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AMITSUR’S PROPERTY FOR
SKEW POLYNOMIALS OF DERIVATION TYPE

CHAN YONG HONG, NAM KYUN KIM,
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ABSTRACT. We investigate when radicals F satisfy
Amitsur’s property on skew polynomials of derivation type,
namely, F(R[x; δ]) = (F(R[x; δ]) ∩ R)[x; δ]. In particular, we
give a new argument that the Brown-McCoy radical has this
property. We also give a new characterization of the prime
radical of R[x; δ].

1. Introduction. A radical F is said to satisfy Amitsur’s property
if, for every ring R, we have

F(R[x]) = (F(R[x]) ∩R)[x].

The terminology is a consequence of Amitsur’s work [1], where he
showed that the Jacobson, prime and Levitzki radicals and the upper
nilradical all have this property. Amitsur also gave the following two
criteria (as distilled in [10, Lemma 1]) which, together, are sufficient to
guarantee Amitsur’s property and, in practice, are often easily verified:

(1) F is hereditary, and,

(2) whenever R has characteristic p, we have

F(R[x]) ∩R[xp − x] ⊆ F(R[xp − x]).
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These criteria were used, for instance, in [10, Theorem 3] and [12, The-
orem 3.2] to show, respectively, that the Brown-McCoy and Behrens
radicals have Amitsur’s property. For three recent and interesting stud-
ies of Amitsur’s property in connection with other natural radical prop-
erties, see [9, 13, 18]. For information on general radical theory, and
Amitsur’s property in particular, we recommend [7, subsection 4.9] as
a good reference.

In the present paper, we are concerned with the radicals of skew
polynomial rings of derivation type (which we also call differential
polynomial rings).

Let R be a ring, and let δ be a derivation on R, meaning an additive
map satisfying the product rule δ(ab) = δ(a)b + aδ(b) for all a, b ∈ R.
We can then define the ring R[x; δ] consisting of left polynomials with
standard addition and multiplication subject to the skewed constraint
xa = ax + δ(a). Radicals of this ring were first studied in the work
of Ferrero, Kishimoto and Motose [6], where it was shown that the
Jacobson, prime and Wedderburn radicals again possess (an analogue
of) Amitsur’s property. Letting J denote the Jacobson radical, they
raised the question of whether J(R[x; δ]) ∩ R is a nil ideal of R, and
this question remains open.

In this paper, we generalize the work in [6] to give a set of general
criteria for the analogue of Amitsur’s property to hold over R[x; δ]. We
say that a radical F satisfies the δ-Amitsur property, if:

for all rings R and for all derivations δ of R,(1.1)

(F(R[x; δ]) ∩R)[x; δ] = F(R[x; δ]).

When possible, we also explicitly describe the resulting ideal

F(R[x; δ]) ∩R E R.

Throughout the paper, R will be an arbitrary associative ring,
possibly without 1, and δ will be an arbitrary derivation on R. We
reserve fractal letters for radicals, capitalized English letters for rings
and sets, and lowercase English letters for ring elements or variables.
We write I E R to mean that I is a two-sided ideal of R. When we use
the word “radical” we will mean a radical in the sense of Kurosh and
Amitsur [7, Definition 2.1.1]. (Two exceptions to this convention are
when we speak of the “Wedderburn radical” and “bounded nilradical,”
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whose names have been established in the literature, but these are not
technically radicals.) In order to be precise, F is a radical if it assigns to
each ring R an ideal F(R) E R satisfying the following three conditions.

(R1) If F(R) = R and R → S is a surjective ring homomorphism,
then F(S) = S.

(R2) We have F(F(R)) = F(R), and, if I E R with F(I) = I, then
F(I) ⊆ F(R).

(R3) The equality F(R/F(R)) = 0 always holds.

As usual, we say the radical F is hereditary if it satisfies the further
condition:

(R4) If I E R, then F(I) = F(R) ∩ I.

2. Preliminaries on rings with derivations. In this short sec-
tion, we collect a few definitions and results that are important when
working with skew polynomials of derivation type. Given a deriva-
tion δ on a ring R, following standard nomenclature we say that a
subset S ⊆ R is a δ-subset if δ(S) ⊆ S. When I E R is an ideal and a
δ-subset, we simply say that I is a δ-ideal.

The next lemma, the proof of which is omitted, relates the ideals
of R and R[x; δ].

Lemma 2.1. Let R be a ring and δ a derivation of R.

(1) If I is a right ideal of R, then I[x; δ] is a right ideal of R[x; δ]
and I[x; δ] ∩R = I.

