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A MONODROMY CRITERION FOR A TYPE OF
DEGENERATE SYSTEM DEFINED BY THE SUM OF

TWO HOMOGENEOUS VECTOR FIELDS

TUSEN HUANG AND LIJUN ZHANG

ABSTRACT. In this paper, a type of degenerate system
defined by the sum of two homogeneous vector fields is stud-
ied. By means of a blow-up technique and a classification
theorem, a monodromy criterion of an isolated singular point
is presented and proven. An example is given to illustrate
that our result generalizes the corresponding result in [13].

1. Introduction. Let O(0, 0) be an isolated singular point of the
real analytic differential system

(1.1)
ẋ = P (x, y) = Pm(x, y) + Pm+1(x, y) + · · · ,
ẏ = Q(x, y) = Qm(x, y) +Qm+1(x, y) + · · · ,

where P 2
m + Q2

m ̸≡ 0, Pk(x, y) and Qk(x, y) are homogeneous polyno-
mials of degree k ≥ m, and the dot denotes a derivative with respect
to the t. The integer m ≥ 1 is called the degree of the singular point
O(0, 0).

One of the classical problems in the qualitative theory of (1.1) is to
characterize when O(0, 0) is of focus-center type, and this problem is
now called the focus-center problem. Recall that O(0, 0) is said to be
of focus-center type if it is either a focus or a center. Since any orbit
of (1.1) which tends to the isolated singular points O(0, 0) is either a
spiral or tends to O(0, 0) in a definite direction, see [7] (here, and in the
following, by an orbit tending to O(0, 0) we mean that this orbit tends
to O(0, 0) as t → ∞ or t → −∞), O(0, 0) is of focus-center type if and
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only if there exists no orbit which tends to O(0, 0) in a definite direction.
This means that a monodromic Poincaré mapping can be defined in
a small neighborhood of O(0, 0) when it is of focus-center type, and
hence, O(0, 0) is also called a monodromic singular point. Therefore,
the focus-center problem is also called the monodromy problem, and it
is a preliminary step for solving the center problem of the vector field,
one of the open classical problems in the qualitative theory of planar
differential systems, see [1, 14]–[18, 20]. If the linear portion of (1.1)
at O(0, 0) is non-degenerate, i.e., its determinant does not vanish, the
characterization is well known. The problem has also been solved when
the linear portion is degenerate but not identically zero, see [6, 7].
Hence, the main difficulty in solving the focus-center problem appears
when the singular point has an identically zero linear portion.

The monodromy problem for systems of the form

(1.2)
ẋ = P (x, y) = Pm(x, y) + PM (x, y),

ẏ = Q(x, y) = Qm(x, y) +QM (x, y),

was studied in [13], where 1 ≤ m < M , P and Q are coprime, that
is, these systems are defined to be the sum of two homogeneous vector
fields. The case where (1.2) is a homogeneous system, i.e., either Pm ≡
Qm ≡ 0 or PM ≡ QM ≡ 0, is already well understood, see [9].

As was done in [13], we write Pk(θ) = Pk(cos θ, sin θ) and Qk(θ) =
Qk(cos θ, sin θ) with k ∈ {m,M}. Consider system (1.2), and take polar
coordinates (r, θ), given by the transformation of variables r2 = x2+y2

and θ = arctan(y/x). After a rescaling of time, given by ds/dt = rm−1,
we have (again denoting the derivative with respect to s by a dot),
(1.3)
ṙ = r[cos θPm(θ) + sin θQm(θ) + rM−m(cos θPM (θ) + sin θQM (θ))],

θ̇ = cos θQm(θ)− sin θPm(θ) + rM−m(cos θQM (θ)− sin θPM (θ)).

We say that θ = θ∗ is a characteristic direction for the origin of
system (1.2) if cos θ∗Qm(θ∗) − sin θ∗Pm(θ∗) = 0, and cos θQm(θ) −
sin θPm(θ) = 0 is called the characteristic equation for the origin
of system (1.2). In fact, a characteristic direction for the origin of
system (1.2) is merely a root of its characteristic equation. An orbit of
system (1.2) which tends to the origin in a definite direction θ is called
a characteristic orbit for the origin of system (1.2), and, in this case,
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θ must be one of its characteristic directions, see [7]. However, the
reciprocal is not true, and a counter-example may be found in [12].

The next two conditions follow from [13].

Condition (a). System (1.2) satisfies Condition (a) if there exists a
neighborhood U of the origin of system (1.2) such that

Θ(x, y) = xQ(x, y)− yP (x, y) ̸= 0 for all (x, y) ∈ U \ {(0, 0)}.

If system (1.2) satisfies Condition (a), we denote the sign of Θ(x, y) for
all (x, y) ∈ U \ {(0, 0)} by sign0⃗(Θ).

