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ALGEBRAIC PROPERTIES OF
SPANNING SIMPLICIAL COMPLEXES

FAHIMEH KHOSH-AHANG AND SOMAYEH MORADI

ABSTRACT. In this paper, we study some algebraic
properties of the spanning simplicial complex ∆s(G) asso-
ciated to a multigraph G. It is proved that, for any finite
multigraph G, ∆s(G) is a pure vertex decomposable sim-
plicial complex and therefore shellable and Cohen-Macaulay.
As a consequence, we deduce that, for any multigraph G, the
quotient ring R/Ic(G) is Cohen-Macaulay, where

Ic(G) = (xi1 · · ·xik | {xi1 , . . . , xik}
is the edge set of a cycle in G).

Also, some homological invariants of the Stanley-Reisner ring
of ∆s(G), such as projective dimension and regularity, are
investigated.

Introduction. Simplicial complexes are widely used structures which
have many applications in algebraic topology and commutative algebra.
In particular, in order to characterize monomial quotient rings with a
desired property, the simplicial complex is a very strong tool consider-
ing the Stanley-Reisner correspondence between simplicial complexes
and monomial ideals. Characterizing simplicial complexes, which
have properties like vertex decomposability, shellability and Cohen-
Macaulayness, is a main topic in combinatorial commutative algebra.
It is rather hopeless to give a full classification of simplicial complexes
with each of these properties. In this regard, finding classes of simpli-
cial complexes with a desired property has been considered by many
researchers, cf., [5, 6, 12, 16].
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Let G = (V (G), E(G)) be a multigraph with vertex set V (G) and
edge set E(G). A growing number of ways exist for associating a
simplicial complex to a graph or a multigraph G. The best known
is the independence complex of G whose faces are those subsets of
V (G) which contain no edge. Recently, the spanning simplicial complex
associated to a simple connected graph G was defined [1], and for
unicyclic graphs, the spanning simplicial complex is studied. For
a finite simple connected graph G, the spanning simplicial complex
associated to G, denoted ∆s(G), is one whose facets are the edge
sets of all of the spanning trees of G. In [1], it is shown that the
spanning simplicial complex associated to a unicyclic graph is shifted,
and therefore shellable, and some invariants of its Stanley-Reisner ring
are computed. Also, in [7, 17], the spanning simplicial complex of
r-cyclic graphs is studied.

In this paper, we study the spanning simplicial complex associated
to a finite connected multigraph G. Since any spanning tree of a finite
connected multigraph G has |V (G)|−1 edges, ∆s(G) is a pure simplicial
complex of dimension |V (G)| − 2.

The paper proceeds as follows. In Section 1, we give some prelimi-
naries which are needed in the rest of this note.

Section 2 is devoted to the study of the spanning simplicial complex.
As the main result, it is proven that, for any finite multigraph G,
∆s(G) is a pure vertex decomposable simplicial complex, and hence, it
is shellable and Cohen-Macaulay. It will be seen that, for the ideal

Ic(G) = (xi1 · · ·xik | {xi1 , . . . , xik} is the edge set of a cycle in G),

which is the Stanley-Reisner ideal associated to ∆s(G), the quo-
tient ring R/Ic(G) is Cohen-Macaulay, where G is a finite connected
multigraph with the edge set {x1, . . . , xm}, K is a field and R =
K[x1, . . . , xm].

In Section 3, some homological invariants of the Stanley-Reisner ring
K[∆s(G)] are studied. In Theorem 3.1, some inductive formulas for
projective dimension, regularity and graded Betti numbers ofK[∆s(G)]
(K is a field) are given and, in Theorem 3.2, the precise value of the
projective dimension is given in terms of the invariants of G. In fact,
it is shown that

pd(K[∆s(G)]) = ht(I∆s(G)) = |E(G)| − |V (G)|+ 1.
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Moreover, for some classes of multigraphs, the regularity of K[∆s(G)]
is explained by combinatorial information from G, see Corollary 3.4.

Throughout this paper, we assume that G = (V (G), E(G)) is a finite
connected multigraph and K is a field.