(2) If I is a δ-ideal of R, then I[x; δ] is an ideal of R[x; δ].
(3) If J is an ideal of R[x; δ], then J ∩R is an ideal of R.

Given

f(x) =
n∑

i=0

aix
i ∈ R[x; δ],

with ai ∈ R for each 0 ≤ i ≤ n, we abuse notation by writing

δj(f(x)) =
n∑

i=0

δj(ai)x
i.



2200 C.Y. HONG, N.K. KIM, Y. LEE AND P.P. NIELSEN

(Note that δ is not a derivation on R[x; δ].) We will find many oc-
casions to make use of the following extremely useful result, which
capitalizes on the startlingly pretty formula xf(x) − f(x)x = δ(f(x))
that recursively leads to

(2.1) δj(f(x)) =

j∑
i=0

(−1)j−i

(
j

i

)
xif(x)xj−i.

Lemma 2.2. If J is an ideal of R[x; δ] and f(x) ∈ J , then

Rδj(f(x))R ⊆ J

for every j ≥ 0. Moreover, if J is closed under multiplication by x,
then δj(f(x)) ∈ J for all j ≥ 0 and J ∩R is a δ-ideal of R.

Proof. Given r, s ∈ R, we obtain rδj(f(x))s ∈ J by multiplying
(2.1) on the left by r and on the right by s. In order to prove the
last sentence, note that J ∩ R is clearly an ideal in R, and, when J
is closed under multiplication by x, then (2.1) proves the δ-invariance
claims. �

3. The prime radical. The prime radical P(R) of a ring R has
many equivalent definitions:

• The lower radical described by the class of nilpotent rings, and
thus, the limit of the (higher) Wedderburn radicals.

• The intersection of all of the prime ideals.
• The set of strongly nilpotent elements.
• The limit of the (higher) left (or right) T -nilpotent radideals,
see [8].

• The limit of the (higher) bounded nilradicals.

If we write
Pδ(R) := P(R[x; δ]) ∩R,

the ideal Pδ(R) E R can similarly be described as a limit of δ-
Wedderburn ideals [6, Theorem 2.1, Corollary 2.2], as the intersection
of δ-prime δ-ideals [5, Theorem 1.1], and as the set of strongly δ-
nilpotent elements [11, Proposition 1.11]. In this section, we will
pursue an analogue of the fourth bullet point.
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A subset S ⊆ R is left T -nilpotent if, for every sequence of elements
s1, s2, . . . ∈ S, there is some index n ≥ 1 such that s1s2 · · · sn = 0. Such
subsets are quite well behaved, as evidenced by the next two lemmas.

Lemma 3.1. Let R be a ring, I ⊆ R and J E R. If J is left T -nilpotent
and I is left T -nilpotent in R/J , then I + J is left T -nilpotent.

Proof. This is a slight strengthening of [8, Lemma 4.2], with the
same proof, mutatis mutandis. �

Lemma 3.2. Let R be a ring, I ⊆ R and J a one-sided ideal of R.

(1) If J is left T -nilpotent, then the two-sided ideal generated by J
is left T -nilpotent.

(2) If I and J are left T -nilpotent, then I + J is left T -nilpotent.

Proof. This is [8, Proposition 4.3]. �

The left T -nilpotent radideal is defined by

Tℓ(R) := {a ∈ R : aR is left T -nilpotent},

or equivalently, as the set

{a ∈ R : the ideal generated by a is left T -nilpotent}.

For more information and basic facts, see [8, Section 4]. This radical-
like ideal satisfies the δ-Amitsur property, and moreover, we can ex-
plicitly describe the derived ideal as follows.

Theorem 3.3. Given a ring R with a derivation δ, then

Tℓ(R[x; δ]) = Tℓ,δ(R)[x; δ],

where
(3.1)

Tℓ,δ(R) :=

{
a ∈ R :

∞∑
j=0

δj(a)R is left T -nilpotent

}
= Tℓ(R[x; δ]) ∩R.
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Proof. Define Tℓ,δ(R) as in (3.1), and note that this is an ideal of R
by Lemma 3.2 (1), and hence, a δ-ideal. We first show that

Tℓ(R[x; δ]) ⊆ Tℓ,δ(R)[x; δ].

Fix f(x) ∈ Tℓ(R[x; δ]), and write

f(x) =

n∑
i=0

aix
i

with ai ∈ R for each 0 ≤ i ≤ n. Set

Ji =
∞∑
j=0

δj(ai)R

for 0 ≤ i ≤ n. We will show that Jn is left T -nilpotent.

