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BLOW-UP OF MULTI-COMPONENTIAL
SOLUTIONS IN HEAT EQUATIONS

WITH EXPONENTIAL BOUNDARY FLUX

FENGJIE LI, SHIMEI ZHENG AND BINGCHEN LIU

ABSTRACT. This paper deals with heat equations cou-
pled via exponential boundary flux, where the solution is
made up of n components. Under certain monotone assump-
tions, necessary and sufficient conditions are obtained for
simultaneous blow-up of at least two components for each
initial datum. As for two components blowing up simulta-
neously, it is interesting that the representations of blow-up
rates are quite different with respect to the different blow-up
mechanisms and positions between the two components.

1. Introduction and main results. In this paper, we consider the
multi-componential solutions of heat equations with coupled nonlinear
boundary flux, taken of the form
(1.1)

(ui)t = ∆ui (x, t) ∈ BR × (0, T ),
∂ui

∂η = exp{piui + qi+1ui+1} (x, t) ∈ ∂BR × (0, T ),

ui(x, 0) = ui,0(x) i = 1, 2, . . . , n, n ≥ 2 x ∈ BR,

where un+1 := u1, pn+1 := p1, qn+1 := q1, BR = {x ∈ RN | |x| < R},
constant exponents pi, qi ≥ 0, i = 1, 2, . . . , n, ui,0(x), i = 1, 2, . . . , n are
positive, smooth and radially symmetric functions satisfying the com-
patibility conditions on the boundary. The existence and uniqueness of
local classical solutions to (1.1) and the comparison principle are well
known, see [4]. Let T be the maximal existence time of system (1.1).
The n-componential parabolic systems such as (1.1) derive from chem-
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ical reactions, heat transfer, population dynamics, etc., which describe
the phenomena in real-life terms more precisely than the parabolic
systems with only two components, see, for example, [10, 15]. The
components u1, u2, . . . , un represent, for example, concentrations of the
chemical reactants, temperatures of the materials during heat propaga-
tions and the densities of biological populations during migrations. For
more detailed information, the interested reader may refer to [9, 14].

Zhao and Zheng [17] considered radially symmetric solutions of the
system

(1.2)


ut = ∆u, vt = ∆v (x, t) ∈ BR × (0, T ),
∂u
∂η = exp{p1u+ q2v} (x, t) ∈ ∂BR × (0, T ),
∂v
∂η = exp{p2u+ q1v} (x, t) ∈ ∂BR × (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ BR.

Simultaneous blow-up rates are obtained in the regions q1 > p1 ≥ 0
and q2 > p2 ≥ 0 as follows:

exp{u(R, t)} ∼ (T − t)−(q2−p2)/(2(q1q2−p1p2)),

exp{v(R, t)} ∼ (T − t)−(q1−p1)/(2(q1q2−p1p2)),

where f ∼ g denotes that some positive constants c and C exist such
that cf ≤ g ≤ Cf . It is also proved that the blow-up can only occur
on the boundary of the space domain.

Non-simultaneous blow-up for parabolic systems has merited much
attention, see, for example, [1, 2, 11, 12, 13, 16, 18, 19, 20].
Recently, Fan and Du [3] considered the parabolic system
(1.3)

ut = uxx, vt = vxx (x, t) ∈ (0, 1)× (0, T ),

−ux(0, t) = exp{p1u(0, t) + q2v(0, t)} t ∈ (0, T ),

−vx(0, t) = exp{q1u(0, t) + p2v(0, t)} t ∈ (0, T ),

ux(1, t) = vx(1, t) = 0 t ∈ (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ [0, 1],

where exponents pi, qi ≥ 0, i = 1, 2, p1 + p2 > 0, q1 + q2 > 0, under the
conditions

u0(x), v0(x) ≥ δ1 > 0, u′
0(x), v

′
0(x) ≤ 0, u′′

0(x), v
′′
0 (x) ≥ δ2 > 0,
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x ∈ [0, 1], for some constants δ1 and δ2. Fan and Du obtained [3] that:

(i) there exists initial data such that non-simultaneous blow-up
occurs if and only if q1 < p1 or q2 < p2. Hence, u and v blow up
simultaneously if q1 ≥ p1 and q2 ≥ p2;

(ii) if q1 < p1 and q2 < p2, both simultaneous and non-simultaneous
blow-up may occur for suitable initial data;

(iii) let p1 > 0 and p2 > 0. If q1 < p1 and q2 ≥ p2 (or q1 ≥ p1
and q2 < p2), then u (or v) blows up alone for each initial datum.
The blow-up phenomenon in the exponent region q1 < p1 and p2 = 0
or q2 < p2 and p1 = 0 is unsettled in [3]. We obtained in [8] that
only non-simultaneous blow-up occurs in that region, which completes
the classifications of simultaneous versus non-simultaneous blow-up
for (1.3). Moreover, we proved the blow-up set is made up of only
a single point, and the solutions always blow up completely. It is
interesting that, even if non-simultaneous blow-up occurs, thermal
avalanche also occurs.

For n-componential parabolic systems, Pedersen and Lin [10] and
Wang [15], respectively, discussed the heat equations coupled via
nonlinear boundary flux

∂ui

∂η
= u

qi+1

i+1 , i = 1, 2, . . . , n.

It may be verified that any blow-up must be simultaneous. If q1q2
· · · qn > 1, simultaneous blow-up rates of solutions are obtained.

In [7], non-simultaneous blow-up phenomena were studied for heat
equations with coupled nonlinear boundary flux

∂ui

∂η
= ui

piui+1
qi+1 , (x, t) ∈ BR × (0, T ).

Three types of non-simultaneous versus simultaneous blow-up phenom-
ena were discussed.

Inspired by [7, 8], we consider the non-simultaneous versus simul-
taneous blow-up of system (1.1) which enlarges from two components
in [17] to n components. In the present paper, the non-simultaneous
blow-up for n components means that at least one component of the ns
still remains bounded up to blow-up time. The initial data positions
of and relationship among the components play important roles in the
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blow-up mechanism of the n components, respectively, see [7]. Even
in the same exponent region, different initial data can lead to different
blow-up phenomena and blow-up rates, see [8]. Moreover, the blow-
up set and classifications are important to the existence of avalanching
phenomena after blow-up time of the solutions, see [8]. What occurs
to the corresponding blow-up phenomena of system (1.1) coupled via
exponential nonlinearities? To our knowledge, such problems for (1.1)
have not previously been considered and are worthy of study.

