order with a space
parameter x.

The existence, uniqueness and estimates of local solutions to problem
(1.1), (1.2) in Hölder spaces were studied in [21]. Some information,
especially regarding maximum principles and the existence of time-
periodic bounded weak solutions for the wave or telegraph equations,
is given in [13, 17].

Physical motivation of a particular system of the form (1.1) with
c = 1/τ , τ ≥ 0 the time of relaxation, and f, g of a special form,
together with a construction of the solitary wave solutions and their
stability, are given in [14], see Example 4.12. This system is a
generalization of the Hodgkin-Huxley, FitzHugh-Nagumo and McKean
models, taking into account effects of memory connected with internal
media structure.

The existence, uniqueness and continuous dependence on initial val-
ues of global classical solutions to a similar system, but with the para-
bolic leading equation instead of our telegraph or wave equations, were
studied by Evans and Shenk [5, 9]. Moreover, Evans [5]–[8] considered
stability in the suitable sense of stationary and traveling wave classical
solutions to such systems, usually called partly parabolic. Those sys-
tems describe, for example, the dynamics of a nerve impulse in axons,
and they cover, in particular, the Hodgkin-Huxley system. In [12, 20],
a connection is described between fast and slow waves in the FitzHugh-
Nagumo system and in some systems with non continuous right-hand
side. A review of recent results on the stability of traveling wave so-
lutions in partly parabolic reaction-diffusion systems is given in [10].
Similar evolutionary systems also appear in [16]. Stability of travel-
ing wave solutions of hyperbolic, like the first equation in (1.1), and
parabolic convection-reaction-diffusion equations is studied in [23]. A
realistic view of wave mechanics was first proposed by de Broglie [4]. In
his inspiring work, Madelung related the linear Schrödinger equation to
the hydrodynamic type system [15]. The various aspects of hydrody-
namic [2] and mechanistic [3] formulations of the nonlinear Schrödinger
equation are still at the center of interest. These formulations lead to
systems comprised of second or third order partial differential evolution
equations together with first order subsystems.
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The general consensus from the authors cited above is that adding
first order subsystems (kinetic equations) to the second order equations
has a physical motivation and improves the stability of stationary and
traveling wave solutions. In order to study the stability of such special
solutions we usually need theorems on the existence and uniqueness of
global solutions in time of initial problems, with the initial data from
a suitable large class of functions.

In this paper, we study global in time bounded or unbounded
classical solutions of the initial differential problem (1.1), (1.2). By
a classical solution, we mean a function

(u, v) ∈ C2(R+
0 × R,R)× C1(R+

0 × R,Rk),

which fulfills differential system (1.1) and initial conditions (1.2). We
give two theorems on existence and uniqueness. In the first theorem,
we assume, in particular, the global Lipschitz condition on f , g (and
some of their first order derivatives) with respect to p, r, and we prove it
with the use of the Picard iteration method. In the second, we assume
the local Lipschitz condition on f, g (and some of their first order
derivatives) with respect to p, r, together with suitable monotonicity
for f, g in some interval, and we prove it with the use of the monotone
method of upper and lower solutions. This theorem also implies the
localization of the unique solution. The proof of the theorems is based
upon the equivalent integral form of the differential problem. Moreover,
we give a theorem on weak linear hyperbolic differential inequalities
which is a tool in the proof of convergence based on the monotone
method. Monotone methods for parabolic finite and infinite systems
are studied in [1, 18, 19].

The paper is organized in the following way. In Section 2, the
properties of suitable linear hyperbolic equations and operators related
to the first equation in (1.1) are discussed. In particular, weak linear
hyperbolic differential inequalities, which are sometimes called the
maximum principle for inequalities, are given. The integral system,
equivalent under some assumptions to the initial differential problem
(1.1), (1.2), is given in Section 3. In Section 4, theorems on global
existence and uniqueness are formulated and proven. Moreover, the
construction of upper and lower solutions in the case of bounded
f, g, φ0, φ1, ψ0 and examples of differential problems are presented.
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2. Fundamental solution and the maximum principle in a
linear case. In this section, we discuss the properties of suitable linear
equations and operators related to the first equation in (1.1).

The next simple lemma will be useful in our future considerations.

Lemma 2.1. The ansatz u = we−(ct)/2 transforms the equation

(2.1) utt − uxx + cut + a(t, x)u = 0,

where c = const ∈ R, a : R+
0 × R → R, to the equivalent equation

(2.2) wtt − wxx =

(
c2

4
− a(t, x)

)
w.

Observe that, for a(t, x) ≡ λ > c2/4, λ = const, equation (2.2)
is the Klein-Gordon equation, and this equation together with the
initial conditions does not fulfill the weak maximum principle, see
Example 2.3.

Define the differential operator

(2.3) Lu = utt − uxx + cut +
c2

4
u in R2,

acting on scalar functions on R2. Let D′(R2) be the space of distribu-
tions on R2, and let δ be the Dirac distribution in D′(R2). It is well
known that the function

(2.4) U0(t, x) =

{
1/2 |x| < t,

0 |x| ≥ t,

is the fundamental solution of the wave operator �u = utt − uxx in
D′(R2), namely,

(U0)tt − (U0)xx = δ in D′(R2).

After setting a(t, x) ≡ c2/4 in Lemma 2.1, we easily see that the
fundamental solution of the operator L in D′(R2) is given by

(2.5) U(t, x) = e−(ct)/2U0(t, x),



GLOBAL EXISTENCE AND UNIQUENESS 2355

that is,

Utt − Uxx + cUt +
c2

4
U = δ in D′(R2),

see [13].

Now, we give a theorem concerning weak differential inequalities,
sometimes called the weak maximum principle for inequalities. Let

(2.6) Lau = utt − uxx + cut + a(t, x)u in R+ × R

(2.7) L0u = ut +
c

2
u on {0} × R

act on scalar functions on R+
0 × R; R+

0 = [0,∞), R+ = (0,∞).

Theorem 2.2. If c ≥ 0, a(t, x) ≤ c2/4 in R+
0 × R is continuous and

u ∈ C1(R+
0 × R,R) ∩ C2(R+ × R,R) satisfies

Lau ≤ 0 in R+ × R,
L0u ≤ 0 on {0} × R,
u ≤ 0 on {0} × R,

then

u ≤ 0 on R+
0 × R.

Proof. These are a direct consequence of [17, Chapter 4, The-
orem 3], if we multiply the operator La by the positive function
ũ(t, x) = e(ct)/2. �

The example below shows that Theorem 2.2 is invalid for a(t, x) ≡
λ > c2/4, λ = const.

Example 2.3. Let c = 0, λ = 1. The function u(t, x) = − cos t satisfies
the inequalities in the assumptions of Theorem 2.2; however, it is not
a non positive function in R+

0 × R.