Fix a sequence of elements r1, r2, . . . ∈ R and a sequence of non-
negative integers i1, i2, . . ., and set

tk := δi1(an)r1δ
i2(an)r2 · · · δik(an)rk

for each k ≥ 1. Each of the elements

δi1(f(x))r1δ
i2(f(x))r2, δ

i3(f(x))r3δ
i4(f(x))r4, . . .

belongs to Tℓ(R[x; δ]) by Lemma 2.2, and thus, there exists some
index k such that

δi1(f(x))r1δ
i2(f(x))r2 · · · δik(f(x))rk = 0.

The degree nk coefficient in this product is exactly tk, and thus, tk = 0.

We now show that Jm is left T -nilpotent for any 0 ≤ m ≤ n.
By a recursive argument, we may assume that Jm+1, Jm+2, . . . , Jn
are left T -nilpotent, and thus, the two-sided ideal J generated by
Jm+1 + Jm+2 + · · · + Jn is a left T -nilpotent ideal by Lemma 3.2.
Lemma 3.1 tells us that, in order to prove Jm is left T -nilpotent, we
can pass to the quotient ring R/J ; thus, we may assume that m is

the leading index of f(x). However, then, the methods of the previous
paragraph apply, and thus, Jm is left T -nilpotent as desired, which
proves the inclusion Tℓ(R[x; δ]) ⊆ Tℓ,δ(R)[x; δ].
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We now show the opposite inclusion Tℓ(R[x; δ]) ⊇ Tℓ,δ(R)[x; δ]. Fix

f(x) =
n∑

i=0

aix
i ∈ Tℓ,δ(R)[x; δ],

and also fix a sequence of polynomials g1(x), g2(x), . . . ∈ R[x; δ]. Every
coefficient in the product f(x)g1(x)f(x)g2(x) · · · f(x)gk(x) is a Z-linear
combination of terms of the form

(3.2) δj1(ai1)δ
j′1(r1)δ

j2(ai2)δ
j′2(r2) · · · δjk(aik)δj

′
k(rk),

where j1, j
′
1, j2, j

′
2, . . . , jk, j

′
k are non-negative integers; for each m ≥ 1,

we have that rm is a coefficient of gm(x), that aim ∈ {a0, a1, . . . , an}
and that

jm, j′m <
m∑

p=1

deg(gp(x)) +mdeg(f(x)) + 1.

In particular, note that there are only finitely many choices for each
jm, j′m, im and rm (given that we have already chosen the sequence
g1(x), g2(x), . . .).

Suppose, by way of contradiction, that, for each k ≥ 1, there is a
term as in (3.2) which is nonzero. By an application of König’s tree
lemma (see, for instance, its application in [8]), we can fix sequences
i1, i2, . . . , j1, j2, . . . , j

′
1, j

′
2, . . . ∈ N and r1, r2, . . . ∈ R such that

sk := δj1(ai1)δ
j′1(r1)δ

j2(ai2)δ
j′2(r2) · · · δjk(aik)δj

′
k(rk) ̸= 0

for every k ≥ 1. On the other hand, some ai must occur infinitely
often in the sequence ai1 , ai2 , . . ., and, since ai ∈ Tℓ,δ(R), we must
have sk = 0 for k large enough, giving the needed contradiction. �

Example 3.4. The ideal Tℓ,δ(R) is not always the maximal δ-ideal
contained in Tℓ(R). Indeed, let

R = F2[x0, x1, . . . : x2
i = 0]

with derivation δ(xi) = xi+1. We see that Tℓ(R) = P(R) = (x0, x1, . . .)
is already a δ-ideal, but x0 /∈ Tℓ,δ(R) since

x0δ(x0)δ
2(x0) · · · δk(x0) = x0x1x2 · · ·xk ̸= 0

for each k ≥ 1.
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Following [8, Section 5], set T
(0)
ℓ = (0) and recursively define the

higher left T -nilpotent radideals

T
(α)
ℓ (R) = {a ∈ R : a+ T

(β)
ℓ (R) ∈ Tℓ(R/T

(β)
ℓ (R))},

if α is the successor of β and, if α is a limit ordinal,

T
(α)
ℓ (R) =

∪
β<α

T
(β)
ℓ (R).

We can now extend Theorem 3.3 to the higher left T -nilpotent radideals
by a simple transfinite induction.

Corollary 3.5. The higher left T -nilpotent radideals T
(α)
ℓ satisfy the

δ-Amitsur property (1.1). Thus, we can write

T
(α)
ℓ (R[x; δ]) = T

(α)
ℓ,δ (R)[x; δ]

for a unique δ-ideal T
(α)
ℓ,δ (R) E R.