Rossi [13] showed that any positive solutions of (1.1) blow up if and
only if

max

{
pi, i = 1, 2, . . . , n,

n∏
j=1

qj

}
> 0,

where the blow-up means that

n∑
i=1

∥ui∥∞ −→ +∞ as t → T.

In the sequel, only blow-up solutions of (1.1) will be considered.

The main results of the present paper, in general, are as follows. Let
ξi := ξi+n if the subscript i ≤ 0. Denote a set

(1.4) V0 =
{
(u1,0, u2,0, . . . , un,0) | ui,0 ≥ ζ > 0, (ui,0)r ≥ 0,

(ui,0)rr +
N − 1

r
(ui,0)r ≥ 0, r ∈ [0, R),

∂ui,0(R)

∂η
= exp{piui,0(R) + qi+1ui+1,0(R)}, 1 ≤ i ≤ n.

}
The conditions in V0 are reasonable, guaranteeing the monotonicity and
compatibility conditions on the boundary for solutions. Such conditions
may also be found in [2, 5, 17], etc. Clearly,

Ui(t) = ui(R, t) = max{ui(y, s), (y, s) ∈ [0, R]× [0, t]}, 1 ≤ i ≤ n.

Theorem 1.1. At least two components of the ns blow up simultane-
ously for each initial datum in V0 if and only if pi ≤ qi, i = 1, 2, . . . , n.
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Corollary 1.2. There exist suitable initial data such that ui, i ∈
{1, 2, . . . , n}, blows up while the other (n − 1)s remain bounded if and
only if qi < pi. Moreover, exp{Ui(t)} ∼ (T − t)−1/(2pi).

Theorem 1.3.

• Assume that n ≥ 3. Let i ∈ {1, 2, . . . , n} and k ∈ {1, 2, . . . , n− 1}.
If qi < pi and qi−k < pi−k, then suitable initial data exist such that
ui−k and ui blow up simultaneously while the others remain bounded
up to the blow-up time T . Moreover,

(exp{Ui−k(t)}, exp{Ui(t)})

∼



((T − t)−(pi−qi)/(2pipi−1), (T − t)−1/(2pi))

for k = 1;

((T − t)−1/(2pi−k), (T − t)−1/(2pi))

for k ∈ {2, 3, . . . , n− 2};
((T − t)−1/(2pi−k), (T − t)−(pi−k−qi−k)/(2pi−kpi))

for k = n− 1.

• Assume that n = 2. If q1 < p1 and q2 < p2, then there exist
suitable initial data such that u1 and u2 blow up simultaneously at
time T . Moreover,

(exp{U1(t)}, exp{U2(t)})

∼
(
(T − t)−(q2−p2)/(2(q2q1−p1p2)), (T − t)−(q1−p1)/(2(q2q1−p1p2))

)
.

Remark 1.4. For n = 2, Theorem 1.3 (ii) gives a new exponent region
{q1 < p1, q2 < p2} for the system (1.2) considered in [17], where
simultaneous blow-up may occur, with the blow-up rates of the same
form that

(exp{U1(t)}, exp{U2(t)})

∼ ((T − t)−(q2−p2)/(2(q2q1−p1p2)), (T − t)−(q1−p1)/(2(q2q1−p1p2))).�

Remark 1.5. It may be seen that, with the parameter region {qi <
pi, qi−k < pi−k}, there exist suitable initial data such that ui (or ui−k)
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blows up alone by Corollary 1.2, and there also exist other particular
initial data such that ui−k and ui blow up simultaneously. �

Similarly to [5, Theorem 4.8], we have the blow-up set estimates,
provided that the upper bounds of blow-up rates are obtained:

Theorem 1.6. If ui blows up with Ui(t) ≤ C(T − t)−α for any
i ∈ {1, 2, . . . , n} and constant α > 0, then the blow-up can only occur
on the boundary.

In the next two sections, Theorems 1.1 and 1.3, respectively, will be
proved.

2. Proof of Theorem 1.1. In order to prove Theorem 1.1, it
suffices to prove Corollary 1.2. We introduce a lemma for some estimate
of ui.

Lemma 2.1. Let T be the blow-up time of system (1.1). If pi > 0,
then

(2.1) (ui)t(R, t) ≥ εe2piui(R,t)e2qi+1ui+1(R,t)

for the initial data satisfying (ui,0)rr +((N − 1)/r)(ui,0)r ≥ ε[(ui,0)r]
2.

Hence, there exists some constant C0 > 0 such that

eUi(t) ≤ C0(T − t)−1/(2pi),

where C0 depends only upon ε and pi.

Proof. It can be seen by the comparison principle that (ui)t ≥ 0 due
to

(ui,0)rr +
N − 1

r
(ui,0)r ≥ 0.

Define Ji(r, t) = (ui)t − ε[(ui)r]
2. For small ε > 0, it may be verified

that

(Ji)t − (Ji)rr −
N − 1

r
(Ji)r ≥ 2ε

N − 1

r2
u2
r ≥ 0,

(r, t) ∈ (0, R)× (0, T );

(Ji)r(R) ≥ epiui(R,t)eqi+1ui+1(R,t)
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×[(pi − 2ε)(ui)t(R, t) + qi+1(ui+1)t(R, t)] ≥ 0,

t ∈ (0, T );

Ji(r, 0) = (ui,0)rr +
N − 1

r
(ui,0)r − ε[(ui,0)r]

2 ≥ 0, r ∈ (0, R).

By the comparison principle, (2.1) holds. Then, eUi(t) ≤ C0(T −
t)−1/(2pi) is obtained. �

Proof of Corollary 1.2. Without loss of generality, we prove only the
case for i = n. We first prove the sufficient condition. Let G(x, y, t, τ)
be Green’s function of the heat equation in BR, satisfying

∂G

∂η

∣∣∣∣
∂BR

= 0 and

∫
∂BR

G(x, y, t, τ) dSy ≤ C(t− τ)−1/2,

where the constant C > 0 depends only upon BR, see [6, 9].