3. Integral system. In this section, we give a lemma which will be
crucial for our future studies.
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Consider a nonlinear integral system of (1+k) equations of the form
(3.1)

u(t, x) = 1
2

t∫
0

x+(t−s)∫
x−(t−s)

e−[c(t−s)]/2

×[f(s, y, u(s, y), v(s, y)) + c2

4 u(s, y)] dy ds

+ 1
2e

−(ct)/2
x+t∫
x−t

φ1(y) dy +
c
4e

−(ct)/2
x+t∫
x−t

φ0(y) dy

+ 1
2e

−(ct)/2[φ0(x+ t) + φ0(x− t)] (t, x) ∈ R+
0 × R,

v(t, x) = ψ0(x) +
t∫
0

g(s, x, u(s, x), v(s, x)) ds (t, x) ∈ R+
0 × R.

Lemma 3.1. If

(i) f ∈ C1(R+
0 × R2+k,R), g ∈ C1(R+

0 × R2+k,Rk),
(ii) φ0 ∈ C2(R,R), φ1 ∈ C1(R,R), ψ0 ∈ C1(R,Rk),

then the differential initial problem (1.1), (1.2) and the integral sys-
tem (3.1) are equivalent in the sense that any solution (u, v) ∈ C2(R+

0 ×
R,R) × C1(R+

0 × R,Rk) of (1.1), (1.2) is a solution of (3.1), and any
solution (u, v) ∈ C(R+

0 ×R,R1+k), vx ∈ C(R+
0 ×R,Rk), of (3.1) belongs

to C2(R+
0 × R,R) ×C1(R+

0 × R,Rk) and fulfills (1.1), (1.2).

Proof. The first equation in (1.1) is equivalent to:

utt − uxx + cut +
c2

4
u = f(t, x, u, v) +

c2

4
u, (t, x) ∈ R+

0 × R.

Hence, the ansatz u = we−(ct)/2 transforms problem (1.1), (1.2) to the
equivalent differential system
(3.2){

wtt − wxx = e(ct)/2f(t, x, we−(ct)/2, v) + c2

4 w (t, x) ∈ R+
0 × R,

vt = g(t, x, we−(ct)/2, v) (t, x) ∈ R+
0 × R,

with the equivalent initial conditions

(3.3)


w(0, x) = φ0(x) x ∈ R,
v(0, x) = ψ0(x) x ∈ R,
wt(0, x) =

c
2φ0(x) + φ1(x) x ∈ R.
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The continuity of f, g, φ0, ψ0, φ1, the use of Riemann’s method, see [17,
page 196], for the first equation in (3.2) and integration of the second
equation imply that any solution (w, v) ∈ C2(R+

0 × R,R) × C1(R+
0 ×

R,Rk) of (3.2), (3.3) is a solution of a nonlinear integral system of
(1 + k) equations of the form
(3.4)

w(t, x) = 1
2

t∫
0

x+(t−s)∫
x−(t−s)

×[e(cs)/2f(s, y, w(s, y)e−(cs)/2, v(s, y)) + c2

4 w(s, y)] dy ds

+ 1
2

x+t∫
x−t

[
c
2φ0(y) + φ1(y)

]
dy

+ 1
2 [φ0(x+ t) + φ0(x− t)] (t, x)∈R+

0 ×R,

v(t, x) = ψ0(x)+
t∫
0

g(s, x, w(s, x)e−(cs)/2, v(s, x)) ds (t, x)∈R+
0 ×R.

Multiplying the first equation in (3.4) by e−(ct)/2, we have that any
solution (u, v) ∈ C2(R+

0 × R,R) × C1(R+
0 × R,Rk) of the differential

initial problem (1.1), (1.2) is a solution of the integral system (3.1).

On the other hand, let (u, v) ∈ C(R+
0 ×R,R1+k), vx ∈ C(R+

0 ×R,Rk),
be a solution of (3.1). For simplicity, put

A(t, x, s) = (s, x+ (t− s), u(s, x+ (t− s)), v(s, x+ (t− s))),

B(t, x, s) = (s, x− (t− s), u(s, x− (t− s)), v(s, x− (t− s))).

From the regularity of f, g, φ0, ψ0, φ1 and differentiation of the integrals
in (3.1), we have

ut(t, x)=− c

4

t∫
0

x+(t−s)∫
x−(t−s)

e−[c(t−s)]/2

[
f(s,y,u(s,y), v(s,y))+

c2

4
u(s,y)

]
dyds

+
1

2

t∫
0

e−[c(t−s)]/2

[
f(A(t, x, s)) +

c2

4
u(s, x+ (t− s))

]
ds

+
1

2

t∫
0

e−[c(t−s)]/2

[
f(B(t, x, s)) +

c2

4
u(s, x− (t− s))

]
ds

− c

4
e−(ct)/2

∫ x+t

x−t

φ1(y) dy
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+
1

2
e−(ct)/2[φ1(x+ t) + φ1(x− t)]− c2

8
e−(ct)/2

∫ x+t

x−t

φ0(y)dy

+
1

2
e−(ct)/2[(φ0)x(x+t)−(φ0)x(x−t)]

ux(t, x) =
1

2

∫ t

0

e−[c(t−s)]/2

[
f(A(t, x, s)) +

c2

4
u(s, x+ (t− s))

]
ds

− 1

2

∫ t

0

e−[c(t−s)]/2

[
f(B(t, x, s)) +

c2

4
u(s, x− (t− s))

]
ds

+
1

2
e−(ct)/2[φ1(x+t)−φ1(x−t)]

+
c

4
e−(ct)/2[φ0(x+t)−φ0(x−t)]

+
1

2
e−(ct)/2[(φ0)x(x+ t) + (φ0)x(x− t)],

utt(t, x) =
c2

8

∫ t

0

x+(t−s)∫
x−(t−s)

e−[c(t−s)]/2

[
f(s,y,u(s, y), v(s, y))+

c2

4
u(s, y)

]
dyds

− c

2

∫ t

0

e−[c(t−s)]/2

[
f(A(t, x, s)) +

c2

4
u(s, x+ (t− s))

]
ds

− c

2

∫ t

0

e−[c(t−s)]/2

[
f(B(t, x, s)) +

c2

4
u(s, x− (t− s))

]
ds

+
1

2

∫ t

0

e−[c(t−s)]/2

[
fx(A(t, x, s))+fp(A(t, x, s))ux(s, x+(t−s))

+

k∑
i=1

fri(A(t, x, s))(vi)x(s, x+(t−s))

+
c2

4
ux(s, x+(t−s))

]
ds

− 1

2

∫ t

0

e−[c(t−s)]/2

[
fx(B(t,x,s))+fp(B(t,x,s))ux(s, x−(t−s))

+
k∑

i=1

fri(B(t, x, s))(vi)x(s, x−(t−s))

+
c2

4
ux(s, x−(t−s))

]
ds
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+ f(t, x, u(t, x), v(t, x)) +
c2

4
u(t, x)

+
c2

8
e−(ct)/2

∫ x+t

x−t

φ1(y) dy −
c

2
e−(ct)/2[φ1(x+ t) + φ1(x− t)]

+
1

2
e−(ct)/2[(φ1)x(x+ t)− (φ1)x(x− t)]

+
c3

16
e−(ct)/2

∫ x+t

x−t

φ0(y) dy −
c2

8
e−(ct)/2[φ0(x+t) + φ0(x−t)]

− c

4
e−(ct)/2[(φ0)x(x+ t)− (φ0)x(x− t)]

+
1

2
e−(ct)/2[(φ0)xx(x+ t) + (φ0)xx(x− t)],

uxx(t, x) =
1

2

∫ t

0

e−[c(t−s)]/2

[
fx(A(t, x, s))+fp(A(t, x, s))ux(s, x+(t−s)

+

k∑
i=1

fri(A(t,x,s))(vi)x(s, x+(t−s))

+
c2

4
ux(s, x+(t−s))

]
ds

− 1

2

∫ t

0

e−[c(t−s)]/2

[
fx(B(t, x, s))+fp(B(t, x, s))ux(s, x−(t−s))

+
k∑

i=1

fri(B(t,x,s))(vi)x(s, x−(t−s))

+
c2

4
ux(s, x−(t−s))

]
ds

+
1

2
e−(ct)/2[(φ1)x(x+ t)− (φ1)x(x− t)]

+
c

4
e−(ct)/2[(φ0)x(x+ t)− (φ0)x(x− t)]

+
1

2
e−(ct)/2[(φ0)xx(x+ t) + (φ0)xx(x− t)],

vt(t, x) = g(t, x, u(t, x), v(t, x)).

