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A NOTE ON SKEW PRODUCT PRESERVING MAPS
ON FACTOR VON NEUMANN ALGEBRAS

ALI TAGHAVI AND HAMID ROHI

ABSTRACT. Let A be a factor von Neumann algebra,
with unit I, which contains a nontrivial projection P;, and
let ¢ : A — A be a surjective map that satisfies one of the
two conditions: ¥ (A)Y(P) + Mp(P)yp(A) = AP + APA and
P(A)Y(P) + Mp(P)yY(A)* = AP + APA* for all A € A and
P e {P1,I — P} and A € {—1,1}. Then, we determine the
concrete form of .

1. Introduction. Let R be a *-ring. The Jordan product, Lie pro-
duct, *-Jordan product and *-Lie product of A, B € R are defined as
AoB = AB+ BA, [A,B] = AB— BA, Ae B = AB + BA* and
[A, B]. = AB — BA*, respectively. These products play an important
role in different fields of research. The additive map

P: R — R,

defined by ¥)(A)=AB— BA* for all A, B € R, is a Jordan *- derivation,
that is, it satisfies 1(A42) = ¥ (A)A* + A(A). The notion of Jordan
*_derivations arose naturally in Semrls’ work [7, 8], where he investi-
gated the problem of representing quadratic functionals with sesquilin-
ear functionals. Let H be a complex Hilbert space and B(#) all of the
bounded linear operators on H. Motivated by the theory of rings (and
algebras) equipped with a Lie product or a Jordan product, Molnar [5]
studied the Lie product and gave a characterization of ideals of B(H)
in terms of the Lie product. It is shown [5] that, if N' C B(H) is an
ideal, then

N =span{AB — BA*: Ae N,B € B(H)}
=span{AB — BA* : A€ B(H),B € N'}.
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In particular, every operator in B(#) is a finite sum of AB — BA*
type operators. Later, Bersar and Fsoner [1] generalized the above
results [5] to rings using different methods of involution. Let A be a
factor von Neumann algebra and

o:A— A

the *-Jordan derivation on A. Then, in [11], we showed that ¢ is an
additive *-derivation.

Recall that a map
P:R—R

is skew commutativity preserving if, for any A,B € R, [A,B]. =0
implies [(A),¢¥(B)]. = 0. The problem of characterizing linear
(or additive) bijective maps preserving skew commutativity has been
studied intensively in various algebras (see [2, 3] and the references
therein). More specifically, we say that a map

P:R—TR

is strong skew commutativity preserving if [(A), ¥ (B)]. = [4, B]. for
all A, B € R. These maps are also called strong skew Lie product pre-
serving maps in [4]. In [4], Cui and Park proved that, if A C B(H) is
a factor von Neumann algebra, then every strong skew commutativity
preserving map v on A has the form

Y(A) = ¢(A) + h(A)I for every A € A,

where ¢ : A — A is a linear bijective map satisfying [¢(A), ¢(B)]. =
[A, B], for A, B € A and h is a real functional on A with 2(0) = 0. In
particular, if A is a type I factor, then ¢¥(A) = cA + h(A)I for every
A € A, where ¢ € {—1,1}. In addition, Qi and Hou [6] proved that,
if M is a von Neumann algebra with no central summands of type Iy,
then a surjective map

P M—M

satisfies
®(A)®(B) — ®(B)P(A)* = AB — BA*

for all A, B € M if and only if there exists a self-adjoint element Z
in the center of M with Z2? = I such that ®(A4)=ZA for all A€ M.
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In [9], we investigated the *-additivity of
v: A— B,

where A and B are two prime C*-algebras and A contains a nontrivial
projection P;. We showed that, if ¢ is a unital and bijective map and
satisfies

Y(AP + APAY) = p(A)Y(P) + Mp(P)y(A)"

forall Ac A, Pe{P,,I—Pi}and X € {—1,1}, then 1 is a *-additive
map, where A and B are two C*-algebras such that B is prime. In [10],
we investigated the additivity of map

d: A — B,
which is bijective, unital and satisfies
O(AP +nPA*) = P(A)P(P) +nP(P)P(A)"

forall A€ Aand P € {P1,14—P1}, where P; is a nontrivial projection
in A and 7 is a non-zero complex number such that || # 1.