Fix u1,0(R), u2,0(R), . . . , un−1,0(R), and then take Mm > 2um,0(R),
m = 1, 2, . . . , n − 1. Choose (u1,0, u2,0, . . . , un,0) ∈ V0 such that T is
small and satisfies

2um,0(R) + 2Ceqm+1Mm+1epmMmT 1/2 < Mm, m = 1, 2, . . . , n− 2,

2un−1,0(R) +
2pn

pn − qn
Cepn−1Mn−1Cqn

0 T (pn−qn)/(2pn) < Mn−1.

Consider the auxiliary problem
(un−1)t = ∆un−1 (x, t) ∈ BR × (0, T ),
∂un−1

∂η = epn−1Mn−1Cqn
0 (T − t)−qn/(2pn) (x, t) ∈ ∂BR × (0, T ),

un−1(x, 0) = un−1,0(x) x ∈ BR,

where the radial symmetric initial data un−1,0 satisfies that

∂un−1,0

∂η

∣∣∣∣
∂BR

= epn−1Mn−1Cqn
0 T−qn/(2pn),

un−1,0(R) = 2un−1,0(R); ∆un−1,0 ≥ 0, un−1,0 ≥ un−1,0 in BR. For
qn < pn, we have

un−1 ≤ 2un−1,0(R) +
2pn

pn − qn
Cepn−1Mn−1Cqn

0 T (pn−qn)/(2pn) ≤ Mn−1.
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Thus, un−1 satisfies
(un−1)t = ∆un−1 (x, t) ∈ BR × (0, T ),
∂un−1

∂η ≥ Cqn
0 (T − t)−qn/(2pn)epn−1ūn−1 (x, t) ∈ ∂BR × (0, T ),

un−1(x, 0) = un−1,0(x) x ∈ BR.

From Lemma 2.1, eUn(t) ≤ C0(T − t)−1/(2pn). Then, un−1 satisfies
(2.2)

(un−1)t = ∆un−1 (x, t) ∈ BR × (0, T ),
∂un−1

∂η ≤ Cqn
0 (T − t)−qn/(2pn)epn−1un−1 (x, t) ∈ ∂BR × (0, T ),

un−1(x, 0) = un−1,0(x) x ∈ BR.

By the comparison principle, un−1 ≤ un−1 ≤ Mn−1 on BR× [0, T ). We
introduce the problem

(un−2)t = ∆un−2 (x, t) ∈ BR × (0,+∞),
∂un−2

∂η = eqn−1Mn−1epn−2Mn−2 (x, t) ∈ ∂BR × (0,+∞),

un−2(x, 0) = un−2,0(x) x ∈ BR,

(2.3)

where radial un−2,0(x) satisfies

∂un−2,0

∂η
= eqn−1Mn−1epn−2Mn−2 , un−2,0 = 2un−2,0 on ∂BR;

∆un−2,0 ≥ 0, un−2,0 ≥ un−2,0 in BR.

Considering system (2.3) in [0, T ), we have

un−2 ≤ 2un−2,0(R) + 2Ceqn−1Mn−1epn−2Mn−2T 1/2 ≤ Mn−2.

Then, un−2 satisfies (∂un−2)/∂η ≥ eqn−1Mn−1epn−2un−2 , (x, t) ∈
∂BR × (0, T ). Since un−1 ≤ Mn−1, un−2 satisfies (∂un−2)/∂η ≤
eqn−1Mn−1epn−2un−2 for (x, t) ∈ ∂BR × (0, T ). By the comparison prin-
ciple, un−2 ≤ un−2 ≤ Mn−2 on BR × [0, T ). The boundedness of
un−3, un−4, . . . , u1 can be similarly proved. Thus, only un blows up.

Now, we prove the necessary condition. Assume u1 ≤ C. Then, un

satisfies that 
(un)t = ∆un (x, t) ∈ BR × (0, T ),
∂un

∂η ≤ eq1Cepnun (x, t) ∈ ∂BR × (0, T ),

un(x, 0) = un,0(x) x ∈ BR.

(2.4)
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By Green’s identity, we have Un(t) ≤ Un(z)+2Ceq1CepnUn(t)(T−z)1/2,
z < t < T . Take z such that Un(z) + C ′ = Un(t) for some C ′ > 0.
Then eUn(z) ≥ c(T − z)−1/(2pn), z ∈ (0, T ). Also, by Green’s identity,

1

2
Un−1(t) ≥ c

∫ t

0

(T − τ)−qn/(2pn)(t− τ)−1/2dτ.

The boundedness of un−1 requires that qn < pn. �

3. Proof of Theorem 1.3. In this section, we discuss the existence
of merely two components blowing up simultaneously. Without loss of
generality, we prove only the case for i = n. We divide Theorem 1.3
for n ≥ 3 into three subcases: k = 1; k ∈ {2, 3, . . . , n − 2}; k = n − 1.
Firstly, we deal with the subcase k = 1.

Proposition 3.1. If qn < pn and qn−1 < pn−1, then suitable initial
data exist such that un−1 and un blow up simultaneously at some time T
while the others remain bounded up to T . Moreover,

(eUn−1(t), eUn(t)) ∼ ((T − t)−pn−qn/(2pnpn−1), (T − t)−1/(2pn)).

Next, we introduce a subset of V0 as follows:

V1 =
{
(u1,0(r), u2,0(r), . . . , un,0(r)) | um,0(r)

= Nm +
R

2

√
M2

m + 4− R

2
Mm

−
√

R2 −
(

1
2Mm

√
M2

m + 4− 1
2M

2
m

)
r2, r ∈ [0, R],

with Mm = epmum,0(R)eqm+1um+1,0(R),

Nm = um,0(R), m = 1, 2, . . . , n, where u1,0(R) =
R

λ1
,

ul,0(R) =
R∏l−1

j=1(1− λj)λl

, l = 2, 3, . . . , n− 1,

un,0(R) =
R∏n−1

j=1 (1− λj)
, λ1, λ2, . . . , λn−1 ∈ (0, 1),

(un,0)rr +
N − 1

r
(un,0)r ≥ ε[(un,0)r]

2,
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(un−1,0)rr +
N − 1

r
(un−1,0)r ≥ ε[(un−1,0)r]

2, r ∈ [0, R]
}
.

We use the following four lemmata to prove it.

Lemma 3.2. If qn < pn and qn−1 < pn−1, then there exists some
λn−2 ∈ (1/2, 1) such that, for any initial data satisfying uj,0(R) =

2jR, j = 1, 2, . . . , n − 3, and un−2,0(R) = (2n−3R)/(λn−2) in V1,
non-simultaneous blow-up must occur with u1, u2, . . . , un−2 remaining
bounded.