It is clear that (u, v) ∈ C2(R+
0 × R,R) × C1(R+

0 × R,Rk) and fulfills
(1.1), (1.2). �
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4. Global existence and uniqueness of a solution. We show
the global in time existence and uniqueness of a solution (u, v) ∈
C2(R+

0 × R,R) × C1(R+
0 × R,Rk) of (1.1), (1.2). Firstly, we prove it

by using the Picard iteration method, assuming the global Lipschitz
condition on f, g with respect to p, r, and secondly, by using the
monotone method of upper and lower solutions, assuming the local
Lipschitz condition on f, g with respect to p, r.

4.1. The Picard iteration method. Let ∥ ∥ be the maximum norm
in Rd, i.e.,

(4.1) ∥y∥ = max
i=1,...,d

|yi|,

where y ∈ Rd. In the space of continuous functions C(Ω,Rd), we define
the maximum norm

(4.2) ∥z∥Ω = max{∥z(ω)∥ : ω ∈ Ω},

where z ∈ C(Ω,Rd), Ω ⊂ Rm is a compact set. Moreover, let
N0 = N ∪ {0}.

Now, we formulate two well-known lemmas which will be useful
further on in the paper, and then we prove a theorem on global ex-
istence and uniqueness under the global Lipschitz condition on f , g
with respect to p, r.

Lemma 4.1. Let (yn) be a sequence of functions yn : Rm ⊃ D → Rd,
n ∈ N0. If, for all x ∈ D and for all n ∈ N0,

∥yn+1(x)− yn(x)∥ ≤ αn,

and the number series
∑∞

n=0 αn is convergent, then (yn) is uniformly
convergent in D. Moreover, if all yn are continuous, then the limit is
also continuous.

Lemma 4.2. Let h : [α, β] × Rm → Rd be continuous, and let (yn),
yn : [α, β] → Rm, n ∈ N0, be a sequence of continuous functions
uniformly convergent in [α, β] to y. Then,

lim
n→∞

∫ s

α

h(t, yn(t)) dt =

∫ s

α

h(t, y(t)) dt, s ∈ [α, β].

Theorem 4.3. Assume that
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(i) f ∈ C1(R+
0 × R2+k,R), g ∈ C1(R+

0 × R2+k,Rk);
(ii) f, g are Lipschitz continuous, with a constant L, with respect to

p, r in R+
0 × R2+k;

(iii) gx, gp, gri , i = 1, . . . , k, are Lipschitz continuous, with a constant
L1, with respect to x, p, r in R+

0 × R2+k;
(iv) φ0 ∈ C2(R,R), φ1 ∈ C1(R,R), ψ0 ∈ C1(R,Rk);
(v) (ψ0)x is Lipschitz continuous with a constant L0 in R.

Then there exists a unique solution (u, v) ∈ C2(R+
0 ×R,R)×C1(R+

0 ×
R,Rk) of (1.1), (1.2).

Proof. It follows from Lemma 3.1 that the differential initial problem
(1.1), (1.2) is equivalent to the integral system (3.1) in a suitable
sense. From this equivalence, it is sufficient to find a unique continuous
solution (u, v) of (3.1) such that vx exists and is continuous.

Let T ∈ R+ be fixed, and let X ∈ R be such that the lines passing
through the points (X−T, 0), (X,T ) and (X+T, 0), (X,T ) create angles
π/4, −π/4 with the x-axis, respectively. Denote by ∆(X,T ) ⊂ R×R+

0

an isosceles triangle with the vertices (X − T, 0), (X,T ), (X + T, 0).

We will construct a continuous solution (u, v) in ∆(X,T ), with vx
continuous in ∆(X,T ), of (3.1), and then, we will prove its uniqueness.
Define a sequence (un, vn) of functions

un : ∆(X,T ) −→ R, vn : ∆(X,T ) −→ Rk,

vn = (v1n, . . . , vkn), n ∈ N0,

by the Picard recurrence formula

u0(t, x) =
1

2
e−(ct)/2

∫ x+t

x−t

φ1(y) dy +
c

4
e−(ct)/2

∫ x+t

x−t

φ0(y) dy(4.3)

+
1

2
e−(ct)/2[φ0(x+ t) + φ0(x− t)],

v0(t, x) = ψ0(x),

un+1(t, x) =
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

e−[c(t−s)]/2

×
[
f(s, y, un(s, y), vn(s, y)) +

c2

4
un(s, y)

]
dy ds
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+
1

2
e−(ct)/2

∫ x+t

x−t

φ1(y) dy +
c

4
e−(ct)/2

∫ x+t

x−t

φ0(y) dy

+
1

2
e−(ct)/2[φ0(x+ t) + φ0(x− t)],

vn+1(t, x) = ψ0(x) +

∫ t

0

g(s, x, un(s, x), vn(s, x)) ds.

By induction and assumptions (i) and (iv), this sequence is well defined.
Using induction and assumptions (i), (ii) and (iv), we obtain the
estimates

|un+1(t, x)− un(t, x)| ≤
γn+1M(L+ c2/4)nT (1 + T )ntn+1

(n+ 1)!
,(4.4)

∥vn+1(t, x)− vn(t, x)∥ ≤ γn+1M(L+ c2/4)n(1 + T )ntn+1

(n+ 1)!
,

where

M = max
{
∥f(·, ·, u0(·, ·), v0(·, ·))∥∆(X,T ) + c2/4∥u0(·, ·)∥∆(X,T ),

∥g(·, ·, u0(·, ·), v0(·, ·))∥∆(X,T )

}
,

γ = 1 if c ≥ 0 and γ = e−(cT )/2 if c < 0, for (t, x) ∈ ∆(X,T ), n ∈ N0.
Note that γ ≥ 1. It follows from the d’Alembert criterion that the
number series

∞∑
n=0

γn+1M(L+ (c2/4))nT (1 + T )nTn+1

(n+ 1)!
,

∞∑
n=0

γn+1M(L+ (c2/4))n(1 + T )nTn+1

(n+ 1)!

are convergent. Lemma 4.1 implies that

(4.5) lim
n→∞

un(t, x) = u(t, x), lim
n→∞

vn(t, x) = v(t, x)

uniformly in ∆(X,T ), and u, v are continuous. From Lemma 4.2, re-
garding the limit transition under the sign of an integral, we obtain
that (u, v) is a solution of (3.1) in ∆(X,T ).