In this paper, we distinguish the concrete form of two types of strong
skew-preserving maps on von Neumann algebras. Let A be a factor von
Neumann algebra (with identity I') that contains a nontrivial projection
Py, and let ¢ : A — A be a map. First, if ¢ is surjective and satisfies
the condition

Y(A)P(P) + Mp(P)p(A) = AP + APA

forall Ae A, P e {P;,I — P} and A € {—1,1}, then we will show
that ¢(T) = aT for o € {—1,1} and for all T' € A. Also, if A is a von
Neumann algebra and ¢ : A — A is not necessarily a surjective map
satisfying the condition

YA (P) + Mo(PYY(A)* = AP + APA*

forall Ae A, P {P;,I—P;} and A € {—1,1}, then we will show that
there exists a Z € A with Z? = I such that ¢(A) = AZ for all A € A.
Note that a subalgebra A from B(H) is called von Neumann algebra
when it is closed in the weak topology of operators. A von Neumann
algebra A is called a factor when its center is trivial, i.e., Z(A) = CI.
It is clear that, if A is a factor von Neumann algebra, then A is prime,
that is, if AAB = {0}, for A,B € A, then A =0 or B =0.
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2. Statement of the main theorem. The statement of our main
theorems follow.

Theorem 2.1. Let A be a factor von Neumann algebra, with identity I,
that contains a nontrivial projection Py, and let ¢ : A — A be a sur-
jective map which satisfies

Y(A)Y(P) + Mp(P)y(A) = AP + APA
forall Ae A, P e {P,I—P1} and X\ € {-1,1}. Then, ¢(T) = oT
for all T € A, where o € {—1,1}.
Theorem 2.2. Let A be a von Neumann algebra, with identity I, that
contains a nontrivial projection Py, and let
Pv:A— A

be a map which satisfies

Y(A)Y(P) + Mp(P)yp(A)* = AP + A\PA*

forall Ae A, P e {P,I — P} and A € {—1,1}. Then, there exists a
Z € A with Z? = I such that 1¥(A) = AZ for all A € A.

For the above-determined Pi, let P, = I — P;. By taking A;; =
Py AP; for i,j = 1,2, we can write

4,j=1,2

We also note that each A;; is nonempty, and their pairwise intersections
are the set of zero.

Note, in addition, that, by the assumptions
AoB=AB+ BA and [A,B]=AB— BA,
for A, B € A, we can show the condition of ¥ in Theorem 2.1 as follows:
(2.1) Y(A)op(P)=AoP

and

(2.2) [¥(A), »(P)] = [A, P]
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for all A€ A and P € {Py, P,}. Also, by the assumptions
AeB=AB+ BA* and [A,B|.=AB— BA*,

for A, B € A, we show the condition of 1) in Theorem 2.2 as follows:

(2.3) Y(A)ep(P)=Ae P
and
(2.4) [¥(A),¥(P)]. = [A, Pl.

for all A€ Aand P € {Py, P>}.
We prove Theorem 2.1 in two steps.

Step 1. There exist «;,8; € C with «; # 0 such that ¢(P;) =
o; P+ 6;1 for i =1,2.
Proof. With simple computation, we can obtain
[Pla [Plv [Aapl]]] = [Aapl]
for all A € A. Thus, from equation (2.2), we have

[Plv [Pla W(A)J/J(Pl)m = [@/)(A)aﬂ)(Pl)]-

Therefore,
[Py, [Py, [T (P)]]] = [T, ¢(P1)]

for all T € A, as v is surjective.

Let K = [T,v(Py)]. By simple calculation, from the above equation,
we can obtain

(2.5) P K —2P,KP, + KP, = K.