Proof. Take Mj > 2j+1R, j = 1, 2, . . . , n−2. Consider the following
auxiliary problem

(3.1)


(un−1)t = ∆un−1 (x, t) ∈ BR × (0, Tn−1),
∂un−1

∂η = eqn(2
n−2R−R)epn−1un−1 (x, t) ∈ ∂BR × (0, Tn−1),

un−1(x, 0) = un−1,0(x) x ∈ BR,

where radial symmetric initial data un−1,0(x) satisfy the compatibility
condition and

2n−3R

1− λn−2
− 2R ≤ un−1,0(x) ≤

2n−3R

1− λn−2
−R

with λn−2 to be determined. For problem (3.1), some λn−2 ∈ (1/2, 1)
must exist such that, if λn−2 = λn−2, then Tn−1 satisfies

Mj ≥ 2j+1R+ 2Ceqj+1Mj+1epjMjT
1/2
n−1, j = 1, 2, . . . , n− 3,

Mn−2 ≥ 2n−1R+
2pn−1

pn−1 − qn−1
Cepn−2Mn−2C

qn−1

0 T
pn−1−qn−1/(2pn−1)
n−1 .

For any (u1,0, u2,0, . . . , un,0) ∈ V1 satisfying uj,0(R) = 2jR, j = 1, 2,

. . . , n− 3, and un−2,0(R) = (2n−3R)/(λn−2), we have

un−1,0(R) =
2n−3R

(1− λn−2)λn−1

≥ 2n−3R

1− λn−2

for any λn−1 ∈ (0, 1).

Then,

2n−3R

1− λn−2

− 2R ≤ un−1,0(x) ≤
2n−3R

1− λn−2

−R
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≤ un−1,0(x) ≤
2n−3R

(1− λn−2)λn−1

.

For (un)t ≥ 0, un(x, t) ≥ un,0(x) ≥ 2n−2R − R. By the comparison
principle, un−1 ≤ un−1 and T ≤ Tn−1. Hence,

Mj ≥ 2j+1R+ 2Ceqj+1Mj+1epjMjT 1/2, j = 1, 2, . . . , n− 3,

Mn−2 ≥ 2n−1R+
2pn−1

pn−1 − qn−1
Cepn−2Mn−2C

qn−1

0 T pn−1−qn−1/(2pn−1).

Consider the second auxiliary problem

(3.2)


(un−2)t = ∆un−2 (x, t)∈BR × (0, T ),
∂un−2

∂η = epn−2Mn−2C
qn−1

0

·(T − t)−qn−1/(2pn−1) (x, t)∈∂BR × (0, T ),

un−2(x, 0) = un−2,0(x) x∈BR,

where the radial un−2,0(x) satisfies

∂un−2,0(x)

∂η
= epn−2Mn−2C

qn−1

0 T−qn−1/(2pn−1),

un−2,0(x) = 2n−1R for x ∈ ∂BR, ∆un−2,0(x) ≥ 0 and un−2,0(x) ≥
un−2,0(x) for x ∈ BR.

By Green’s identity and qn−1 < pn−1, we have

un−2≤2n−1R+
2pn−1

pn−1−qn−1
Cepn−2Mn−2C

qn−1

0 T pn−1−qn−1/(2pn−1)≤Mn−2.

Thus, un−2 satisfies

∂un−2

∂η
≥ C

qn−1

0 (T − t)−qn−1/(2pn−1)epn−2ūn−2 , (x, t) ∈ ∂BR × (0, T ).

From Lemma 2.1 and pn−1 > 0, we have eun−1 ≤ C0(T − t)−1/(2pn−1),
and hence,

∂un−2

∂η
≤ C

qn−1

0 (T − t)−(qn−1)/(2pn−1)epn−2un−2 , (x, t) ∈ ∂BR× (0, T ).

Then, by the comparison principle, un−2 ≤ un−2 ≤ Mn−2.
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Now, we introduce the third auxiliary problem

(3.3)


(un−3)t = ∆un−3 (x, t) ∈ BR × (0,+∞),
∂un−3

∂η = eqn−2Mn−2epn−3Mn−3 (x, t) ∈ ∂BR × (0,+∞),

un−3(x, 0) = un−3,0(x) x ∈ BR,

where the radial un−3,0(x) satisfies

∂un−3,0(x)

∂η
= eqn−2Mn−2epn−3Mn−3 ,

un−3,0(x) = 2n−2R for x ∈ ∂BR, ∆un−3,0(x) ≥ 0 and un−3,0(x) ≥
un−3,0(x) for x ∈ BR. Considering problem (3.3) in (0, T ), we have

un−3 ≤ 2n−2R+ 2Ceqn−1Mn−1epn−2Mn−2T 1/2 ≤ Mn−3.

Thus, un−3 satisfies

∂un−3

∂η
≥ eqn−2Mn−2epn−3ūn−3 for (x, t) ∈ ∂BR × (0, T ).

For un−2 ≤ Mn−2, un−3 satisfies

∂un−3

∂η
≤ eqn−2Mn−2epn−3un−3 for (x, t) ∈ ∂BR × (0, T ).

By the comparison principle, un−3 ≤ un−3 ≤ Mn−3. The boundedness
of un−4, un−5, . . . , u1 can be similarly proved. �

Lemma 3.3. If qn < pn and qn−1 < pn−1, then, for the fixed λn−2

∈ (1/2, 1) in Lemma 3.2, there exists some λ′
n−1 ∈ (0, 1/2) such

that non-simultaneous blow-up occurs with un−1 blowing up and the
other components remaining bounded, where uj,0(R) = 2jR, j = 1, 2,
. . . , n− 3,

un−2,0(R) =
2n−3R

λn−2

, un−1,0(R) =
2n−3R

(1− λn−2)λ′
n−1

and

un,0(R) =
2n−3R

(1− λn−2)(1− λ′
n−1)

in V1.



BLOW-UP OF MULTI-COMPONENTIAL SOLUTIONS 2307

Proof. Take Mn > (2n−1R)/(1− λn−2). We then introduce the fol-
lowing auxiliary problem

(3.4)


(un)t = ∆un (x, t) ∈ BR × (0,+∞),
∂un

∂η = eq1M1epnMn (x, t) ∈ ∂BR × (0,+∞),

un(x, 0) = un,0(x) x ∈ BR,

where the radial symmetric un,0(x) satisfies

∂un,0(x)

∂η
= eq1M1epnMn , un,0(x) =

2n−1R

1− λn−2

for x ∈ ∂BR and ∆un,0(x) ≥ 0, un,0(x) ≥ un,0(x) for x ∈ BR.

Consider problem (3.1); however, here, the initial datum un−1,0

satisfies

2n−3R

(1− λn−2)λn−1

− 2R ≤ un−1,0(x) ≤
2n−3R

(1− λn−2)λn−1

−R

with λn−1 to be determined. There exists some λ′
n−1 ∈ (0, 1/2) such

that, if λn−1 = λ′
n−1, then Tn−1 satisfies

Mn ≥ 2n−1R

1− λn−2

+ 2Ceq1M1epnMnT
1/2
n−1.