Condition (b). System (1.2) satisfies Condition (b) if either it has
no characteristic directions, or else, if all characteristic directions are
isolated and Pm(θ∗) = Qm(θ∗) = 0 for every characteristic direction θ∗.

Obviously, if system (1.2) has at least one characteristic direction
and all characteristic directions are isolated, then the number of char-
acteristic directions is finite and no larger than 2(m+1) on the interval
[0, 2π), see [7, 12]. Let θ1, θ2, . . . , θk be the characteristic directions
associated with system (1.2). For all j = 1, 2, . . . , k, we set

aj = cos θj , bj = sin θj ,

αj =
d

dz
(P j

m(1, z))

∣∣∣∣
z=0

and

βj =
1

2

d2

dz2
(Qj

m(1, z))

∣∣∣∣
z=0

,

where
(1.4)

P j
m(1, z) = ajPm(aj − bjz, bj + ajz) + bjQm(aj − bjz, bj + ajz),

Qj
m(1, z) = −bjPm(aj − bjz, bj + ajz) + ajQm(aj − bjz, bj + ajz).

A vector field X = (Pm(x, y) + PM (x, y), Qm(x, y) + QM (x, y))
belongs to class G if either there are no characteristic directions, or
else if, for every characteristic direction θj , j = 1, 2, . . . , k, we have
α2
j + β2

j ̸= 0.

The next theorem [13] yields a monodromy criterion for sys-
tem (1.2).



2258 TUSEN HUANG AND LIJUN ZHANG

Theorem 1.1. Let X be the vector field associated with system (1.2).
Then the following statements hold.

(i) If the origin of (1.2) is a focus-center, then Conditions (a)
and (b) are satisfied, and m is odd. Furthermore, if system (1.2) has
characteristic directions, then M is also odd.

(ii) Assume that X ∈ G. Then the origin of system (1.2) is a focus-
center if and only if the system satisfies Conditions (a) and (b), and
for every characteristic direction θj,

sign0⃗(Θ)((2 +M −m)αj − 2βj) ≤ 0 for all j = 1, 2, . . . , k.

We note that Theorem 1.1 (ii) will no longer be valid when α2
j + β2

j

= 0 for some j = 1, 2, . . . , k. In this paper, we shall give another
monodromy criterion for system (1.2) when α2

j + β2
j = 0 for some

j = 1, 2, . . . , k by using the blow-up technique (see [8] for a brief geo-
metric description; see [5, 10, 19] for a more detailed description of this
technique) and the theorem of the classification of an isolated singular
point, see [11]. Toward this aim, we firstly give the following notation
and concept.

Let

(1.5)

α
(l)
j =

1

l!

dl

dzl
(P j

m(1, z))

∣∣∣∣
z=0

,

β
(l)
j =

1

(l + 1)!

dl+1

dzl+1
(Qj

m(1, z))

∣∣∣∣
z=0

for l = 1, 2, . . . .

Definition 1.2. A vector field X = (Pm(x, y) + PM (x, y), Qm(x, y) +
QM (x, y)) is said to belong to class G1 if one of the following conditions
holds:

(1) there are no characteristic directions for the origin of sys-
tem (1.2);

(2) all of the characteristic directions are isolated, and, for any such
characteristic direction θj , j = 1, 2, . . . , k, either

(α
(1)
j )2 + (β

(1)
j )2 ̸= 0, or
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(α
(1)
j )2 + (β

(1)
j )2 = 0;

however,

(α
(3)
j )2 + (β

(3)
j )2 ̸= 0.

Now, we give the main result of this paper as follows.

Theorem 1.3. Let X be the vector field associated with system (1.2),
and X ∈ G1. Then the origin of system (1.2) is a focus-center if and
only if it satisfies the following conditions:

(i) system (1.2) satisfies Conditions (a) and (b);

(ii) m is odd. Furthermore, if system (1.2) has characteristic direc-
tions, then M is also odd ;

(iii) for every isolated characteristic direction θj, j = 1, 2, . . . , k,

sign0⃗(Θ)((2 +M −m)α
(1)
j − 2β

(1)
j ) ≤ 0

holds when (α
(1)
j )2 + (β

(1)
j )2 ̸= 0;

sign0⃗(Θ)((4 +M −m)α
(3)
j − 4β

(3)
j ) ≤ 0

holds when (α
(1)
j )2 + (β

(1)
j )2 = 0; however, (α

(3)
j )2 + (β

(3)
j )2 ̸= 0.

It is obvious that G ⊆ G1. At the end of this paper we give an
example to show that G ̸= G1. Hence, our result generalizes the corre-
sponding result in [13], and our monodromy conditions are also easily
verified as in [13].