Proof. Assume that the statement is true for all ordinals β < α.
Note that we have a natural surjection

R[x; δ] −→ R[x; δ]/T
(β)
ℓ,δ (R)[x; δ],

and a natural isomorphism

R[x; δ]/T
(β)
ℓ,δ (R)[x; δ] ∼= (R/T

(β)
ℓ,δ (R))[x; δ],

where δ is the derivation induced on the factor ring by δ since T
(β)
ℓ,δ (R)

is a δ-ideal.

First, consider the case where α is the successor of some ordinal β.
By Theorem 3.3, we know that Tℓ satisfies the δ-Amitsur property.

Thus, the elements of Tℓ((R/T
(β)
ℓ,δ (R))[x; δ]) are determined by the

constant polynomials in this ideal. Lifting these constant polynomials
through the natural isomorphism and surjection above, we obtain the
desired conclusion.
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Finally, if α is a limit ordinal, we have

T
(α)
ℓ (R[x; δ]) =

∪
β<α

T
(β)
ℓ (R[x; δ]) =

∪
β<α

T
(β)
ℓ,δ (R)[x; δ]

=

( ∪
β<α

T
(β)
ℓ,δ (R)

)
[x; δ].

Thus, we can take

T
(α)
ℓ,δ (R) =

∪
β<α

T
(β)
ℓ,δ (R). �

As noted at the beginning of this section, these higher left T -nil-
potent radideals stabilize to the prime radical. Thus, we obtain a new
characterization of the prime radical of R[x; δ], and we also recover the
result of Ferroro, Kishimoto and Motose that the prime radical satisfies
the δ-Amitsur property [6].

Proposition 3.6. Given a ring R with a derivation δ, then we have
P(R[x; δ]) = Pδ(R)[x; δ], where

Pδ(R) = P(R[x; δ]) ∩R

is the limit of the δ-ideals T
(α)
ℓ,δ (R). In particular, the prime radical

satisfies the δ-Amitsur property.

4. An alternate characterization of the δ-Amitsur property.
Perhaps the most well known and utilized condition for checking the
Amitsur property is that of Krempa [10, Theorem 1], which states that
a radical F has Amitsur’s property if and only if, for every ring R,

F(R[x]) ∩R = 0 =⇒ F(R[x]) = 0.

This equivalence holds for differential polynomial rings with only min-
imal changes to the proofs, as we will now show. In order to begin, we
first need the basic fact that radicals are closed under multiplications
in unital extensions.

Lemma 4.1. Let F be a radical, and let R be a ring. If I E R, then
F(I) E R, and hence, F(I) ⊆ F(R).

Proof. This is [2, Theorem 1]. �
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In order to apply this to unital extensions, we make the following
definition. If R is unital, we set R1 = R; otherwise, we let R1 = R⊕Z
be the Dorroh extension of R by Z, where addition is component-wise
and multiplication is given by the rule (r,m)(s, n) = (rs+ms+nr,mn)
for all r, s ∈ R and m,n ∈ Z. Note that R E R1.

Corollary 4.2. Let F be a radical, let R be a ring and let δ be a
derivation on R. Then the following occurs:

xF(R[x; δ]) + F(R[x; δ])x ⊆ F(R[x; δ]).

Consequently, F(R[x; δ]) ∩R is a δ-ideal of R.

Proof. If R contains 1, then this result is trivial. If R does not
contain 1, let R1 be the Dorroh extension as above. We extend δ
to R1 in the only possible manner which preserves the fact that δ
is a derivation by making δ act trivially on Z. It is easy to verify
that R[x; δ] E R1[x; δ]. Thus, by Lemma 4.1, F(R[x; δ]) is an ideal in
R1[x; δ], and, in particular, is closed under multiplication by x. Finally,
apply Lemma 2.2. �

Note that this corollary holds for more general extensions (such
as Ore extensions, see [11] for the definition), not merely those of
derivation type. This fact may be useful in studying radicals of such
rings, but we will not make use of such generality here.

With Corollary 4.2 in place, we are now in a position to prove that
Krempa’s characterization holds for differential polynomial rings.

Proposition 4.3. Let F be a radical. This radical has the δ-Amitsur
property (1.1) if and only if, for every ring R and every derivation δ
on R, the following occurs:

(4.1) F(R[x; δ]) ∩R = 0 =⇒ F(R[x; δ]) = 0.

Proof. The proof follows by modifying the proof of [10, Theorem 1];
however, we include it for completeness. The forward direction is clear,
which leaves only the reverse.

Set
A = F(R[x; δ]) ∩R,
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which is a δ-ideal of R, and thus, A[x; δ] is a well-defined ring. By
Corollary 4.2,

A[x; δ] ⊆ F(R[x; δ]).