We must show that vx exists and it is continuous in ∆(X,T ). In
order to do so, we will prove the uniform boundedness of the sequence
((vn)x) in ∆(X,T ) and the Lipschitz continuity of the functions (vn)x
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in ∆(X,T ) with the same constant for all n ∈ N0, and then we will use
the Arzeli-Ascola lemma. For simplicity, set

An(t, x, s) = (s, x+ (t− s), un(s, x+ (t− s)), vn(s, x+ (t− s))),

Bn(t, x, s) = (s, x− (t− s), un(s, x− (t− s)), vn(s, x− (t− s))),

Cn(x, s) = (s, x, un(s, x), vn(s, x)).

Induction and assumptions (i) and (iv) imply the existence of (un)x,
(vn)x, n ∈ N0, and moreover,

(u0)x(t, x) =
1

2
e−(ct)/2[φ1(x+ t)− φ1(x− t)]

(4.6)

+
c

4
e−(ct)/2[φ0(x+ t)− φ0(x− t)]

+
1

2
e−(ct)/2[(φ0)x(x+ t) + (φ0)x(x− t)],

(v0)x(t, x) = (ψ0)x(x),

(un+1)x(t, x) =
1

2

∫ t

0

e−[c(t−s)]/2

[
f(An(t, x, s))+

c2

4
un(s, x+(t−s))

]
ds

− 1

2

∫ t

0

e−[c(t−s)]/2

[
f(Bn(t, x,s))+

c2

4
un(s, x−(t−s))

]
ds

+
1

2
e−(ct)/2[φ1(x+ t)− φ1(x− t)]

+
c

4
e−(ct)/2[φ0(x+ t)− φ0(x− t)]

+
1

2
e−(ct)/2[(φ0)x(x+ t) + (φ0)x(x− t)],

(vn+1)x(t, x) = (ψ0)x(x)

+

∫ t

0

[
gx(Cn(x, s)) + gp(Cn(x, s))(un)x(s, x)

+
k∑

i=1

gri(Cn(x, s))(vin)x(s, x)

]
ds.

The sequences (un) and (vn) are uniformly bounded in ∆(X,T )
since they are uniformly convergent in ∆(X,T ). Moreover, it fol-
lows from (4.6) that the sequence ((un)x) is also uniformly bounded
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in ∆(X,T ), i.e.,

(4.7) ∥(un)x∥∆(X,T ) ≤ c, n ∈ N0,

where c is a positive constant. Hence, by continuity of (ψ0)x, gx, gp,
gri , there are positive constants a and b such that

∥(vn+1)x(t, x)∥ ≤ a+ b

∫ t

0

∥(vn)x(s, x)∥ ds, n ∈ N0,

and ∥(v0)x(t, x)∥ ≤ a for (t, x) ∈ ∆(X,T ). Elementary calculations
imply the estimates

∥(vn)x(t, x)∥ ≤ a

n∑
i=0

(bt)i

i!
≤ a exp(bt), n ∈ N0

for (t, x) ∈ ∆(X,T ), and consequently,

(4.8) ∥(vn)x∥∆(X,T ) ≤ a exp (bT ), n ∈ N0.

Thus, the sequence ((vn)x) is uniformly bounded in ∆(X,T ). From
assumptions (i), (ii), (iv), boundedness of the sequences (un), (vn),
((un)x), ((vn)x), the mean value theorem for un, the theorem on the
estimate of an increment of vn and additivity of an integral, we get
that the functions (un)x fulfill the Lipschitz condition in ∆(X,T ) with
the same constant L2 for all n ∈ N0. The technical details of finding
L2 are omitted. The same arguments, together with assumption (iii)
instead of (ii) and assumption (v), give

∥(vn+1)x(t, x)− (vn+1)x(t, x)∥ ≤ ∥(ψ0)x(x)− (ψ0)x(x)∥

+

∥∥∥∥ ∫ t

0

gx(Cn(x, s)) ds−
∫ t̄

0

gx(Cn(x, s)) ds

∥∥∥∥
+

∥∥∥∥ ∫ t

0

gp(Cn(x, s))(un)x(s, x) ds

−
∫ t̄

0

gp(Cn(x, s))(un)x(s, x) ds

∥∥∥∥
+

k∑
i=1

∥∥∥∥ ∫ t

0

gri(Cn(x, s))(vin)x(s, x) ds

−
∫ t̄

0

gri(Cn(x, s))(vin)x(s, x) ds

∥∥∥∥,
(4.9)
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∥∥∥∥ ∫ t

0

gx(Cn(x, s)) ds−
∫ t̄

0

gx(Cn(x, s)) ds

∥∥∥∥
=

∥∥∥∥∫ t

0

gx(Cn(x, s)) ds−
∫ t

0

gx(Cn(x, s)) ds−
∫ t̄

t

gx(Cn(x, s)) ds

∥∥∥∥
≤

∫ t

0

∥gx(Cn(x, s))− gx(Cn(x, s))∥ ds+ d1|t− t|

≤ L1

∫ t

0

[|x− x|+ |un(s, x)− un(s, x)|

+ ∥vn(s, x)− vn(s, x)∥] ds+ d1|t− t|

≤ L1

∫ t

0

[|x− x|+ |(un)x(s, x1)||x− x|

+ ∥(vn)x(s, x2)∥|x− x|] ds+ d1|t− t|
≤ L1T (1 + c+ a exp (bT ))|x− x|+ d1|t− t|,∥∥∥∥ ∫ t