Similarly to Lemma 3.2, un−1 ≤ un−1 and T ≤ Tn−1. Hence, Mn ≥
(2n−1R)/(1− λn−2)+2Ceq1M1epnMnT 1/2. Consider (3.4) in [0, T ). By
Green’s identity,

un ≤ 2n−1R

1− λn−2

+ 2Ceq1M1epnMnT 1/2 ≤ Mn.

Then, un satisfies that ∂un/∂η ≥ eq1M1epnūn for (x, t) ∈ ∂BR × (0, T ).
Since u1 ≤ M1, un satisfies ∂un/∂η ≤ eq1M1epnun for (x, t) ∈ ∂BR ×
(0, T ). By the comparison principle, un ≤ un ≤ Mn. Thus, only un−1

blows up. �
Lemma 3.4. If qn < pn and qn−1 < pn−1, then, for the fixed
λn−2 ∈ (1/2, 1) in Lemma 3.2, there exists some λ′′

n−1 ∈ (1/2, 1)
such that non-simultaneous blow-up occurs with un blowing up and the
other components remaining bounded, where uj,0(R) = 2jR, j = 1, 2,
. . . , n− 3,
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un−2,0(R) =
2n−3R

λn−2

, un−1,0(R) =
2n−3R

(1− λn−2)λ′′
n−1

and

un,0(R) =
2n−3R

(1− λn−2)(1− λ′′
n−1)

in V1.

Proof. Now, we introduce the following auxiliary problem
(un)t = ∆un (x, t) ∈ BR × (0, Tn),
∂un

∂η = eq1Repnun (x, t) ∈ ∂BR × (0, Tn),

un(x, 0) = un,0(x) x ∈ BR,

where the radial symmetric un,0(x) satisfies the compatibility condition
and

2n−3R

(1− λn−2)(1− λn−1)
− 2R ≤ un,0(x) ≤

2n−3R

(1− λn−2)(1− λn−1)
−R

with λn−1 to be determined.

Take Mn−1 > (2n−1R)/(1− λn−2). There exists some λ′′
n−1 ∈ (1/2,

1) such that, if λn−1 = λ′′
n−1, then

Mn−1 ≥ 2n−1R

1− λn−2

+
2pn

pn − qn
Cepn−1Mn−1Cqn

0 Tn
pn−qn/(2pn).

Take the initial data (u1,0, u2,0, . . . , un,0) in V1 such that λj = 1/2,

j = 1, 2, . . . , n− 3, λn−2 = λn−2, λn−1 = λ′′
n−1. For

un,0(x) ≤
2n−3R

(1− λn−2)(1− λ′′
n−1)

−R ≤ un,0(x)

and u1(x, t) ≥ u1,0(x) ≥ R, un satisfies

∂un

∂η
≥ eq1Repnun on ∂BR × (0, T ),

and hence, un ≤ un and T ≤ Tn. Thus,

Mn−1 ≥ 2n−1R

1− λn−2

+
2pn

pn − qn
Cepn−1Mn−1Cqn

0 T pn−qn/(2pn).
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Consider the next auxiliary problem
(un−1)t = ∆un−1 (x, t) ∈ BR × (0, T ),
∂un−1

∂η = epn−1Mn−1Cqn
0 (T − t)−pn/(2pn) (x, t) ∈ ∂BR × (0, T ),

un−1(x, 0) = un−1,0(x) x ∈ BR,

where the radial symmetric un−1,0(x) satisfies the compatibility condi-

tion and un−1,0(x) = (2n−1R)/(1− λn−2), x ∈ ∂BR, ∆un−1,0(x) ≥ 0
and un−1,0(x) ≥ un−1,0(x), x ∈ BR.

For qn < pn, by Green’s identity,

un−1 ≤ 2n−1R

1− λn−2

+
2pn

pn − qn
Cepn−1Mn−1Cqn

0 T pn−qn/(2pn) ≤ Mn−1.

Thus, un−1 satisfies

∂un−1

∂η
≥ Cqn

0 (T − t)−qn/(2pn)epn−1un−1 , (x, t) ∈ ∂BR × (0, T ).

For pn > 0, eUn(t) ≤ C0(T − t)−1/(2pn). Hence, un−1 satisfies

∂un−1

∂η
≤ Cqn

0 (T − t)−qn/(2pn)epn−1un−1 , (x, t) ∈ ∂BR × (0, T ).

By the comparison principle, un−1 ≤ un−1 ≤ Mn−1. Then, only un

blows up. �

Lemma 3.5.

(i) The set of initial data in V1 such that un blows up while the
others remain bounded is open in L∞-topology.

(ii) The set of initial data in V1 such that un−1 blows up while the
others remain bounded is open in L∞-topology.

Proof. Without loss of generality, we prove only case (i). Let (u1,
u2, . . . , un) be a solution of (1.1) with initial data (u1,0, u2,0, . . . , un,0)
in V1 such that un blows up at t = T while the other components
remain bounded, say 0 < 2ξ ≤ u1, u2, . . . , un−1 ≤ M . It suffices
to find an L∞-neighborhood of (u1,0, u2,0, . . . , un,0) in V1 such that
any solution (û1, û2, . . . , ûn) of (1.1) coming from this neighborhood
maintains the property that ûn blows up in finite time while the others
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remain bounded. By Corollary 1.2, qn < pn. Take Sj > 2M + 2ξ,
j = 1, 2, . . . , n− 1. Let (ũ1, ũ2, . . . , ũn) be the solution of:
(3.5)

(ũj)t = ∆ũj (x, t) ∈ BR × (0, T0),
∂ũj

∂η = epj ũjeqj+1ũj+1 (x, t) ∈ ∂BR × (0, T0),

ũj(x, 0) = ũj,0(x), j = 1, 2, . . . , n, n ≥ 2 x ∈ BR,

ũn+1 := ũ1, pn+1 := p1, qn+1 := q1,

where the radial symmetric (ũ1,0, ũ2,0, . . . , ũn,0) ∈ V0 is to be deter-
mined. Denote

N (u1,0, u2,0, . . . , un,0) =
{
(ũ1,0, ũ2,0, . . . , ũn,0) ∈ V0 |

∥ũj,0(x)− uj(x, T − ε0)∥∞ < ξ, 1 ≤ j ≤ n
}
.

Since (u1, u2, . . . , un) blows up at finite time T with fixed ξ, some ε0 > 0
exists such that T0 satisfies

Sj ≥ 2M + 2ξ + 2CepjSjeqj+1Sj+1T
1/2
0 , j = 1, 2, . . . , n− 2,

Sn−1 ≥ 2M + 2ξ +
2pn

pn − qn
Cepn−1Sn−1Cqn

0 T
pn−qn/(2pn)
0 ,

provided that (ũ1,0, ũ2,0, . . . , ũn,0) ∈ N (u1,0, u2,0, . . . , un,0).