Thus,
F(R[x; δ]/A[x; δ]) = F(R[x; δ])/A[x; δ]

by standard radical arguments.

On the other hand,

R[x; δ]/A[x; δ] ∼= R[x; δ],

where R = R/A, and δ is the induced derivation on the factor ring
(which exists since A is a δ-ideal). This yields a string of isomorphisms:

F(R[x; δ]) ∩R ∼= F(R[x; δ]/A[x; δ]) ∩R/A

∼= (F(R[x; δ])/A[x; δ]) ∩ ((R+A[x; δ])/A[x; δ])

= (F(R[x; δ]) ∩ (R+A[x; δ]))/A[x; δ]

= (F(R[x; δ]) ∩R+A[x; δ])/A[x; δ]

= (A+A[x; δ])/A[x; δ] = 0.

Assuming the implication in the statement of Proposition 4.3 yields

0 = F(R[x; δ]) ∼= F(R[x; δ])/A[x; δ],

and hence,

F(R[x; δ]) = A[x; δ] = (F(R[x; δ]) ∩R)[x; δ];

in other words, F has the δ-Amitsur property. �

5. Two different attacks on radicals. There are two distinct
ways of showing that the Jacobson radical J satisfies Amitsur’s prop-
erty. The first derives from Amitsur’s original characterization, found
in [1], of the Jacobson radical as

J(R[x]) = N [x]

for some nil ideal N E R and involves a clever isomorphism trick. The
second method has its roots in the unpublished work of Bergman [3]
and utilizes the fact that the Jacobson radical behaves well with respect
to, what are called in the literature, finite centralizing extensions (see
[15, subsection 10.1]). We will now describe how to transfer these
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arguments to the situation of skew polynomial extensions of derivation
type, which allows us to show that many radicals have the δ-Amitsur
property.

Both arguments begin in the same way. Let F be a radical, and
assume that F does not have the δ-Amitsur property. Thus, we may fix
a ring R and a derivation δ on R such that there exists a polynomial

f(x) ∈ F(R[x; δ]) \ (F(R[x; δ]) ∩R)[x; δ]

with n := deg(f(x)) ≥ 1 minimal among all choices of R and δ. After
passing to a factor ring, if necessary, we may assume

F(R[x; δ]) ∩R = 0,

and hence, this minimal degree n occurs over a ring where the differ-
ential version of Krempa’s criterion (4.1) fails. Write

f(x) =
n∑

i=0

aix
i ∈ F(R[x; δ])

with each ai ∈ R. Now, it may easily be verified that the map sending

h(x) −→ h(x+ 1)

is an automorphism of R[x; δ] (even in the case where R is non-unital),
and radicals are invariant under automorphisms; thus,

f(x+ 1) ∈ F(R[x; δ]).

However, since deg(f(x + 1) − f(x)) < deg(f(x)), minimality of n
implies f(x+ 1)− f(x) = 0.

Expansion yields

f(x+ 1)− f(x) = nanx
n−1 + lower order terms,

and thus, nan = 0. If either n = 1 or R is a Q-algebra, we have a
contradiction (to the fact that an ̸= 0), so we may assume n ≥ 2.
Letting m > 1 be the smallest integer with man = 0 and fixing a prime
p | m, we can replace f(x) by (m/p)f(x), and thus, pan = 0. However,
pf(x) ∈ F(R[x; δ]); thus, by minimality of degree, we in fact have that
pf(x) = 0.

It is at this juncture that the arguments of Amitsur and Bergman
diverge; thus, we first describe Amitsur’s argument. We want to reduce
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to the case pR = 0. In order to facilitate such a reduction, we make
the additional assumption that F is hereditary. Then, letting

Rp = {r ∈ R : pr = 0} E R,

the hereditary assumption provides

(5.1) F(Rp) = F(R) ∩Rp.

From the more difficult of the two inclusions in (5.1) we get

f(x) ∈ F(R) ∩Rp ⊆ F(Rp),

and, from the (easier) other inclusion, we see that there are no nonzero
polynomials of smaller degree in F(Rp). Thus, after replacing R by Rp,
if necessary, we may reduce to the case pR = 0.