0

gp(Cn(x, s))(un)x(s, x) ds−
∫ t̄

0

gp(Cn(x, s))(un)x(s, x) ds

∥∥∥∥
=

∥∥∥∥∫ t

0

gp(Cn(x, s))(un)x(s, x) ds−
∫ t

0

gp(Cn(x, s))(un)x(s, x) ds

−
∫ t̄

t

gp(Cn(x, s))(un)x(s, x) ds

∥∥∥∥
≤

∫ t

0

∥gp(Cn(x, s))(un)x(s, x)−gp(Cn(x, s))(un)x(s, x)∥ ds+d2c|t−t|

≤
∫ t

0

∥gp(Cn(x, s))(un)x(s, x)−gp(Cn(x, s))(un)x(s, x)∥ ds

+

∫ t

0

∥gp(Cn(x, s))(un)x(s, x)−gp(Cn(x, s))(un)x(s, x)∥ ds

+ d2c|t− t|

≤
∫ t

0

∥gp(Cn(x, s))∥|(un)x(s, x)− (un)x(s, x)| ds

+ cL1

∫ t

0

[|x− x|+ |un(s, x)− un(s, x)|+ ∥vn(s, x)− vn(s, x)∥] ds

+ d2c|t− t|
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≤ d2L2

∫ t

0

|x− x| ds

+ cL1

∫ t

0

[|x−x|+|(un)x(s, x1)||x−x|+∥(vn)x(s, x2)∥|x−x|] ds

+ d2c|t− t|
≤ [d2L2T + cL1T (1 + c+ a exp (bT ))]|x− x|+ d2c|t− t|,∥∥∥∥ ∫ t

0

gri(Cn(x, s))(vin)x(s, x) ds−
∫ t̄

0

gri(Cn(x, s))(vin)x(s, x) ds

∥∥∥∥
=

∥∥∥∥∫ t

0

gri(Cn(x, s))(vin)x(s, x) ds−
∫ t

0

gri(Cn(x, s))(vin)x(s, x) ds

−
∫ t̄

t

gri(Cn(x, s))(vin)x(s, x) ds

∥∥∥∥
≤

∫ t

0

∥gri(Cn(x, s))(vin)x(s, x)− gri(Cn(x, s))(vin)x(s, x)∥ ds

+ d3a exp (bT )|t− t|

≤
∫ t

0

∥gri(Cn(x, s))(vin)x(s, x)− gri(Cn(x, s))(vin)x(s, x)∥ ds

+

∫ t

0

∥gri(Cn(x, s))(vin)x(s, x)− gri(Cn(x, s))(vin)x(s, x)∥ ds

+ d3a exp (bT )|t− t|

≤
∫ t

0

∥gri(Cn(x, s))∥|(vin)x(s, x)− (vin)x(s, x)| ds

+ a exp (bT )L1

∫ t

0

[|x− x|+ |un(s, x)− un(s, x)|

+ ∥vn(s, x)− vn(s, x)∥] ds+d3a exp (bT )|t−t|

≤ d3

∫ t

0

∥(vn)x(s, x)− (vn)x(s, x)∥ ds

+ a exp (bT )L1

∫ t

0

[|x− x|+ |(un)x(s, x1)||x− x|

+ ∥(vn)x(s, x2)∥|x−x|] ds+d3a exp (bT )|t−t|
≤ [a exp (bT )L1T (1 + c+ a exp (bT ))]|x− x|+ d3a exp (bT )|t− t|



GLOBAL EXISTENCE AND UNIQUENESS 2367

+ d3

∫ t

0

∥(vn)x(s, x)− (vn)x(s, x)∥ ds,

where x1, x2 ∈ [X−T,X+T ] are some intermediate points and d1, d2, d3
are positive constants. Set

a1(t, t, x, x) = {L0 + L1T (1 + c+ a exp (bT ))

(4.10)

+ [d2L2T + cL1T (1 + c+ a exp (bT ))]

+ ka exp (bT )L1T (1 + c+ a exp (bT ))}|x− x|
+ {d1 + d2c+ kd3a exp (bT )}|t− t|, b1 = kd3.

Hence, by (4.9) and (4.10),

∥(vn+1)x(t, x)− (vn+1)x(t, x)∥ ≤ a1(t, t, x, x)

+ b1

∫ t

0

∥(vn)x(s, x)− (vn)x(s, x)∥ ds,

n ∈ N0, and ∥(v0)x(t, x) − (v0)x(t, x)∥ ≤ a1(t, t, x, x) for (t, x) ∈
∆(X,T ). Elementary calculations, together with the relation a1(s, s, x,
x) ≤ a1(t, t, x, x), imply the estimates

∥(vn)x(t, x)− (vn)x(t, x)∥ ≤ a1(t, t, x, x)
∑
i=0

n
(b1t)

i

i!

≤ exp(b1T )a1(t, t, x, x), n ∈ N0,

for (t, x) ∈ ∆(X,T ); thus, the functions (vn)x fulfill the Lipschitz
condition in ∆(X,T ) with the same constant for all n ∈ N0. It
follows from (4.8), (4.11) and the Arzeli-Ascola lemma that there
exists a subsequence ((vnl

)x), uniformly convergent in ∆(X,T ), and
consequently, vx equals the limit of this subsequence.

Let (ũ, ṽ) be any continuous solution of (3.1) in ∆(X,T ). Induction
and assumptions (i), (ii), (iv) lead to the estimates

|un(t, x)− ũ(t, x)| ≤ γn+1M̃(L+ c2/4)nT (1 + T )ntn+1

(n+ 1)!
,(4.11)

∥vn(t, x)− ṽ(t, x)∥ ≤ γn+1M̃(L+ c2/4)n(1 + T )ntn+1

(n+ 1)!
,

where
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M̃ = max
{
∥f(·, ·, ũ(·, ·), ṽ(·, ·))∥∆(X,T ) +

c2

4
∥ũ(·, ·)∥∆(X,T ),

∥g(·, ·, ũ(·, ·), ṽ(·, ·))∥∆(X,T )

}
,

for (t, x) ∈ ∆(X,T ), n ∈ N0. From (4.5) and (4.11), we have |u(t, x)−
ũ(t, x)| ≤ 0, ∥v(t, x)−ṽ(t, x)∥ ≤ 0 in ∆(X,T ), and consequently, u = ũ,
v = ṽ in ∆(X,T ).

A global solution is constructed by piecing together the solutions
in all of the triangles ∆(X,T ) and, by Lemma 3.1, the proof is
complete. �

Remark 4.4. Due to u = ũ, v = ṽ in ∆(X,T ) in the proof of
Theorem 4.3, inequalities (4.11) give the rate of convergence of the
analytical method

|un(t, x)− u(t, x)| ≤ γn+1M1(L+ c2/4)nT (1 + T )ntn+1

(n+ 1)!
,

∥vn(t, x)− v(t, x)∥ ≤ γn+1M1(L+ c2/4)n(1 + T )ntn+1

(n+ 1)!
,

M1 = max
{
∥f(·, ·, u(·, ·), v(·, ·))∥∆(X,T ) +

c2

4
∥u(·, ·)∥∆(X,T ),

∥g(·, ·, u(·, ·), v(·, ·))∥∆(X,T )

}
,

for (t, x) ∈ ∆(X,T ), n ∈ N0.

Remark 4.5. From (4.4), (4.6), and after simple calculations, we have
the estimate

(4.12) |(un+1)x(t, x)−(un)x(t, x)| ≤
γn+1M(L+ c2/4)n(1 + T )ntn+1

(n+ 1)!

for (t, x) ∈ ∆(X,T ), n ∈ N0. It follows from Lemma 4.1 that the
sequence ((un)x) is uniformly convergent in ∆(X,T ).

4.2. The monotone method of upper and lower solutions. In
this section, we use a monotone method of upper and lower solutions
to prove a theorem on global existence and uniqueness under the local,
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in a some sector, Lipschitz condition on f , g with respect to p, r. This
theorem also gives the localization of the unique solution.

In Rk, the following order is introduced: for y = (y1, . . . , yk), ỹ =
(ỹ1, . . . , ỹk) ∈ Rk, the inequality y ≤ ỹ means that yi ≤ ỹi, i = 1, . . . , k.
Moreover, we define the order in the space C2(R+

0 × R,R) as follows:
for u, ũ ∈ C2(R+

0 × R,R), the inequality u ≤ ũ means that u(t, x) ≤
ũ(t, x), (t, x) ∈ R+

0 × R. Similarly, in the space C1(R+
0 × R,Rk): for

v = (v1, . . . , vk), ṽ = (ṽ1, . . . , ṽk) ∈ C1(R+
0 × R,Rk), the inequality

v ≤ ṽ means that vi(t, x) ≤ ṽi(t, x), (t, x) ∈ R+
0 × R, i = 1, . . . , k.