Consider the auxiliary problem
(un−1)t = ∆un−1 (x, t) ∈ BR × (0, T0),
∂un−1

∂η = epn−1Sn−1Cqn
0 (T0 − t)−qn/(2pn) (x, t) ∈ ∂BR × (0, T0),

un−1(x, 0) = un−1,0(x) x ∈ BR,

where the radial symmetric un−1,0(x) satisfies the compatibility condi-
tion, un−1,0(x) = 2ũn−1,0(x), x ∈ ∂BR, ∆un−1,0(x) ≥ 0 and un−1,0(x)
≥ ũn−1,0(x), x ∈ BR. By Green’s identity,

un−1 ≤ 2M + 2ξ +
2pn

pn − qn
Cepn−1Sn−1Cqn

0 T
pn−qn/(2pn)
0 ≤ Sn−1.

Then,

∂un−1

∂η
≥ Cqn

0 (T0 − t)−qn/(2pn)epn−1ūn−1 , (x, t) ∈ ∂BR × (0, T0).
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For pn > 0, eũn ≤ C0(T0 − t)−1/(2pn). Thus, ũn−1 satisfies

∂ũn−1

∂η
≤ Cqn

0 (T0 − t)−qn/(2pn)epn−1ũn−1 , (x, t) ∈ ∂BR × (0, T0).

By the comparison principle, ũn−1 ≤ un−1 ≤ Sn−1.

Next, consider the auxiliary problem
(un−2)t = ∆un−2 (x, t) ∈ BR × (0,+∞),
∂un−2

∂η = eqn−1Sn−1epn−2Sn−2 (x, t) ∈ ∂BR × (0,+∞),

un−2(x, 0) = un−2,0(x) x ∈ BR,

where un−2,0(x) satisfies the compatibility condition and un−2,0 =
2ũn−2,0 on ∂BR, ∆un−2,0 ≥ 0, un−2,0 ≥ ũn−2,0 in BR. From Green’s
identity, un−2 ≤ Sn−2 in BR × (0, T0). Thus,

∂un−2

∂η
≥ eqn−1Sn−1epn−2ūn−2 , (x, t) ∈ ∂BR × (0, T0).

For ũn−1 ≤ Sn−1, (∂ũn−2)/∂η ≤ eqn−1Sn−1epn−2ũn−2 , (x, t) ∈ ∂BR ×
(0, T0). Thus, ũn−2 ≤ un−2 ≤ Sn−2, (x, t) ∈ BR × (0, T0). The bound-
edness of ũi, i = n− 3, n− 4, . . . , 1, can be similarly proved. Thus, ũn

is the blow-up component.

According to the continuity on initial data for bounded solutions,
there must exist a neighborhood N(⊂ V1) of (u1,0, u2,0, . . . , un,0) such
that every solution (û1, û2, . . . , ûn) starting from the neighborhood will
enter N (u1,0, u2,0, . . . , un,0) at time T − ε0. This upholds the property
that ûn blows up while the other components remain bounded. �

Proof of Proposition 3.1. Lemma 3.2 states that some λn−2 ∈ (1/2,
1) exists such that any initial datum in V1 satisfying λ1 = λ2 =
· · · = λn−3 = 1/2, λn−2 ∈ (1/2, 1) develops the nonsimultaneous
blow-up solution with uj , j = 1, 2, . . . , n − 2, remaining bounded.
We know from Lemma 3.3 that there exists some λ′

n−1 ∈ (0, 1/2)
such that the solution of (1.1) with the initial datum in V1 satisfying
λ1 = λ2 = · · · = λn−3 = 1/2, λn−2 = λn−2 and λn−1 = λ′

n−1

blows up non-simultaneously, where un−1 blows up and the others are
bounded. Lemma 3.4 guarantees that some λ′′

n−1 ∈ (1/2, 1) exists
such that un blows up alone with the initial datum in V1, where
λ1 = λ2 = · · · = λn−3 = 1/2, λn−2 = λn−2 and λn−1 = λ′′

n−1. In
addition, the sets of the initial data in V1 such that un blows up
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alone and un−1 blows up alone are all open by Lemma 3.5. Note
that V1 is connected. Thus, there must exist initial data (suitable
λn−1 ∈ (λ′

n−1, λ
′′
n−1)) such that un and un−1 blow up simultaneously

while the others remain bounded.

Due to the boundedness of u1 and by Green’s identity, we have

Un(t) ≤ Un(z) + CepnUn(t)(T − z)1/2.

For the blow-up property of un, take z < t < T such that C ′ =
Un(t) − Un(z) > 0. Thus, eUn(z) ≥ c(T − z)−1/(2pn). Similarly to
the method of Lemma 2.1, eUn(t) ≤ C(T − t)−1/(2pn) and eUn−1(t) ≤
C(T − t)−(pn−qn)/(2pnpn−1) may be obtained. Combining the upper
estimate of Un with Green’s identity to un−1, we have

Un−1(t) ≤ Un−1(z) + Cepn−1Un−1(t)(T − z)pn−qn/(2pn).

Similarly to the discussion for lower estimates of un, we have

eUn−1(t) ≥ c(T − t)−(pn−qn)/(2pnpn−1). �

Secondly, we discuss the subcase k ∈ {2, 3, . . . , n − 2}. It may be
verified that it must be n ≥ 4, if the blow-up rate

(eUn−k(t), eUn(t)) ∼ ((T − t)1/(2pn−k), (T − t)−1/(2pn))

occurs.

Proposition 3.6. If qn < pn and qn−k < pn−k, then suitable initial
data exist such that un−k and un blow up simultaneously at some time T
while the others still remain bounded. Moreover,

(eUn−k(t), eUn(t)) ∼ ((T − t)−1/(2pn−k), (T − t)−1/(2pn)).

Without loss of generality, we prove only the case for k = 2 by the
following five lemmata. Define another subset of V0 as follows:

V2 =
{
(u1,0(r), u2,0(r), . . . , un,0(r)) | um,0(r)

= Nm +
R

2

√
M2

m + 4− R

2
Mm

−
√
R2 −

(
1
2Mm

√
M2

m + 4− 1
2M

2
m

)
r2, r ∈ [0, R],
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with Mm = epmum,0(R)eqm+1um+1,0(R),

Nm = um,0(R) (m = 1, 2, . . . , n), where u1,0(R) =
R

λ1
,

ul,0(R) =
R∏l−1

j=1(1− λj)λl

(l = 2, 3, . . . , n− 3),

un−1,0(R) =
R∏n−3

j=1 (1− λj)λn−2

,

un−2,0(R) =
R∏n−2

j=1 (1− λj)λn−1

,

un,0(R) =
R∏n−1

j=1 (1− λj)
, λ1, λ2, . . . , λn−1 ∈ (0, 1)

(un,0)rr +
N − 1

r
(un,0)r ≥ ε[(un,0)r]

2,

(un−2,0)rr +
N − 1

r
(un−2,0)r ≥ ε[(un−2,0)r]

2, r ∈ [0, R]
}
.