There are many papers dealing with the monodromy problem for
system (1.1). In [14, 20], necessary monodromy conditions as well as
sufficient monodromy conditions for a large class of degenerate singular
points of planar differential systems (1.1) are given; however, it is
merely a genericity result, and, in order to find the monodromy of
the origin of system (1.2) with M −m large, the number of conditions
needed are greater than those given in Theorem 1.3. A necessary con-
dition in the monodromy problem for (1.1) is given in [12]. Tang,
et al. [21] used a method of generalized normal sectors for finding
orbits in exceptional directions near high degenerate equilibria. In [1],
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the monodromy problem for quasi-homogeneous polynomial systems is
studied through the conservative/dissipative splitting. In [2], whether
an isolated singular point of the vector field is monodromic or has a
characteristic trajectory is determined by using the Newton diagram
and the conservative/dissipative splitting for the lowest-degree quasi-
homogeneous terms of an analytic planar vector field. Recently, a new
algorithmic criterion that determines whether an isolated degenerate
singular point of a system of differential equations on the plane is
monodromic was given in [3] by using conservative and dissipative parts
associated to the edges and vertices of the Newton diagram of the planar
analytic differential system. The monodromy problem for nilpotent
systems and a wide family of systems with a degenerate singular point,
so-called generalized nilpotent cubic systems, is solved in [4] through
the Newton diagram and the conservative/dissipative splitting for the
lowest-degree quasi-homogeneous terms of such systems.

2. The proof of the main result. In order to prove our main
result, we restate three lemmas from [13].

Lemma 2.1. If the origin of (1.2) is a focus-center, then Condi-
tions (a) and (b) are satisfied.

Lemma 2.2. If the origin of (1.2) is a focus-center, then m is odd.
Furthermore, if system (1.2) has characteristic directions, then M is
also odd.

Since the types of (1.2) are preserved under rotations, we use the
results for case θ = 0 to study sufficient conditions for the non-existence
of characteristic orbits tending to the origin of a system of type (1.2),
and we let

α(l) =
1

l!

dl

dzl
(P j

m(1, z))

∣∣∣∣
z=0

,

β(l) =
1

(l + 1)!

dl+1

dzl+1
(Qj

m(1, z))

∣∣∣∣
z=0

,

for l = 1, 2, . . . .
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Lemma 2.3. Suppose that θ = 0 is a characteristic direction of the
origin of system (1.2), and (α(1))2 + (β(1))2 ̸= 0. Then, system (1.2)
has no characteristic orbit tending to the origin in direction θ = 0 if
and only if it satisfies the following conditions:

(i) there exist two real numbers r > 0 and δ > 0, such that

Θ(r, θ)=cos θQm(θ)−sin θPm(θ)+rM−m(cos θQM (θ)−sin θPM (θ)) ̸=0,

for (r, θ) ∈ {(0, r]× (− arctan(δ), arctan(δ))} \ {(0, 0)};
(ii) Pm(0) = Qm(0) = 0;

(iii) m and M are both odd ;

(iv) sign0⃗(Θ)((2 +M −m)α(1) − 2β(1)) ≤ 0.

From the above lemmas, it is sufficient to consider the case when
θ = 0 is a characteristic direction of the origin of system (1.2),

(α(1))2 + (β(1))2 = 0, (α(3))2 + (β(3))2 ̸= 0

and
sign0⃗(Θ)((4 +M −m)α

(3)
j − 4β

(3)
j ) ≤ 0.

Lemma 2.4. Suppose that θ = 0 is a characteristic direction of
the origin of system (1.2). Assume that (α(1))2 + (β(1))2 = 0, and
(α(3))2 + (β(3))2 ̸= 0. Then, system (1.2) has no characteristic orbit
tending to the origin in the direction θ = 0 if and only if it satisfies the
following conditions:

(i) there exist two real numbers r > 0 and δ > 0, such that

Θ(r, θ)=cos θQm(θ)−sin θPm(θ)+rM−m(cos θQM (θ)−sin θPM (θ)) ̸=0,

for (r, θ) ∈ {(0, r]× (− arctan(δ), arctan(δ))} \ {(0, 0)};
(ii) Pm(0) = Qm(0) = 0;

(iii) m and M are both odd ;

(iv) α(2) = β(2) = 0;

(v) sign0⃗(Θ)((4 +M −m)α(3) − 2β(3)) ≤ 0.

Proof. Lemma 2.3 shows that conditions (i)–(iii) are necessary to
ensure that there is no characteristic orbit tending to the origin in the
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direction θ = 0. In the proof of the sufficiency of the five conditions,
we can see that conditions (iv) and (v) are also necessary.