A function (u, v) ∈ C2(R+
0 × R,R)× C1(R+

0 × R,Rk) satisfying the
system of inequalities

(4.13)



utt − uxx + cut ≤ f(t, x, u, v) (t, x) ∈ R+
0 × R,

vt ≤ g(t, x, u, v) (t, x) ∈ R+
0 × R,

φ0(x) ≥ u(0, x) x ∈ R,
ψ0(x) ≥ v(0, x) x ∈ R,
φ1(x) ≥ ut(0, x) x ∈ R,

is called a lower solution of (1.1), (1.2) in R+
0 × R. If the inequalities

are inverse, we call it an upper solution of (1.1), (1.2) in R+
0 × R.

Assumption A. There exists at least one pair of lower and upper
solutions (u0, v0), (u0, v0), respectively, of (1.1), (1.2) such that

(4.14) u0 ≤ u0, v0 ≤ v0 in R+
0 × R.

For a given pair of lower and upper solutions (u0, v0), (u0, v0),
respectively, of (1.1), (1.2) satisfying (4.14), we define a sector

⟨(u0, v0), (u0, v0)⟩ = {(u, v) ∈ C2(R+
0 × R,R)× C1(R+

0 × R,Rk) :

u0(t, x) ≤ u(t, x) ≤ u0(t, x),

v0(t, x) ≤ v(t, x) ≤ v0(t, x),

(t, x) ∈ R+
0 × R}

and an interval

⟨m,M⟩ = {(u, v) ∈ R1+k : m0 ≤ u ≤M0, m ≤ v ≤M},

where m = (m1, . . . ,mk), M = (M1, . . . ,Mk),

m0 = inf{u0(t, x) : (t, x) ∈ R+
0 × R},
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mi = inf{v0i(t, x) : (t, x) ∈ R+
0 × R},

M0 = sup{u0(t, x) : (t, x) ∈ R+
0 × R},

Mi = sup{v0i(t, x) : (t, x) ∈ R+
0 × R},

v = (v01, . . . , v0k), v = (v01, . . . , v0k), i = 1, . . . , k.

Define two sequences (un, vn), (un, vn) of functions un, un : R+
0 ×

R → R, vn, vn : R+
0 × R → Rk, n ∈ N0, by the linear recurrence

formulae
(4.15)

Lun+1 = f(t, x, un(t, x), vn(t, x)) + (c2/4)un(t, x) (t, x) ∈ R+
0 × R,

(vn+1)t = g(t, x, un(t, x), vn(t, x)) (t, x) ∈ R+
0 × R,

un+1(0, x) = φ0(x) x ∈ R,
vn+1(0, x) = ψ0(x) x ∈ R,
(un+1)t(0, x) = φ1(x) x ∈ R,

(4.16)

Lun+1 = f(t, x, un(t, x)vn(t, x)) + (c2/4)un(t, x) (t, x) ∈ R+
0 × R,

(vn+1)t = g(t, x, un(t, x), vn(t, x)) (t, x) ∈ R+
0 × R,

un+1(0, x) = φ0(x) x ∈ R,
vn+1(0, x) = ψ0(x) x ∈ R,
(un+1)t(0, x) = φ1(x) x ∈ R,

where L is given in (2.3).

Theorem 4.6. Suppose that Assumption A is satisfied and

(i) f ∈ C1(R+
0 × R× ⟨m,M⟩,R), g ∈ C1(R+

0 × R× ⟨m,M⟩,Rk);
(ii) f, g are Lipschitz continuous, with a constant L, with respect to

p, r in R+
0 × R× ⟨m,M⟩;

(iii) gx, gp, gri , i = 1, . . . , k, are Lipschitz continuous, with a constant
L1, with respect to x, p, r in R+

0 × R× ⟨m,M⟩;
(iv) f(t, x, p, r) + (c2/4)p and g are nondecreasing with respect to p, r

in R+
0 × R× ⟨m,M⟩;

(v) c ≥ 0;
(vi) φ0 ∈ C2(R,R), φ1 ∈ C1(R,R), ψ0 ∈ C1(R,Rk);
(vii) (ψ0)x is Lipschitz continuous with a constant L0 in R.

Then,
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(a) there exist unique solutions (un, vn), (un, vn) ∈ C2(R+
0 ×R,R)×C1

(R+
0 × R,Rk), n ∈ N0, of (4.15), (4.16), respectively ;

(b) the inequalities

u0 ≤ u1 ≤ u2 ≤ · · · ≤ u2 ≤ u1 ≤ u0,

v0 ≤ v1 ≤ v2 ≤ · · · ≤ v2 ≤ v1 ≤ v0

hold in R+
0 × R;

(c) (un, vn), (un, vn), n ∈ N0, are lower and upper solutions of (1.1),
(1.2) in R+

0 × R, respectively ;
(d) limn→∞(un(t, x) − un(t, x)) = 0, limn→∞(vn(t, x) − vn(t, x)) = 0

almost uniformly in R+
0 × R;

(e) the function

(u(t, x), v(t, x)) = lim
n→∞

(un(t, x), vn(t, x))

= lim
n→∞

(un(t, x), vn(t, x)) ∈ C2(R+
0 × R,R)

× C1(R+
0 × R,Rk)

is a unique solution of (1.1), (1.2) in the sector ⟨(u0, v0), (u0, v0)⟩.

Proof. Observe that, for a fixed n ∈ N0, the right-hand sides of (4.15)
and (4.16) are known and depend only upon t, x. Hence, Theorem 4.3
implies (a).

Statements (b) and (c) are an intermediate consequence of induction,
Assumption A and the following implication. If (un, vn), (un, vn) ∈
⟨(u0, v0), (u0, v0)⟩, n ∈ N0, are lower and upper solutions of (1.1) and
(1.2) in R+

0 × R, respectively, un ≤ un, vn ≤ vn, then

un ≤ un+1 ≤ un, vn ≤ vn+1 ≤ vn,(4.17)

un ≤ un+1 ≤ un, vn ≤ vn+1 ≤ vn,

un+1 ≤ un+1, vn+1 ≤ vn+1,(4.18)

and (un+1, vn+1), (un+1, vn+1) ∈ ⟨(u0, v0), (u0, v0)⟩, n ∈ N0, are lower

and upper solutions of (1.1) and (1.2) in R+
0 × R, respectively. Let a

predecessor of this implication hold. Now, we are able to show the first
inequality in (4.17). Due to the fact that un is a lower solution of (1.1),
(1.2) and un+1 is defined in (4.15), we have

Lun ≤ f(t, x, un(t, x), vn(t, x)) +
c2

4
un(t, x), (t, x) ∈ R+

0 × R,
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Lun+1 = f(t, x, un(t, x), vn(t, x)) +
c2

4
un(t, x), (t, x) ∈ R+

0 × R,

and hence,
L(un − un+1) ≤ 0 in R+

0 × R.

Moreover,
un − un+1 ≤ 0 on {0} × R

and by assumption (v),

L0(un − un+1) ≤ 0 on {0} × R.