Multiplying by P; from both sides of equation (2.5), it follows that
PLK P, = 0. This yields

(2.6) Py (Ty(P1) —¢(P)T)PL =0
forall T € A.
Let T = X11 € Aj; in equation (2.6). We can write
X11¥(P) P — Piy(P1) X1 =0,
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and thus,
X1 Piyp(Pr) P = Piyp(Pr) P X1y

for all X1; € Aq1. Hence, there exists a Ay € C such that
(2.7) Piy(P)Pr = Py

since A is a factor. Replacing T by X2 € A;2 in equation (2.6), we
have
P X29(P)P =0,

and thus,
P XPyp(P)PL=0

for all X € A. The primeness of A shows that

(2.8) Pop(Pr) Py = 0.

Similarly, by taking 7' = X5 in equation (2.6), we can obtain
(2.9) Pyp(Py) P, = 0.

Also, from PiK —2P{KP, + KP, = K, we can obtain P,KP, = 0.
Therefore,
Po(Ty(Py) —(P)T)P, = 0.

Let T = Xao € Ay in the above equation. Similar to equation (2.7),
we can write

(2.10) Potp(Py) Py = Ao P
for some Ay € C.
On the other hand, from
V(P1) = Prp(PL) P+ Prp(PO) P + Py (P) Py + Poy(Py) Py,
and from equations (2.7)—(2.10), it follows that
Y(P1) = AP+ Ao Py,

which yields a1 = Ay — Ay and 81 = Ag. The result ¥(P1) = a1 P+ 11
is derived.

Now, we show that a; # 0. On the contrary, suppose that a; = 0.
Then, for all B € A, we have

[V(B), ¥(P1)] = [{(B), fl] = 0.
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Therefore,
[B,Pl] =o0=— BP, = P,B.

Multiplying this latter equation on the left and right sides, respectively,
by P», we obtain
Bs1 = B12 =0

for all B € A, which is impossible. Thus, a; # 0. Similarly, in this
way, ¥(Py) = asPs + 2] and ay # 0 can be obtained. O

Step 2. ¥(T) = T for all T € A, where o? = 1.

Proof. From Step 1, for all T € A, we have
TP — PT =¢(T)p(Pr) — (P)y(T)
=Y(T) (a1 Py + Bil) — (an Py + S 1)y(T).

Thus,
TP1 — PlT = Oél’(/J(T)Pl — Q1P1¢(T).

Multiplying this equation on the left and right sides, respectively, by
P, we have

PQTPl = 051P2’(/)(T)P1
PlTPQ = Oélpl’(f)(T)Pg.

Therefore,

(2.11) (T)91 = Pop(T)Py = aTyy
and

(2.12) b(T)1a = Pyp(T)Py = oTy,

where a = 1/a;.
On the other hand,
TP+ PT =y¢(T)y(Pr) +y(P)y(T)

=Y(T)(ar Py + f11) + (e Py + S1)(T)
= Oélw(T)Pl + Oélpl’l/)(T) + 251’(/)(T)
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Therefore, from this equation and equations (2.11) and (2.12), we have

2T + T + Tho = a1(T) 11 + a1 (T) 21 + crp(T)1a
+ a1(T)i2 + 26190(T)
=201¢(T)11 + To1 + Tha + 25:19(T).

Hence,
T, = 041'(/)(T> 11 +61 ( )
= anp(T)11 + Br(¥(T)11 + ¢(T)12
+(T)21 + (T )22).

If 51 # 0, then, from the fact that the set of zero contains the
pairwise intersections of A;;, we can obtain

Y(T)12 = (T)21 = P(T)22 =0

for all T € A. This is a contraction from the surjectivity of . Thus,
B1 =0, and we have

(2.13) Pipy(T)Py = (T)11 = aTy;.
Similarly, in this way, we can obtain

(2.14) Pyp(T) Py = 6T

and also

Pip(T) Py = §Tho,

where § = 1/as. Hence, from the above equation and equation (2.12),
we have o = § and so a3 = . Since

Y(T) = Prp(T) Py + Prop(T) Py + Pop(T) Py + Porp(T) P,
it follows from equations (2.11)—(2.14) that
W(T) = aT

for all T € A. Thus, ¢(P1) = aPy, and we also have ¥(P;) = oy P, =
Py /a. Finally, this yields 1/a = a, and thus, o? = 1, which completes
the proof of Theorem 2.1. O

Now, we will prove Theorem (2.2) by the following several steps.
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Step 1. Under the assumptions of Theorem 2.2, v is additive on A.