Without loss of generality, we assume that sign0⃗(Θ) = 1, and

thus, (4 + M − m)α(3) − 2β(3) ≤ 0. Condition (iii) implies that
Pm(1, 0) = Qm(1, 0) = 0. From condition (i), we have that

F (z) := Qm(1, z)− zPm(1, z) ≥ 0,

and thus, the first non-vanishing derivative of F at the origin is of

even order. Taking into account F (n)(z) = Q
(n)
m − nP

(n−1)
m (1, z) −

zP
(m)
m (1, z), we have

F (0) = Qm(1, 0) = 0,

F ′(0) = Q′
m(1, 0)− Pm(1, 0) = 0,

F ′′(0) = Q′′
m(1, 0)− 2P ′

m(1, 0) = 2!(β(1) − α(1)) = 0,

F ′′′(0) = Q′′′
m(1, 0)− 3P ′′

m(1, 0) = 3!(β(2) − α(2)) = 0,

F (4)(0) = Q(4)
m (1, 0)− 4P ′′′

m (1, 0) = 4!(β(3) − α(3)) ≥ 0.

In addition, γ := QM (1, 0) > 0.

We make the following transformation of variables

T1 : x1 = xM−m, y1 =
y

x
.

This is not a global transformation of coordinates in R2 \ {(0, 0)}, but
it is a good transformation on {x > 0}, see [13]. In what follows, we
only consider the transformation T1 in the region {x > 0}; however, the
results obtained are also valid for {x < 0} since system (1.3) satisfies

(ṙ(r, θ + π), θ̇(r, θ + π)) = (ṙ(r, θ), θ̇(r, θ))

when m and M are both odd. After rescaling, we obtain (the dot
always denotes the derivative with respect to a new time parameter)

(2.1)
ẋ1 = kx1[Pm(1, y1) + x1PM (1, y1)],

ẏ1 = Qm(1, y1)− y1Pm(1, y1) + x1[QM (1, y1)− y1PM (1, y1)],

where k = M −m. Obviously, system (1.2) has an orbit tending to the
origin O(0, 0) ∈ R2

xy in the direction θ = 0 if and only if system (2.1)

has an orbit tending to the origin O1(0, 0) ∈ R2
x1y1

. The differential

matrix of (2.1) associated with (x1, y1) = (0, 0) is given by
(
0 0
γ 0

)
. This
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singularity is a nilpotent and, to desingularize it, we must continue the
blow-up process.

Now, we consider system (2.1) and make the following transforma-
tion of variables

T2 : x2 =
x1

y1
, y1 = y1.

After a reparametrization of time, we have
(2.2)

ẋ2 = x2

[
(k + 1)Pm(1, y1)−

Qm(1, y1)

y1

+ x2((k + 1)y1PM (1, y1)−QM (1, y1))

]
,

ẏ1 = Qm(1, y1)− y1Pm(1, y1) + x2y1[QM (1, y1)− y1PM (1, y1)].

The singular point (x1, y1) = (0, 0) of system (2.1) is blown up to some
singular points of system (2.2) lying on {y1 = 0}. Since

ẋ2|y1=0 = −x2QM (1, 0),

ẏ1|y1=0 = 0

and

QM (1, 0) ̸= 0,

the only singular point on {y1 = 0} is (x2, y1) = (0, 0), and its
differential matrix is ( 0 0

0 0 ). This singularity is degenerate; thus, we
must continue the blow-up process. On the other hand, since the
transformation T2 only blows up to the singular point (x1, y1) = (0, 0)
of system (2.1) in the y1-direction, we must consider the blow-up in the
x1-direction. For system (2.1), we make the new transformation

T3 : x1 = x1, y2 =
y1
x1

.

This yields

(2.3)

ẋ1 = kx1[Pm(1, x1y2) + x1PM (1, x1y2)],

ẏ2 = −y2(1 + k)

[
Pm(1, x1y2) +

Qm(1, x1y2)

x1

− x1y2(k + 1)PM (1, x1y2) +QM (1, x1y2)

]
.
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The singular point (x1, y1) = (0, 0) of system (2.1) is blown up to some
singular points of system (2.3) lying on {x1 = 0}. Since

ẋ1|x1=0 = 0,

ẏ2|x1=0 = γ,

γ ̸= 0, system (2.3) has no singular point on {x1 = 0}. Hence, in this
direction, the singular point (x1, y1) = (0, 0) has been desingularized.

Now, we consider system (2.2) and make the transformation

T4 : x3 =
x2

y1
, y1 = y1.

We obtain

(2.4)

ẋ3 = x3

[
(k + 2)

Pm(1, y1)

y1
− 2

Qm(1, y1)

y21

+ x3((k + 2)y1PM (1, y1)− 2QM (1, y1))

]
,

ẏ1 =
Qm(1, y1)

y1
− Pm(1, y1) + x3y1[QM (1, y1)− y1PM (1, y1)].