In the usual polynomial case it may be shown that, since f(x+1) =
f(x), we have f(x) = g(xp − x) for some polynomial g(x) ∈ R[x].
Unsurprisingly, in the differential polynomial case, it may be shown
that f(x) is a left polynomial in the variable t := xp − x, see [1] for
a quick argument. Note that, for any r ∈ R, we have (xp − x)r =
r(xp−x)+ (δp− δ)r since pR = 0. Moreover, since R is an Fp-algebra,
it is straightforward to check that δp is a derivation on R, and thus,
δp − δ is a derivation as well. Hence,

g(xp − x) = g(t) ∈ R[t; δp − δ],

and clearly, deg(g) < deg(f). In the standard polynomial case, it may
be argued that g(t) belongs to F(R[t]) (often, by appealing to additional
assumptions on the radical F), and then, since R[t] ∼= R[x], we have
g(x) ∈ F(R[x]), contradicting the minimality of n. Unfortunately, there
is, in general, no degree preserving isomorphism between R[x; δ] and
R[t; δp − δ]. Thus, Amitsur’s argument often breaks at this point for
differential polynomial rings.

We now turn to the other method. Propitiously, in Bergman’s argu-
ment, there is no roadblock. (Note that we are now not necessarily
assuming that F is hereditary, although, if that assumption holds, then
the reductions in the previous two paragraphs can still be made.) The
idea is simply that we need more automorphisms which will give us
more control over f(x). In that spirit, let q > n be an integer prime,
and let ζ = ζq be a primitive qth root of unity (from C). Given any
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ring A, define
A′ := A[ζ] = A⊗Z Z[ζ].

(Here we slightly abuse notation since A may already contain the
complex qth roots of unity; thus, it must be remembered that A[ζ]
is shorthand for A ⊗Z Z[ζ].) Note that A sits (isomorphically) as a,
possibly non-unital, subring of A′. In our case, we focus on the ring

R[x; δ]⊗Z Z[ζ] ∼= R′[x; δ′],

where δ′ is the derivation on R′ = R[ζ] determined by the rule
δ′(r ⊗ α) = δ(r)⊗ α. In this ring, we have the automorphisms

(5.2) σj(h(x)) = h(x+ ζj)

for j ∈ N. Identifying f(x) with

f(x)⊗ 1 ∈ R′[x; δ′],

the constant term of f(x+ ζj)− f(x) is exactly

n∑
i=1

ai ⊗ ζij .

Thus,

g(x) :=

q−1∑
j=0

ζ−nj(f(x+ ζj)− f(x))

= qan ⊗ 1 +

q−1∑
j=0

n−1∑
i=1

ai ⊗ ζj(i−n)

+ higher order terms,

but, by switching the order of summation and noting that ζi−n is also
a primitive qth root of unity (for 1 ≤ i ≤ n− 1 since n < q), yields

q−1∑
j=0

n−1∑
i=1

ai ⊗ ζj(i−n) =

n−1∑
i=1

(
ai ⊗

q−1∑
j=0

(ζi−n)j
)

=

n−1∑
i=1

ai ⊗ 0 = 0.

Thus, qan is the constant term in g(x).

We now define a property which holds for many radicals. We say
that F respects finite cyclotomic extensions when the following occurs:
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for all rings A, and all integer primes q,

(5.3) F(A) = F(A[ζq]) ∩A,

with ζq ∈ C a primitive qth root of unity and

A[ζq] := A⊗Z Z[ζq].

Under this assumption, we see that

f(x) ∈ F(R[x; δ]) ⊆ F((R[x; δ])[ζ]) = F(R′[x; δ′]),

and hence, by Lemma 4.1 (to get closure under multiplication by powers
of ζ) we have g(x) ∈ F(R′[x; δ′]). However, deg(g(x)) < deg(f(x)), and
thus, the minimality condition on n tells us that every coefficient of
g(x) is an element of F(R′[x; δ′]). In particular,

qan ∈ F((R[x; δ])[ζ]) ∩R[x; δ] = F(R[x; δ]).

However,
pan = 0 ∈ F(R[x; δ])

and
gcd(p, q) = 1;

hence,
an ∈ F(R[x; δ]) ∩R = 0,

yielding a contradiction. Combining these results yields the next result.

Theorem 5.1. If F is a radical which respects finite cyclotomic exten-
sions, then F has the δ-Amitsur property.

In the case of hereditary radicals, we can give an even nicer statement
by arguing along the lines of [6], as was done in [4] using the stronger
notion of normalizing extensions.

Theorem 5.2. Let F be a hereditary radical. Also, assume that F
respects finite field extensions, meaning : for every Fp-algebra A, and
every integer m ≥ 1,

(5.4) F(A) = F(A⊗Fp Fpm) ∩A.

Then, F has the δ-Amitsur property.
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Proof. We begin by working contrapositively. Assume that F is a
hereditary radical which does not have the δ-Amitsur property. As in
the argument above, we can reduce to the case where

(i) R is an Fp-algebra,

(ii) F(R[x; δ]) ∩R = 0, and

(iii)

f(x) =
n∑

i=0

aix
i ∈ F(R[x; δ]) \ (F(R[x; δ]) ∩R)[x; δ]

has minimal degree n ≥ 2.