Proof. Letting A = P = P in equations (2.3) and (2.4), we have
¢(P1).¢(P1):P1.P1
and

[(W(P1),¥(P1)]s = [P1, Py«
Thus,
V(P)? + o(P)(P)" = 2Py
Y(P1)? = p(P)Y(P)* = 0.
Adding these equations, we have

(2.15) $(P)? = Pr.

On the other hand, for all A, B € A, we have
(V(A+ B) = ¢(A) —(B)) e p(F1)
= (A4 B) e p(P1) — ¢(A) e (P1) — ¢(B) e ¢(F1)
= (A+B).P1 —AOPl —BOPl
=0
and
[p(A+ B) = ¢(A) = ¢(B), (1))

= [(A+ B),v(P1)]s — [(A), Y (P1)]s — [(B), (1))

=[A+ B, Pi]. — [4, P1]. — [B, P1]«

=0.

Therefore,

(V(A+B)=(A)—o(B))y(P1) +¢(P1)(v(A+B)—¢(A)—¢(B))"=0
and
(G(A+B)—(A)—b(B))b(P) (P )(b(A+B) —p(A)—(B)) =0,
Adding these equations, we have

(V(A+ B) = ¢(A) = ¢(B))y(P1) = 0.
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Multiplying the above equation by 1 (P;) from the right side and using
equation (2.15), we have

(2.16) (V(A+ B) —¢(A) —¢(B))PL = 0.
Similarly, we can show that ¥ (P;)? = P, and
(2.17) (V(A+ B) —¢(A) —¢(B)) P = 0.
Adding equations (2.16) and (2.17), we have
V(A + B) =9(A) +¢(B). O

Step 2. G(1)? = $(I)p(I)* = I and $(Py) = $(I)Ps = Pap(I) for
i=1,2.

Proof. First, we show that equations (2.3) and (2.4) hold for P = I.
Letting P = P; and P = P, in equation (2.3), respectively, we have
(A)ep(Pr) =Ae P
and
V(A) e )(P) = Ao Py
for all A € A. Adding these two equations, the equation
P(A) o (P(P1) +P(P,)) = Ae (P + Py)
is inferred, and, from the additivity of ¥, we have
(2.18) Y(A)e(I)=Ael.
In a similar way, we have

(2.19) [V(A), (D]« = [A; ]
Let A = I in equations (2.18) and (2.19). With their aid, we can write

D(I)? + p()w(D)
D(I)? = p(Dw(l)* =

*

Hence,
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Letting A = I and P = P; for i = 1,2 in equations (2.3) and (2.4) we
have

YU)Y(P;) + Y (P)Y(I)" = 2P,

and

YIY(F) —v(P)y(I)" = 0.

These equations yield
v(y(P) = P

Multiplying this equation with 1 (1) from the left side, and from 1) (I)?
= I, we have

V() = (I)P;.

Similarly to obtaining A = P; for ¢ = 1,2 in equations (2.18) and (2.19),
we can obtain

Y(F;) = Py(I). O

Step 3. There exists a Z € A with Z2 = I such that ¢(T) = TZ for
all T € A.

Proof. From equation (2.3) and the fact that ¢(P;) = (I)P; for
i =1,2, we have

TP+ PT" = (T)p(Pr) + Y (P)y(T)"
=Y(T)p(I) Py + () Prop(T)*

and

TPy + PT* = p(T)p(Pe) + Y (P2)y(T)"
= Y(T)Y(I) Py + (1) Parp(T)*

for every T' € A. Adding these two equations, we have
T+ T =9(T)yI) +I)y(T)"
In addition, from equation (2.4), we can similarly obtain

T =T =(MyI) —pY(T)"
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Adding these two latter equations, we can write

T = (T)y(I).

Multiplying this equation with ¥ (I) from the right side and the fact
that (1) = I, we have

P(T) = Ty(I).

Therefore, by obtaining Z = ¢(I), we have Z% = I and ¥ (T) = TZ for
all T € A.

This completes the proof of Theorem 2.2. O
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