The singular point (x1, y1) = (0, 0) of system (2.2) is blown up to some
singular points of system (2.4) lying on {y1 = 0}. Since

ẋ3|y1=0 = −2x2
3QM (1, 0),

ẏ1|y1=0 = 0

and

QM (1, 0) ̸= 0,

the only singular point on {y1 = 0} is (x3, y1) = (0, 0), and its differ-
ential matrix is ( 0 0

0 0 ). Therefore, this singularity is degenerate, and we
must continue the blow-up process.

On the other hand, since the transformation T4 blows up only to the
singular point (x2, y1) = (0, 0) of system (2.2) in the y1-direction, we
must consider blow-up in the x2-direction. For system (2.2), we make
the new transformation

T5 : x2 = x2, y3 =
y1
x2

.
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This yields

(2.5)

ẋ2 = (k + 1)Pm(1, x2y3)−
Qm(1, x2y3)

x2y3

+ x2
2y3(k + 1)PM (1, x2y3)− x2QM (1, x2y3),

ẏ3 = −y3(2 + k)
Pm(1, x2y3)

x2
+ 2

Qm(1, x2y3)

x2
2

− x2y
2
3(k + 2)[PM (1, x2y3) + 2y3QM (1, x2y3)].

The singular point (x2, y1) = (0, 0) of system (2.2) is blown up to some
singular points of system (2.5) lying on {x2 = 0}. Since

ẋ2|x2=0 = 0,

ẏ3|x2=0 = 2γy3,

system (2.5) has a singular point (x2, y3)=(0, 0) on {x2=0}, and its

differential matrix is
(−γ 0

0 2γ

)
. Therefore, this singular point is a saddle,

and, in this direction, the singular point (x2, y3) = (0, 0) has been desin-
gularized.

Now consider system (2.4), and make the transformation

T6 : x4 =
x3

y1
, y1 = y1.

This yields

(2.6)

ẋ4 = x4

[
(k + 3)

Pm(1, y1)

y21
− 3

Qm(1, y1)

y31

+ x4((k + 3)y1PM (1, y1)− 3QM (1, y1))

]
,

ẏ1 =
Qm(1, y1)

y21
− Pm(1, y1)

y1
+ x4y1[QM (1, y1)− y1PM (1, y1)].

The singular point (x3, y1) = (0, 0) of system (2.4) is blown up to some
singular points of system (2.6) on {y1 = 0}, and

ẋ4|y
1
=0 = x4(kα

(2) − 3γx4),

ẏ1|y1=0 = 0.
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Now, we show that α(2) = 0, and hence, β(2) = 0 by

F ′′′(0) = 3!(β(2) − α(2)) = 0.

Suppose that α(2) ̸= 0. Then system (2.6) has two singular points
(x4, y1) = (0, 0) and (x4, y1) = (kα(2)/3γ, 0) on {y1 = 0}, and the
differential matrix at (x4, y1) = (0, 0) is(

kα(2) 0
0 0

)
,

while the differential matrix at (x4, y1) = (kα(2)/3γ, 0) is(
kα(2) ⋆
0 kα(2)/3γ

)
.

Thus, we know that the singular point (x4, y1) = (kα(2)/3γ, 0) of
system (2.6) is a node, and hence, system (2.6) has infinite orbits
tending to the singular point (x4, y1) = (kα(2)/3γ, 0), which is a
contradiction. Therefore, α(2) = 0. This implies that condition (iv)
is necessary. When α(2) = 0, system (2.6) has a unique singular point
(x4, y1) = (0, 0), and its differential matrix is ( 0 0

0 0 ). This singularity is
degenerate, and we must continue the blow-up process.

On the other hand, since the transformation T6 blows up only to
the singular point (x3, y1) = (0, 0) of system (2.4) in the y1-direction,
we must consider the blow-up in the x3-direction. For system (2.4), we
make the new transformation

T7 : x3 = x3, y4 =
y1
x3

.

This yields

(2.7)

ẋ3 = (k + 2)
Pm(1, x3y4)

x3y4
− 2

Qm(1, x3y4)

x2
3y

2
4

+ x2
3y4(k + 2)PM (1, x3y4)− 2x3QM (1, x3y4),

ẏ4 = −(3 + k)
Pm(1, x3y4)

x2
3

+ 3
Qm(1, x3y4)

x3
3y4

− x3y
2
4(k + 3)[PM (1, x3y4) + 3y4QM (1, x3y4)].
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The singular point (x3, y1) = (0, 0) of system (2.4) is blown up to some
singular points of system (2.7) lying on {x3 = 0}. Since

ẋ3|x3=0 = 0,

ẏ4|x3=0 = 3γy4,

system (2.7) has a singular point (x3, y4) = (0, 0) on {x3 = 0}, and its
differential matrix is (

−2γ 0
0 3γ

)
.