Now, assume, by way of contradiction, that F respects finite field
extensions. Setting R′ = R⊗Fp Fpm with m ≥ n, we obtain

f(x) ∈ F(R[x; δ]⊗Fp Fpm) ∼= F(R′[x; δ′]),

where δ′ is the natural extended derivation. On the ring R′[x; δ′], the
map

h(x) 7−→ h(x+ t)

is an automorphism for every t ∈ Fpm . Thus,

f(x+ t)− f(x) ∈ F(R′[x; δ′])

for every t ∈ Fpm . Since deg(f(x + t) − f(x)) < deg(f(x)), the
minimality condition on n implies that the constant term of f(x +
t)− f(x), which is merely

n∑
i=1

ait
i,

belongs to F(R′[x; δ′]). A Vandermonde matrix argument, using the
fact that pm > n, tells us that each

ai ∈ F(R′[x; δ′]) for 1 ≤ i ≤ n.

Hence,

f(x) ∈ (F(R[x; δ]⊗Fp Fpm) ∩R)[x; δ] = (F(R[x; δ]) ∩R)[x; δ],

giving the needed contradiction. �
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Remark 5.3.

(1) In the argument of Theorem 5.2 we really only need F to respect
finite field extensions Fpm/Fp for a sequence of strictly increasing
positive integers

m = m1 < m2 < · · · .

We use this small improvement shortly.

(2) Suppose that A is an Fp-algebra and F is a radical. Let q ̸= p
be prime, and let Φq(x) = (xq − 1)/(x − 1) be the qth cyclotomic
polynomial. Since Φq(x) is separable modulo p, we can write

Φq(x) ≡
t∏

i=1

fi(x) (mod p)

where the fi are relatively prime, monic polynomials which are irre-
ducible modulo p. We now have

A⊗Z Z[ζq] = A⊗Fp Fp[y]/(Φq(y)) =
t∏

i=1

(A⊗Fp Fpni ),

where ni = deg(fi) for each i. Simple computation now shows that,
if F respects finite field extensions, then it respects finite cyclotomic
extensions (at least when q ̸= p).

(3) Finite cyclotomic extensions and finite field extensions are merely
special cases of finite centralizing extensions. See [15, Section 10] for
some further nice examples.

We now give an easy example of where these methods apply. (Note
that each of the radicals in the next corollary was already covered
by [4].)

Corollary 5.4. The Jacobson, Levitzki, prime and Brown-McCoy
radicals each have the δ-Amitsur property.

Proof. Let F be any of the above radicals. First, suppose that R
does not have 1. We then have

F(R) ⊆ F(R1)
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since F is hereditary. However, R1/R ∼= Z is F-semisimple; thus, we
must have the equality F(R) = F(R1). A similar argument holds if
we replace R by R[x; δ] (since, in this case, Z[x] is F-semisimple).
Therefore, without loss of generality, we can reduce to the case that R
is unital. It is well known that each of these radicals respects finite
cyclotomic extensions in the case where the ring is unital, see for
instance [16, page 454]. Now, merely apply Theorem 5.1. �

Since the proof that the Brown-McCoy radical respects finite cyclo-
tomic extensions is by no means trivial, we give an alternate proof in
that case, which may be of independent interest.

Proposition 5.5. The Brown-McCoy radical G has the δ-Amitsur
property.

Proof. Since G is a hereditary radical, by Remark 5.3 (1) and Theo-
rem 5.2 it suffices to show that, whenever F is a finite field, R is an
F -algebra, and K/F is a field extension with [K : F ] = 2, then

G(R) = G(S) ∩R where S = R⊗F K.

Further, if R is non-unital and R∗ is the Dorroh extension of R by F ,
then

G(R) ⊆ G(R∗)

since R is an ideal in R∗. On the other hand, R∗/R ∼= F is Brown-
McCoy semisimple. Thus, G(R) = G(R∗), and hence, we only need to
prove that the equality holds in the case when R is a unital F -algebra
and S is a unital overring. Fix an F -basis B = {1, b} for the extension
K/F . Now, we prove the equality G(R) = G(S) ∩R.

(⊆). Assume, by way of contradiction, that r ∈ G(R) \G(S). Then,
r /∈ M for some maximal ideal of S. Since S/M is a simple ring,

1−
m∑
i=1

sirs
′
i ∈ M

for some si, si ∈ S. Expanding this sum in terms of the basis B, we
have
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m∑
i=1

sirs
′
i = r1 + r2b

for some r1, r2 ∈ RrR ⊆ G(R), and also 1− r1 − r2b ∈ M .