1. Preliminaries. In this section, we recall some preliminaries
needed in the sequel. We begin with the definition of a multigraph.

Definition 1.1. A finite multigraph G = (V (G), E(G)) consists of two
finite sets V (G) and E(G) called vertices and edges of G, respectively,
where each edge is associated to a set consisting of either one or two
vertices called its endpoints. An edge with only one endpoint is called
a loop, and two distinct edges with the same set of endpoints are said
to be parallel. A multigraph without loops and parallel edges is called
a simple graph or briefly, a graph.

Note that a loop of a multigraph forms a cycle of length 1, and any
two parallel edges comprise a cycle of length 2.

A spanning tree of a finite connected multigraph G, is a subgraph T
of G such that T is a tree (connected and cycle-free) and V (T ) = V (G).
Therefore, any spanning tree of G has |V (G)| − 1 edges.

An r-cyclic multigraph Gt1,...,tr with a common edge is a connected
graph with

r∑
i=1

(ti − 2) + 2 vertices and
r∑

i=1

(ti − 1) + 1 edges

obtained by joining r cyclic graphs Gt1 , . . . , Gtr with a common edge,
where Gti denotes the cyclic graph with ti vertices. The reader is
referred to [14] for more details in the context of graph theory.

Now, we recall the definition of a vertex decomposable simplicial
complex. To this aim, we need to recall definitions of the link and the
deletion of a face in ∆. For a simplicial complex ∆ and F ∈ ∆, the
link of F in ∆ is defined as

lk∆(F ) = {G ∈ ∆ | G ∩ F = ∅, G ∪ F ∈ ∆},
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and the deletion of F is the simplicial complex

del∆(F ) = {G ∈ ∆ | G ∩ F = ∅}.

Definition 1.2. A simplicial complex ∆ is called vertex decomposable
if ∆ is a simplex, or ∆ contains a vertex x such that

(i) both del∆(x) and lk∆(x) are vertex decomposable, and
(ii) every facet of del∆(x) is a facet of ∆.

A vertex x which satisfies condition (ii) is called a shedding vertex of ∆.

For a Z-graded R-module M , the Castelnuovo-Mumford regularity,
or briefly, regularity, of M is defined as

reg(M) = max{j − i | βi,j(M) ̸= 0},

and the projective dimension of M is defined as

pd(M) = max{i | βi,j(M) ̸= 0 for some j},

where βi,j(M) is the (i, j)th graded Betti number of M .

Definition 1.3. A monomial ideal I in the ring R = K[x1, . . . , xn] has
linear quotients if there exists an ordering f1, . . . , fm on the minimal
generators of I such that the colon ideal (f1, . . . , fi−1) :R (fi) is
generated by a subset of {x1, . . . , xn} for all 2 ≤ i ≤ m. Also, monomial
ideal I generated by monomials of degree d has a linear resolution if
βi,j(I) = 0 for all j ̸= i+ d.

For a squarefree monomial ideal I = (x11 · · ·x1n1 , . . . , xt1 · · ·xtnt),
the Alexander dual ideal of I, denoted I∨, is defined as

I∨ = (x11, . . . , x1n1) ∩ · · · ∩ (xt1, . . . , xtnt).

For a simplicial complex ∆, F(∆) denotes the set of facets of ∆ and,
if F(∆) = {F1, . . . , Fk}, then we write ∆ = ⟨F1, . . . , Fk⟩.

For a simplicial complex ∆ with the vertex set X = {x1, . . . , xn},
the Alexander dual simplicial complex ∆∨ associated to ∆ is defined as

∆∨ = {X \ F | F /∈ ∆}.
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For a subset C ⊆ X, by xC we mean the monomial
∏

x∈C x in the ring
K[x1, . . . , xn]. It may be seen that

(I∆)
∨ = (xF c

| F ∈ F(∆)),

where I∆ is the Stanley-Reisner ideal associated to ∆ and F c = X \F .
Moreover, it is easily seen that (I∆)

∨ = I∆∨ .

2. Spanning simplicial complexes are Cohen-Macaulay. We
begin this section with a definition of the spanning simplicial complex,
as follows.