Thus, this singular point is a saddle, and, in this direction, (x3, y4) =
(0, 0) has been desingularized.

We consider system (2.6) and make the transformation

T8 : x5 =
x4

y1
, y1 = y1.

This produces
(2.8)

ẋ5 = x5

[
(k + 4)

Pm(1, y1)

y31
− 4

Qm(1, y1)

y41

+ x5((k + 4)y1PM (1, y1)− 4QM (1, y1))

]
,

ẏ1 =
Qm(1, y1)

y31
− Pm(1, y1)

y21
+ x5y1[QM (1, y1)− x5y

2
1PM (1, y1)].

The singular point (x4, y1) = (0, 0) of system (2.6) is blown up to some
singular points of system (2.8) on {y1 = 0}. Since

ẋ5|y1=0 = x5((k + 4)α(3) − 4β(3) − 4γx5),

ẏ1|y1=0 = 0,

system (2.8) has two singular points (x5, y1) = (0, 0) and

(x5, y1) =

(
(k + 4)α(3) − 4β(3)

4γ
, 0

)
on {y1 = 0}.

Note that the region {x > 0} for system (1.2) has been transformed
into the region {x5 ≥ 0} for system (2.8). The dynamics for sys-
tem (2.8) in the region {x5 < 0} is virtual, that is, it does not appear
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in coordinates (x, y). It is easy to see that the differential matrix of (2.8)
at (x5, y1) = (0, 0) is(

(k + 4)α(3) − 4β(3) 0
0 β(3) − α(3)

)
.

Now consider system (2.6) and make the transformation

T9 : x4 = x4, y5 =
y1
x4

.

This yields

(2.9)

ẋ4 = (k + 3)
Pm(1, x4y5)

x2
4y

2
5

− 3
Qm(1, x4y5)

x3
4y

3
5

+ x2
4y5(k + 4)PM (1, x4y5)− 3QM (1, x4y5),

ẏ5 = −(k + 4)
Pm(1, x4y5)

x3
4y5

+ 4
Qm(1, x4y5)

x4
4y

2
5

+ x4y
2
5(k + 4)PM (1, x4y5) + 4y5QM (1, x4y5).

The singular point (x4, y1) = (0, 0) of system (2.6) is blown up to some
singular points of system (2.9) on {x4 = 0}. Since

ẋ4|x4=0 = 0,

ẏ5|x4=0 = y5[(4β
(3) − (4 + k)α(3))y5 + 4γ],

system (2.9) has two singular points (x4, y5) = (0, 0) and

(x4, y5) =

(
0,

4γ

(4 + k)α(3) − 4β(3)

)
on {x4 = 0}. In particular, when

(4 + k)α(3) − 4β(3) = 0,

system (2.9) has a unique singular point (x4, y5) = (0, 0). Similarly, the
region {x > 0} for system (1.2) has been transformed into the region
{y5 ≥ 0} for system (2.9). Hence, the dynamics for system (2.8) in the
region {y5 < 0} are virtual. It is easy to see that the differential matrix
of (2.9) at (x4, y5) = (0, 0) is(

−3γ 0
0 4γ

)
.



A MONODROMY CRITERION 2269

Now we distinguish the following cases.

Case (a). (4 + k)α(3) − 4β(3) ̸= 0.

(a1) If (4 + k)α(3) − 4β(3) < 0, then the singular points of sys-
tems (2.8) and (2.9), respectively, satisfy

(x5, y1) =

(
(4 + k)α(3) − 4β(3)

4γ
, 0

)
∈ {x5 < 0}

and

(x4, y5) =

(
0,

4γ

(4 + k)α(3) − 4β(3)

)
∈ {y5 < 0}.

Therefore, we know that the singular points of systems (2.8) and (2.9)
are (x5, y1) = (0, 0) and (x4, y5) = (0, 0), respectively. It is easy to see
that both are hyperbolic saddles with separatrices in the coordinate
axes, and these separatrices do not correspond to characteristic orbits
tending to the origin of system (1.2) in the direction θ = 0.

(a2) If (4+k)α(3)−4β(3) > 0, then the singular point (x5, y1) = (0, 0)
of systems (2.8) is a hyperbolic node, and hence, there are infinite many
orbits tending to the origin of system 1.2).

Case (b). β(3) − α(3) = 0. Let λ = (4 + k)α(3) − 4β(3). Then,
system (2.8) can be written in the following form:

ẋ5 = x5[Φ1(y1) + x5Φ2(y1)],

ẏ1 = Ψ1(y1) + x5Ψ2(y1).