Lemma 3.7. If qn < pn and qn−2 < pn−2, then some λn−2 ∈ (1/2, 1)
exists such that non-simultaneous blow-up occurs with u1, u2, . . . , un−3,
un−1 remaining bounded for the initial datum satisfying uj,0(R) = 2jR,

j = 1, 2, . . . , n− 3, and un−1,0(R) = (2n−3R)/λn−2 in V2.

Proof. Take Mj > 2j+1R, j = 1, 2, . . . , n− 3, Mn−1 > 2n−1R. Con-
sider the auxiliary problem

(3.6)


(un−2)t = ∆un−2 (x, t) ∈ BR × (0, Tn−2),
∂un−2

∂η = eqn−1(2
n−3R−R)epn−2un−2 (x, t) ∈ ∂BR × (0, Tn−2),

un−2(x, 0) = un−2,0(x) x ∈ BR,

where the radial symmetric un−2,0(x) satisfies the compatibility condi-
tion and

2n−3R

1− λn−2
− 2R ≤ un−2,0(x) ≤

2n−3R

1− λn−2
−R,

with λn−2 to be determined.
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For problem (3.6), some λn−2 = λn−2 ∈ (1/2, 1) must exist such
that Tn−2 satisfies

Mj ≥ 2j+1R+ 2Ceqj+1Mj+1epjMjT
1/2
n−2, j = 1, 2, . . . , n− 4,

Mn−3 ≥ 2n−2R+
2pn−2

pn−2 − qn−2
Cepn−3Mn−3C

qn−2

0 T
(pn−2−qn−2)/(2pn−2)
n−2 ,

Mn−1 ≥ 2n−1R+
2pn

pn − qn
Cepn−1Mn−1Cqn

0 T
(pn−qn)/2pn

n−2 .

For any (u1,0, u2,0, . . . , un,0) ∈ V2 satisfying uj,0(R) = 2jR, j = 1, 2,

. . . , n− 3 and un−1,0(R) = (2n−3R)/λn−2, we have

un−2,0(R) =
2n−3R

(1− λn−2)λn−1

≥ 2n−3R

1− λn−2

for any λn−1 ∈ (0, 1). Then,

2n−3R

1− λn−2

− 2R ≤ un−2,0(x) ≤
2n−3R

1− λn−2

−R

≤ un−2,0(x) ≤
2n−3R

(1− λn−2)λn−1

.

For
(un−1)t ≥ 0, un−1(x, t) ≥ un−1,0(x) ≥ 2n−3R−R,

un−2 satisfies

∂un−2

∂η
≥ eqn−1(2

n−3R−R)epn−2un−2 on ∂BR × (0, T ).

By the comparison principle, un−2 ≤ un−2 and T ≤ Tn−2. Hence,

Mj ≥ 2j+1R+ 2Ceqj+1Mj+1epjMjT 1/2, j = 1, 2, . . . , n− 4,

Mn−3 ≥ 2n−2R+
2pn−2

pn−2 − qn−2
Cepn−3Mn−3C

qn−2

0 T (pn−2−qn−2)/(2pn−2),

Mn−1 ≥ 2n−1R+
2pn

pn − qn
Cepn−1Mn−1Cqn

0 T pn−qn/(2pn).
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Consider the second auxiliary problem
(un−3)t = ∆un−3 (x, t) ∈ BR×(0, T ),
∂un−3

∂η = epn−3Mn−3C
qn−2

0 (T − t)−(qn−2)/(2pn−2) (x, t) ∈ ∂BR×(0, T ),

un−3(x, 0) = un−3,0(x) x ∈ BR,

where the radial un−3,0(x) satisfies

∂un−3,0

∂η
= epn−3Mn−3C

qn−2

0 T−(qn−2)/(2pn−2),

un−3,0(x) = 2n−2R for x ∈ ∂BR, ∆un−3,0(x) ≥ 0 and un−3,0(x) ≥
un−3,0(x) for x ∈ BR.

From Green’s identity and qn−2 < pn−2,

un−3≤2n−2R+ 2pn−2

pn−2−qn−2
Cepn−3Mn−3C

qn−2

0 T (pn−2−qn−2)/(2pn−2)≤Mn−3.

Thus, un−3 satisfies

∂un−3

∂η
≥ C

qn−2

0 (T − t)−qn−2/(2pn−2)epn−3ūn−3 , (x, t) ∈ ∂BR × (0, T ).

By Lemma 2.1 and pn−2 > 0, eun−2 ≤ C0(T − t)−1/(2pn−2),

∂un−3

∂η
≤ C

qn−2

0 (T − t)−(qn−2)/(2pn−2)epn−3un−3 , (x, t) ∈ ∂BR× (0, T ).

Then, by the comparison principle, un−3 ≤ un−3 ≤ Mn−3.

Similarly to the proof for un−3, we have un−1 ≤ Mn−1.

In order to obtain the boundedness of un−4, we introduce the third
auxiliary problem:

(un−4)t = ∆un−4 (x, t) ∈ BR × (0,+∞),
∂un−4

∂η = eqn−3Mn−3epn−4Mn−4 (x, t) ∈ ∂BR × (0,+∞),

un−4(x, 0) = un−4,0(x) x ∈ BR,

where the radial symmetric un−4,0(x) satisfies

∂un−4,0

∂η
= eqn−3Mn−3epn−4Mn−4 , un−4,0(x) = 2n−3R for x ∈ ∂BR,
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∆un−4,0(x) ≥ 0 and un−4,0(x) ≥ un−4,0(x) for x ∈ BR. From Green’s
identity, we have

un−4 ≤ 2n−3R+ 2Ceqn−3Mn−3epn−4Mn−4T 1/2 ≤ Mn−4.

Thus, un−4 satisfies

∂un−4

∂η
≥ eqn−3Mn−3epn−4un−4 for (x, t) ∈ ∂BR × (0, T ).

For un−3 ≤ Mn−3, un−4 satisfies

∂un−4

∂η
≤ eqn−3Mn−3epn−4un−4 , (x, t) ∈ ∂BR × (0, T ).