Consider the two-sided ideal

R(1− r1)R E R.

If this were a proper ideal, it would be contained in a maximal ideal M ′

of R. However, since r1 ∈ G(R) we would also have r1 ∈ M ′, and hence,
1 = (1− r1) + r1 ∈ M ′, which is impossible. Thus, R(1− r1)R = R, so
we can write

1 =
n∑

j=1

tj(1− r1)t
′
j

for some elements tj , t
′
j ∈ R. Hence,

n∑
j=1

tj(1− r1 − r2b)t
′
j = 1−

( n∑
j=1

tjr2t
′
j

)
b = 1− ub ∈ M

for some element u ∈ Rr2R ⊆ G(R).

Since K is a finite field, we can fix an integer k ≥ 2 such that bk = 1.
Thus,

1− uk = (1− ub)(1 + ub+ u2b2 + · · ·+ uk−1bk−1) ∈ M.

However, uk ∈ G(R), and thus, by the same argument as at the
beginning of the previous paragraph we have R(1 − uk)R = R. Thus,
1 ∈ M , giving us the needed contradiction.

(⊇). Assume, by way of contradiction, r ∈ (G(S) ∩ R) \G(R). Fix
a maximal ideal I of R, with r /∈ I. Note that

I ⊗F K = I ⊕ Ib

is a proper ideal of S, and thus, is contained in a maximal ideal M
of S. Since r ∈ G(S) we have r ∈ M . However, I ⊆ M as well, so

R = I +RrR ⊆ M.

This yields 1 ∈ M , a contradiction. �
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Remark 5.6. These same techniques fail for the Behrens radical β.
From [12, Proposition 3.1], we have β(S) ∩ R ⊆ β(R) for any unital
finite centralizing extension, and thus, we care only about the reverse
inclusion. However, from the Example following Proposition 3.1 in
[12], there is a Behrens radical ring R which is an R-algebra and

β(R) * β(R⊗R C).

This shows that β does not even respect quadratic field extensions.
One might still hold out hope in the finite field case, but in fact, the
example can be modified to disprove that case as follows.

LetK be the field of rational functions in the commuting variables xi

(for i ∈ Z), with coefficients in F3(y). Let σ by the F3(y)-automorphism
of K which sends

xi 7−→ xi+1.

It is easily verified that the skew Laurent polynomial ring (of automor-
phism type) K[x, x−1;σ] is a simple domain with F3(y) as the center.

Define H = (2, y/F ) as the quaternion algebra over F = F3(y) with
generators i, j and relations given by i2 = 2, j2 = y and ij = −ji. This
is a non-split algebra; hence, it is a four-dimensional division algebra
with center F3(y). The tensor product

T = H⊗F3(y) K[x, x−1; δ]

is also a central simple F3(y)-algebra. The remainder of the construc-
tion is essentially unchanged from [12] after replacing R by F3(y) and
C by F9(y) everywhere; therefore, those details are left to the interested
reader. Finally, note that

H⊗F3(y) F9(y) ∼= M2(F9(y))

since F9 contains a square-root of 2, and also note that

S = R⊗F3(y) F9(y) ∼= R⊗F3 F9.

6. Open questions. One radical which is conspicuously missing
from Corollary 5.4 is the upper nilradical. Amitsur proved in 1956
that the upper nilradical has Amitsur’s property [1]. It was not
until 2014 that a proof was finally found by Smoktunowicz for the
fact that the upper nilradical is homogeneous in Z-graded rings [17].
This work was subsequently extended to gradings over semigroups
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in [14]. Unfortunately, these methods are somewhat orthogonal to
those employed in this paper, and thus, we ask:

Question 6.1. Does the δ-Amitsur property hold for the upper nilrad-
ical?

Perhaps even more difficult is the case of the Behrens radical, for we
know that this radical behaves poorly with respect to field extensions.

Another set of questions involves element-wise characterizations of
the ideal

F(R[x; δ]) ∩R,

when R has a derivation δ. While much work has been done in the case
of the prime radical, there are other basic radicals which might yield
to similar analyses. In particular, we ask:

Question 6.2. If L is the Levitzki radical, is there a simple description
of the ideal L(R[x; δ]) ∩R, for any ring R with a derivation δ?

Finally, in Section 3 we gave a list of five characterizations of the
prime radical, four of which are now known to generalize extremely well
to the differential polynomial case. Thus, we ask:

Question 6.3. How does the bounded nilradical behave in differential
polynomial rings? Is there a simple element-wise description of this
ideal in terms of the coefficient ring?
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