Reparametrizing the above system in order to apply the classification
theorem of this type of singular point [11], we obtain

ẏ1 =
1

λ
[Ψ1(y1) + x5Ψ2(y1)] := X(y1, x5),

ẋ5 =
x5

λ
[Φ1(y1) + x5Φ2(y1)] := x5 + Y (y1, x5).

Note that the unique solution of x5 + Y (y1, x5) = 0 passing through
(x5, y1) = (0, 0) is x5 = 0. Since

F (y1) := Qm(1, y1)− y1Pm(1, y1) = y31Ψ1(y1) ≥ 0,

the first non-vanishing derivative at y1 = 0 of F is of even order.
Without loss of generality, assume that F (2n)(y1)|y1=0 > 0 is the first
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non-vanishing derivative at y1 = 0 of F . It is simple to prove by
induction that

F (2n)(y1)|y1=0 = (y31Ψ1(y1))
(2n)|y1=0

=
2n∑
k=0

Ck
2n(y1)

(k)(Ψ1(y1))
(2n−k)|y1=0

= 6C3
2nΨ

(2n−3)
1 (0).

Hence, Ψ
(2n−3)
1 (0) > 0 is the first non-vanishing derivative at y1 = 0 of

Ψ1(y1). Therefore,

X(y1, 0) =
Ψ1(y1)

λ
=

1

λ(2n− 3)!
Ψ

(2n−3)
1 (0)y2n−3

1 + · · · .

Applying the classification theorem of this type of singular point [11],
we obtain that, if λ < 0, then the singular point (x5, y1) = (0, 0) is a
topological saddle; if λ > 0, then the singular point (x5, y1) = (0, 0)
is a topological node. This shows that, if β(3) − α(3) ≥ 0, only then
(4 + k)α(3) − 4β(3) < 0 does system (1.2) have no characteristic orbit
tending to the origin in the direction θ = 0. Therefore, condition (v) is
necessary.

Case (c). (4 + k)α(3) − 4β(3) = 0. Since (α(3))2 + (β(3))2 ̸= 0 and
β(3) − α(3) ≥ 0,

µ := β(3) − α(3) =
kα(3)

4
> 0.

System (2.8) may be rewritten in the following form:

ẋ5 = x5[Φ1(y1) + x5Φ2(y1)],

ẏ1 = Ψ1(y1) + x5Ψ2(y1) = µy1 + · · · .

In order to apply the classification theorem of this type of singular
point [11], we reparametrize the above system and then obtain

ẋ5 =
x5

µ
[Φ1(y1) + x5Φ2(y1)] := X(x5, y1),

ẏ1 =
1

µ
[Ψ1(y1) + x5Ψ2(y1)] := y1 + Y (x5, y1).
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Note that the only solution of y1 + Y (x5, y1) = 0 passing through
(x5, y1) = (0, 0) is y1 = 0. Substituting y1 = 0 into X(x5, y1) yields

X(x5, 0) = −4γ

µ
x2
5,

where µ > 0 and γ > 0, and then −(4γ/µ)x2
5 < 0. Again applying the

classification theorem of this type of singular point [11], we see that
the singular point (x5, y1) = (0, 0) of system (2.8) is a saddle node,
with the nodal sectors on {x5 < 0}, the center manifold WC in the
x5-axis, and the y1-axis being the other separatrix. Hence, there is no
characteristic orbit of system (1.2) tending to the origin in the direction
θ = 0. �

Lemma 2.5. Suppose that X is a vector field of class G1. If the
system associated with X satisfies Conditions (a) and (b), and, for each

characteristic direction θj, j = 1, 2, . . . , k, sign0⃗(Θ)((2+M −m)α
(1)
j −

2(β
(1)
j )) ≤ 0 when (α

(1)
j )2 + (β

(1)
j )2 ̸= 0; sign0⃗(Θ)((4 +M −m)α

(3)
j −

4β
(3)
j ) ≤ 0 when (α

(1)
j )2 + (β

(1)
j )2 = 0 but (α

(3)
j )2 + (β

(3)
j )2 ̸= 0. Then,

the origin of system (1.2) is monodromic.

Proof. For each characteristic direction θj , j = 1, 2, . . . , k, after a
rotation of angle φ = −θj , that is, x = aju− bjv, y = bju+ ajv, where
aj and bj are as defined above, system (1.2) becomes
(2.10)

u̇ = ajPm(aju− bjv, bju+ ajv) + bjQm(aju− bjv, bju+ ajv)

+ ajPM (aju− bjv, bju+ ajv) + bjQM (aju− bjv, bju+ ajv),

v̇ = −bjPm(aju− bjv, bju+ ajv) + ajQm(aju− bjv, bju− ajv)

− bjPM (aju− bjv, bju+ ajv) + ajQM (aju− bjv, bju+ ajv).