Then, using Theorem 2.2 for La = L gives

un − un+1 ≤ 0 in R+
0 × R.

Reasoning in a similar way as above and using assumption (iv), we
obtain the relations

Lun+1 = f(t, x, un(t, x), vn(t, x))+
c2

4
un(t, x), (t, x) ∈ R+

0×R,

Lun ≥ f(t, x, un(t, x), vn(t, x))+
c2

4
un(t, x), (t, x) ∈ R+

0×R,

L(un+1 − un) ≤ f(t, x, un(t, x), vn(t, x))+
c2

4
un(t, x)

− f(t, x, un(t, x), vn(t, x))−
c2

4
un(t, x) ≤ 0 in R+

0×R,

un+1 − un ≤ 0 on {0} × R,
L0(un+1 − un) ≤ 0 on {0} × R,

and, from Theorem 2.2,

un+1 − un ≤ 0 in R+
0 × R.

Therefore, the second inequality in (4.17) is also true. The other
inequalities in (4.17), (4.18) may be proved, in a similar way, for vn and
vn by using the simple weak maximum principle for ordinary differential
inequalities as in Theorem 2.2.

Proof of (d). Fix T ∈ R+, and consider the same isosceles triangle
∆(X,T ) ⊂ R× R+

0 as in the proof of Theorem 4.3.
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Set

(4.19) N0 = ∥u0 − u0∥∆(X,T ) + ∥v0 − v0∥∆(X,T ).

It follows from definitions (4.15), (4.16) and the integral formula (3.1)
that

un+1(t, x) =
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

e−[c(t−s)]/2

(4.20)

×
[
f(s, y, un(s, y), vn(s, y)) +

c2

4
un(s, y)

]
dy ds

+
1

2
e−(ct)/2

∫ x+t

x−t

φ1(y) dy +
c

4
e−(ct)/2

∫ x+t

x−t

φ0(y) dy

+
1

2
e−(ct)/2[φ0(x+ t) + φ0(x− t)],

vn+1(t, x) = ψ0(x) +

∫ t

0

g(s, x, un(s, x), vn(s, x)) ds,

un+1(t, x) =
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

e−[c(t−s)]/2

×
[
f(s, y, un(s, y), vn(s, y)) +

c2

4
un(s, y)

]
dy ds

+
1

2
e−(ct)/2

∫ x+t

x−t

φ1(y) dy +
c

4
e−(ct)/2

∫ x+t

x−t

φ0(y) dy

+
1

2
e−(ct)/2[φ0(x+ t) + φ0(x− t)],

vn+1(t, x) = ψ0(x) +

∫ t

0

g(s, x, un(s, x), vn(s, x)) ds,

for (t, x) ∈ ∆(X,T ), n ∈ N0. By induction and assumptions (i), (ii)
and (vi), we obtain the following estimates

un(t, x)− un(t, x) ≤
N0(L+ c2/4)nT (1 + T )n−1tn

n!
,(4.21)

vni(t, x)− vni(t, x) ≤
N0(L+ c2/4)n(1 + T )n−1tn

n!
,

for (t, x) ∈ ∆(X,T ), i = 1, . . . , k, n ∈ N. As a direct conclusion
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of (4.21) and (b), we obtain

lim
n→∞

(un(t, x)− un(t, x)) = 0,(4.22)

lim
n→∞

(vn(t, x)− vn(t, x)) = 0

uniformly in ∆(X,T ), thus almost uniformly in R+
0 × R.

The sequences of continuous functions (un, vn), (un, vn) are from (b)
monotone and bounded, and (4.22) holds, so a continuous function
(u, v) : ∆(X,T ) → R1+k exists such that

lim
n→∞

(un(t, x), vn(t, x)) = lim
n→∞

(un(t, x), vn(t, x))(4.23)

= (u(t, x), v(t, x))

uniformly in ∆(X,T ). From Lemma 4.2 regarding the limit transition
under the sign of an integral used in (4.20), we get that (u, v) is
a solution in ∆(X,T ) of (3.1). The existence of the continuous vx
in ∆(X,T ) is analogously proved as in the proof of Theorem 4.3.
This derivative equals the limit of the suitable subsequence ((vnl

)x),
and obviously ((vnl

)x). Moreover, it follows from the construction
that (u, v) belongs to the restriction of the sector ⟨(u0, v0), (u0, v0)⟩
to ∆(X,T ).

Let (ũ, ṽ) belonging to the restriction of the sector ⟨(u0, v0), (u0, v0)⟩
to ∆(X,T ) be any continuous solution of (3.1) in ∆(X,T ). The use of
induction and assumptions (i), (ii), (vi) implies the estimates

|un(t, x)− ũ(t, x)| ≤ N0(L+ c2/4)nT (1 + T )n−1tn

n!
,(4.24)

∥vn(t, x)− ṽ(t, x)∥ ≤ N0(L+ c2/4)n(1 + T )n−1tn

n!
,

where N0 is defined in (4.19), for (t, x) ∈ ∆(X,T ), n ∈ N. From (4.23)
and (4.24), we have |u(t, x) − ũ(t, x)| ≤ 0, ∥v(t, x) − ṽ(t, x)∥ ≤ 0 in
∆(X,T ), and consequently, u = ũ, v = ṽ in ∆(X,T ).

We construct a global solution by piecing together the solutions in
all of the triangles ∆(X,T ) and, by Lemma 3.1, (e) follows, and the
proof is complete. �

Remark 4.7. Due to the fact that u = ũ, v = ṽ in ∆(X,T ) in the
proof of Theorem 4.6, inequalities (4.24) give the effective estimate of
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the error of the analytical method

|un(t, x)− u(t, x)| ≤ N0(L+ c2/4)nT (1 + T )n−1tn

n!
,

∥vn(t, x)− v(t, x)∥ ≤ N0(L+ c2/4)n(1 + T )n−1tn

n!
,

for (t, x) ∈ ∆(X,T ), n ∈ N. Analogously, the same estimate is true for
|un(t, x)− u(t, x)|, ∥vn(t, x)− v(t, x)∥.

Remark 4.8. Due to the fact that the assumptions of Theorem 4.6
only hold in the set R+

0 × R × ⟨m,M⟩, the uniqueness of a solution
of (1.1), (1.2) is ensured only with respect to the given upper and
lower solutions; therefore, this does not rule out the existence of other
solutions outside the sector ⟨(u0, v0), (u0, v0)⟩. Thus, if the assumptions
of this theorem hold in R+

0 × R2+k, then the solution of (1.1), (1.2) is
unconditionally unique.

Remark 4.9. It follows from the proof of Theorems 4.3 and 4.6 that
analogous proofs are true for only one equation, instead of system (1.1),

(4.25) utt − uxx + cut = f(t, x, u), (t, x) ∈ R+
0 × R,

with the initial conditions

(4.26)

{
u(0, x) = φ0(x) x ∈ R,
ut(0, x) = φ1(x) x ∈ R,

where f : R+
0 × R2 → R, φ0, φ1 : R → R and a constant c ∈ R are

given.

4.3. The construction of upper and lower solutions. In the
ample literature on monotone methods there is no general method for
building upper and lower solutions. However, if f, g are bounded in
R+

0 × R and φ0, φ1, ψ0 are bounded in R, then such a construction
is possible by solving associated suitable initial ordinary differential
problems.