By the comparison principle, un−4 ≤ un−4 ≤ Mn−4. We can obtain
uj ≤ Mj , j = n− 5, n− 6, . . . , 1, similarly. �

Lemma 3.8. If qn < pn and qn−2 < pn−2, then, for the fixed λn−2

∈ (1/2, 1) in Lemma 3.7, there exists λ′
n−1 ∈ (0, 1/2) such that un−2

blows up while the other components remain bounded for the initial data
satisfying uj,0(R) = 2jR, j = 1, 2, . . . , n− 3,

un−1,0(R) =
2n−3R

λn−2

, un−2,0(R) =
2n−3R

(1− λn−2)λ′
n−1

and

un,0(R) =
2n−3R

(1− λn−2)(1− λ′
n−1)

in V2.

Proof. Take Mn > (2n−1R)/(1− λn−2). Consider problem (3.6)
with initial data un−2,0 satisfying the compatibility condition and

2n−3R

(1− λn−2)λn−1

− 2R < un−2,0(x) ≤
2n−3R

(1− λn−2)λn−1

−R,

where λn−1 is to be determined. There exists some λ′
n−1 ∈ (0, 1/2)

such that, if λn−1 = λ′
n−1, Tn−2 satisfies

Mn ≥ 2n−1R

1− λn−2

+ 2Ceq1M1epnMnT
1/2
n−2.
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Similarly to Lemma 3.7, un−2 ≤ un−2 and T ≤ Tn−2. Hence,

Mn ≥ 2n−1R

1− λn−2

+ 2Ceq1M1epnMnT 1/2.

Considering problem (3.4) in [0, T ), we have

un ≤ 2n−1R

1− λn−2

+ 2Ceq1M1epnMnT 1/2 ≤ Mn.

Then, un satisfies

∂un

∂η
≥ eq1M1epnun for (x, t) ∈ ∂BR × (0, T ).

Due to u1 ≤ M1, un satisfies

∂un

∂η
≤ eq1M1epnun for (x, t) ∈ ∂BR × (0, T ).

By the comparison principle, un ≤ un ≤ Mn. Thus, only un−2 blows
up. �

Lemma 3.9. If qn < pn and qn−2 < pn−2, then, for the fixed
λn−2 ∈ (1/2, 1) in Lemma 3.2, some λ′′

n−1 ∈ (1/2, 1) exists such that
un blows up while the other components remain bounded for the initial
data satisfying uj,0(R) = 2jR, j = 1, 2, . . . , n− 3,

un−1,0(R) =
2n−3R

λn−2

, un−2,0(R) =
2n−3R

(1− λn−2)λ′′
n−1

and

un,0(R) =
2n−3R

(1− λn−2)(1− λ′′
n−1)

in V2.

Proof. We now introduce the following auxiliary problem
(un)t = ∆un (x, t) ∈ BR × (0, Tn),
∂un

∂η = eq1Repnun (x, t) ∈ ∂BR × (0, Tn),

un(x, 0) = un,0(x) x ∈ BR,
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where the radial symmetric un,0(x) satisfies the compatibility condition
and

2n−3R

(1− λn−2)(1− λn−1)
− 2R ≤ un,0 ≤ 2n−3R

(1− λn−2)(1− λn−1)
−R,

with λn−1 to be determined. Choose Mn−2 > (2n−1R)/(1− λn−2).
There exists some λ′′

n−1 ∈ (1/2, 1) such that, if λn−1 = λ′′
n−1, Tn

satisfies

Mn−2 ≥ 2n−1R

1− λn−2

+ 2Ceqn−1Mn−1epn−2Mn−2Tn
1/2.

Take the initial data in V2 such that λj = 1/2, j = 1, 2, . . . , n − 3,

λn−2 = λn−2 and λn−1 = λ′′
n−1. For un,0(x) ≤ un,0(x) and u1(x, t) ≥

u1,0(x) ≥ R, we have un ≤ un and T ≤ Tn. Thus,

Mn−2 ≥ 2n−1R

1− λn−2

+ 2Ceqn−1Mn−1epn−2Mn−2T 1/2.

Consider the next auxiliary problem:
(un−2)t = ∆un−2 (x, t) ∈ BR × (0,+∞),
∂un−2

∂η = eqn−1Mn−1epn−2Mn−2 (x, t) ∈ ∂BR × (0,+∞),

un−2(x, 0) = un−2,0(x) x ∈ BR,

where the radial symmetric un−2,0(x) satisfies the compatibility con-

dition and un−2,0(R) = (2n−1R)/(1− λn−2), ∆un−2,0(x) ≥ 0 and
un−2,0(x) ≥ un−2,0(x) for x ∈ BR. By Green’s identity, un−2 ≤ Mn−2.
Thus, un−2 satisfies

∂un−2

∂η
≥ eqn−1Mn−1epn−2ūn−2 , (x, t) ∈ ∂BR × (0, T ).

For un−1 ≤ Mn−1, un−2 satisfies

∂un−2

∂η
≤ eqn−1Mn−1epn−2un−2 , (x, t) ∈ ∂BR × (0, T ).

By the comparison principle, un−2 ≤ un−2 ≤ Mn−2. Then, only un

blows up. �

Similarly to the proof of Lemma 3.5, we have the following lemma.
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Lemma 3.10.

(i) The set of initial data in V2 such that un blows up while the
others remain bounded is open in L∞-topology.

(ii) The set of initial data in V2 such that un−2 blows up while the
others remain bounded is open in L∞-topology.

Lemma 3.11. If qn < pn, qn−2 < pn−2 and un−2, un blow up
simultaneously while the others remain bounded up to time T , then

(eUn−2(t), eUn(t)) ∼ ((T − t)−1/(2pn−2), (T − t)−1/(2pn)).

Proof. The proof is similar to the scale case of the system in [17].
Here, we omit the details. �

Until now, we have obtained Proposition 3.6. Finally, we consider
the subcase k = n − 1. Similarly to Proposition 3.1, we give the
following proposition without a proof.

Proposition 3.12. If qn < pn and q1 < p1, then there exist suitable
initial data such that u1 and un blow up simultaneously at some time T
while the others remain bounded up to T . Moreover,

(eU1(t), eUn(t)) ∼ ((T − t)−1/(2p1), (T − t)−(p1−q1)/(2p1pn)). �
Thereby, Theorem 1.3 for n ≥ 3 is obtained.

Proof of Theorem 1.3 for n = 2. Simultaneous blow-up of (u1, u2)
can be proved similarly to the proof of Proposition 3.1. The blow-up
rates may be followed by the methods used in [17]. �
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