This system has a characteristic direction in v = 0. Applying Lem-
mas 2.3 and 2.4 to system (2.10), we see that it contains no orbits
tending to the origin in the direction v = 0. This direction corresponds
to the direction θ = θj for system (1.2). Hence, the origin is a mono-
dromic singular point. �

Proof of Theorem 1.3. Follows straightforwardly from Theorem 1.1
and Lemma 2.5. �
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3. An example. Consider the following system

(3.1)
ẋ = y3 − x2y3,

ẏ = −3x5 − y5.

It is not difficult to see that (3.1) can be written in polar coordinates
(r, θ) as

(3.2)
ṙ = cos θ sin3 θ − r(cos3 θ sin3 θ + 3 sin θ cos5 θ + sin6 θ),

θ̇ = − sin4 θ − r2(3 cos6 θ + cos θ sin5 θ − sin4 θ cos θ).

Its origin has two directions given by {θ1 = 0} and {θ2 = π}.
Since (ṙ(r, θ + π), θ̇(r, θ + π)) = (ṙ(r, θ), θ̇(r, θ)), we only need verify
the monodromic conditions for θ1 = 0. Condition (a) is satisfied
since Θ(x, y) := xQ(x, y) − yP (x, y) = −3x6 − y4(x2 + x + 1) < 0,
except at the origin. Also, Condition (b) is trivially satisfied since
P3(θi) = Q3(θi) = 0 for i = 1, 2,

α(1) = β(1) = 0, α(2) = β(2) = 0, (α(3))2 + (β(3))2 = 1 ̸= 0

and
(4 +M −m)α(3) − 4β(3) = 2α(3) = 2 > 0.

From Theorem 1.3, we see that the origin of system (3.1) is a mon-
odromic singular point.

The numerical solution of system (3.1) by Maple 6.0 is given in
Figure 1. It shows that the origin is actually a monodromic singular
point which, in fact, is a stable fine focus.

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

y

–0.2 –0.1 0 0.1 0.2 0.3
x

Figure 1. Numerical solution of system (3.1). The initial condition is
chosen to be the point (0.3, 0.1), close to the origin.
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4. Conclusion. Since many mathematical models which are pro-
posed from the physical, chemical and biological communities are poly-
nomial systems, it is important to analyze qualitative properties of
polynomial systems. There are very few results on the monodromy
problem for the polynomial system which has a zero linear portion
at its singular point. The monodromy problem of a type of degen-
erate system defined by the sum of two homogeneous vector fields
with a zero linear portion was studied, and a monodromy criterion
of such a degenerate polynomial system satisfying special conditions,

i.e., (α
(1)
j )2 + (β

(1)
j )2 ̸= 0, for all j = 1, 2, . . . , k, is given in [13]. In

this paper, we obtained a monodromy criterion of a type of degenerate
polynomial system with weaker conditions, that is,

(α
(1)
j )2 + (β

(1)
j )2 = 0;

however,

(α
(3)
j )2 + (β

(3)
j )2 ̸= 0

for some j, j = 1, 2, . . . , k, by means of a blow-up technique and a clas-
sification theorem. An example was presented to show that our result
generalizes the corresponding result in [13]. The monodromy criterion
of such a degenerate system defined by the sum of two homogeneous
vector fields with no additional conditions will be considered in our
future work.

Acknowledgments. The author is very grateful to the anonymous
referees for their careful reading and constructive suggestions which led
to a truly significant improvement of the manuscript.

REFERENCES

1. A. Algaba, E. Freire, E. Gamero and C. Garćıa, Monodromy, center-focus and
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20. V. Mañosa, On the center problem for degenerate singular points of planar
vector fields, Inter. J. Bifur. Chaos. 12 (2002), 687–707.

21. Y. Tang, W. Li and Z. Zhang, Focus-center problem of planar degenerate
system, J. Math. Anal. Appl. 345 (2008), 934–940.



A MONODROMY CRITERION 2275

Zhejiang Sci-Tech University, School of Science, Department of Mathe-
matics, Hangzhou, 310018 Zhejiang, P.R. China
Email address: huangtusen@sina.com

Zhejiang Sci-Tech University, School of Science, Department of Mathe-
matics, Hangzhou, 310018 Zhejiang, P.R. China and North-West University,

International Institute for Symmetry Analysis and Mathematical Mod-
elling, Department of Mathematical Sciences, Mafikeng Campus, Private
Bag X 2046, Mmabatho 2735, South Africa
Email address: li-jun0608@163.com