Let

m(f) = inf{f(t, x, u, v) : (t, x, u, v) ∈ R+
0 × R2+k},

m(g) = inf{g(t, x, u, v) : (t, x, u, v) ∈ R+
0 × R2+k},
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m(φ0) = inf{φ0(x) : x ∈ R},
m(φ1) = inf{φ1(x) : x ∈ R},
m(ψ0) = inf{ψ0(x) : x ∈ R},

M(f) = sup{f(t, x, u, v) : (t, x, u, v) ∈ R+
0 × R2+k},

M(g) = sup{g(t, x, u, v) : (t, x, u, v) ∈ R+
0 × R2+k},

M(φ0) = sup{φ0(x) : x ∈ R},
M(φ1) = sup{φ1(x) : x ∈ R},
M(ψ0) = sup{ψ0(x) : x ∈ R}.

Consider the case c > 0. The functions

u0(t, x) =
1

c2
[m(f)− cm(φ1)]e

−ct +
1

c
m(f)t(4.27)

+
1

c2
[c2m(φ0) + cm(φ1)−m(f)],

v0(t, x) = m(g)t+m(ψ0),

u0(t, x) =
1

c2
[M(f)− cM(φ1)]e

−ct +
1

c
M(f)t

+
1

c2
[c2M(φ0) + cM(φ1)−M(f)],

v0(t, x) =M(g)t+M(ψ0)

are lower and upper solutions of (1.1) and (1.2), respectively. For
example, the lower solution u0 is a solution of the initial second-order
ordinary differential problem

(4.28)


y′′ + cy′ = m(f),

y(0) = m(φ0),

y′(0) = m(φ1).

In the case c = 0, we have

u0(t, x) =
1

2
m(f)t2 +m(φ1)t+m(φ0),(4.29)

u0(t, x) =
1

2
M(f)t2 +M(φ1)t+M(φ0).
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The monotone methods and a construction of upper and lower solutions
with the use of Green’s function for parabolic finite and infinite systems
are studied in [1, 18, 19].

It is sometimes possible to find upper and lower solutions without the
use of any mathematical tools, as in Example 4.10 or for the Hodgkin-
Huxley system studied in [9].

Example 4.10. Consider the nonlinear telegraph equation

(4.30) utt − uxx + cut = u(1− u),

with the initial conditions

(4.31)

{
u(0, x) = φ0(x) x ∈ R,
ut(0, x) = 0 x ∈ R,

where c ≥ 2 and 0 ≤ φ0(x) ≤ 1 in R is of the C2 class, see Remark 4.9.
It is clear that u0(t, x) ≡ 0 is a lower solution and u0(t, x) ≡ 1 is
an upper solution of (4.30), (4.31). It follows from Theorem 4.6 that
problem (4.30), (4.31) has a unique global solution u of the C2 class
in the sector ⟨u0, u0⟩ = ⟨0, 1⟩. Note that f(t, x, p) = p(1 − p) is not
nondecreasing for p ∈ ⟨m,M⟩ = ⟨0, 1⟩, but

f(t, x, p) +
c2

4
p = p

((
1 +

c2

4

)
− p

)
is nondecreasing in this interval.

Example 4.11. Consider the nonlinear system

(4.32)

{
utt − uxx + cut = 1/(1 + u2) + arctgv,

vt = arctg(u+ v),

with the initial conditions (1.2), where c ≥ 2, |φ0(x)| ≤ 1, |ψ0(x)| ≤ 1,
|φ1(x)| ≤ 1 in R and φ0 is of the C

2 class, ψ0, φ1 are of the C
1 class, and

(ψ0)x is Lipschitz continuous. We calculate the following from (4.27):

u0 =
1

c2

(
− π

2
+ c

)
e−ct − π

2c
t+

1

c2

(
− c2 − c+

π

2

)
,

v0 = −π
2
t− 1,
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u0 =
1

c2

(
1 +

π

2
− c

)
e−ct +

1

c

(
1 +

π

2

)
t+

1

c2

(
c2 + c− 1− π

2

)
,

v0 =
π

2
t+ 1.

Observe that Assumption A holds and u0, v0, u0, v0 are unbounded. It
follows from Theorem 4.6 that problem (4.32), (1.2) has a unique global
solution (u, v) of the C2 × C1 class in the sector ⟨(u0, v0), (u0, v0)⟩.
Note that f(t, x, p, r) = 1/(1 + p2) + arctgr is not nondecreasing for
(p, r) ∈ ⟨m,M⟩ = R2, but

f(t, x, p, r) +
c2

4
p =

1

1 + p2
+
c2

4
p+ arctgr

is nondecreasing in this interval.

Example 4.12. Consider the nonlinear system

(4.33)

{
τutt − uxx + ut = H(u− a)− u− v,

vt = bu− dv,

where τ ≥ 0 is the so-called time of relaxation, a, b, d are real constants
and H is the Heaviside function. The term τutt, taking into account
effects of memory connected with media internal structure, is generated
by the Cattaneo law

τ
∂J

∂t
+ J = −k∇u,

which is a generalization of the conventional Fick law

J = −k∇u,

where J is a flux of u and k is a real constant, see [11, 14]. Physical
motivation of system (4.33) together with construction of the smooth
solitary wave solutions and their stability are given in [14]. To the
present day, the author unfortunately has not proved any existence
results on a classical solution to the Cauchy problem concerned (4.33)
due to non-continuity of H. However, it follows from [11, 14, 20, 22]
that, from a physical point of view, the piecewise linear term

H(u− a)− u

in (4.33) can be changed by smooth functions, for example, by some
polynomials.
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5. Conclusions. This manuscript deals with the Cauchy problem
for the one-dimensional system of partial differential equations (1.1).
This system is composed of one partial hyperbolic second-order equa-
tion and an ordinary subsystem with a space parameter x. It appears,
for example, as a model for the propagation of nerve impulses along
axons. As was mentioned in Example 4.12, it can be obtained from
the Cattaneo law for fluxes, and it is a generalization of the Hodgkin-
Huxley, FitzHugh-Nagumo and McKean models, taking into account ef-
fects of memory connected with media internal structure. Example 4.10
is concerned with only the first equation in (1.1) (the telegraph equa-
tion with the Fischer reaction term), and the abstract Example 4.11
shows that applications in other physical models are possible.

The main results of this manuscript are summarized as theorems on
the global existence and uniqueness of a classical solution to the Cauchy
problem (1.1), (1.2). In order to prove these, we use two different
approaches: the Picard iteration method and the monotone method of
upper and lower solutions. The equivalence between (1.1), (1.2) and its
integral version under suitable regularity assumptions on the solutions
(u, v) is crucial in the proof of the existence and uniqueness results.
Moreover, in the proof of a convergence of the monotone method, an
important tool is a weak maximum principle for inequalities generated
by a linear homogenous version of the telegraph equation. The most
important assumption for the first approach is the global Lipschitz
condition on the right hand sides f , g and their first order derivatives,
but for the second approach, the most important assumption is the
local Lipschitz condition together with suitable monotonicity for f , g.
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