Definition 2.1 ([1, Definition 2.5]). Let G be a finite, connected
multigraph, and let s(G) = {E1, . . . , Es} be the set of edge sets of
all possible spanning trees of G. The spanning simplicial complex asso-
ciated to G, denoted ∆s(G), is a simplicial complex with the vertex set
E(G) such that the elements of s(G) are its facets, in other words,

∆s(G) = ⟨E1, . . . , Es⟩.

Remark 2.2. Since a spanning tree of a multigraph has no loop,
∆s(G) is similar to the spanning simplicial complex associated with a
multigraph which is obtained by removing all of the loops in G. Thus,
we may assume that G is a multigraph with no loop.

Example 2.3. Let G be the graph with the edge set {e1, e2, e3, e4, e5,
e6} depicted in Figure 1. Then,

∆s(G) = ⟨{e1, e2, e3, e6}, {e1, e2, e4, e6}, {e1, e3, e5, e6},
{e1, e4, e5, e6}, {e1, e3, e4, e6}, {e2, e3, e4, e6},

{e2, e3, e5, e6}, {e2, e4, e5, e6}⟩.

..
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Remark 2.4 ([14]). If G is a multigraph, then it is well known that
any of its spanning trees has |V (G)| − 1 edges, and thus, ∆s(G) is
always a pure simplicial complex of dimension |V (G)| − 2.

Assume that G is a multigraph and e is an edge of G. The del-
etion of G by e, denoted G − e, is a multigraph obtained from G
by removing the edge e. Also, the contraction of G by e, denoted
G/e, is a multigraph obtained from G by removing the edge e, while
simultaneously merging the two vertices previously joined by e. If e is
an edge with endpoints x and y, then we denote V (G/e) by (V (G) \
{x, y})∪{w}, where w is the vertex obtained by merging x and y. The
edge set of G/e is precisely explained in the following remarks.

Remark 2.5.

(i) Let e be an edge of the multigraph G with endpoints x and y
and w ∈ V (G/e) the vertex obtained by merging x and y. There is
a bijection f : E(G − e) → E(G/e) such that, for any e′ ∈ E(G − e)
with endpoints u and v, where {x, y} ∩ {u, v} = ∅, f(e′) = e′, for any
e′ ∈ E(G − e) where one of its endpoints is u ̸= x, y and another is x
or y, f(e′) is incidental to u and w and, if e′ ∈ E(G− e) has endpoints
x and y, then f(e′) is a loop in the vertex w. Thus, hereafter, we may
consider E(G/e) = E(G−e), that is, E(G/e) may be considered as the
subset E(G) \ {e} of E(G).

(ii) Let G be a multigraph with at least one cycle and e an edge of a
cycle in G. Assume that {T1, . . . , Ts} is the set of all spanning trees of
G such that, for each 1 ≤ i ≤ r, e /∈ E(Ti) and, for each r + 1 ≤ i ≤ s,
e ∈ E(Ti). Then, by the deletion-contraction formula, {T1, . . . , Tr} is
the set of all spanning trees of G− e, and {Tr+1/e, . . . , Ts/e} is the set
of all spanning trees of G/e.

(iii) Let G be a multigraph with at least one cycle and e an edge
of a cycle in G. Let F(∆s(G)) = {F1, . . . , Fs} be such that e /∈ Fi

for any 1 ≤ i ≤ r, and e ∈ Fi for any r + 1 ≤ i ≤ s. In light of (ii),
F(∆s(G − e)) = {F1, . . . , Fr} and Fr+1 \ {e}, . . . , Fs \ {e} correspond
to the facets of ∆s(G/e). Thus,

F(∆s(G)) = F(∆s(G− e)) ∪ F(∆s(G/e) ∗ ⟨{e}⟩).



PROPERTIES OF SPANNING SIMPLICIAL COMPLEXES 1907

Lemma 2.6. Let G be a multigraph with at least one cycle and e an
edge of a cycle in G. Then,

lk∆s(G)(e) = ∆s(G/e),

and
del∆s(G)(e) = ∆s(G− e).

Proof. Assume that ∆s(G) = ⟨F1, . . . , Fs⟩ is such that e /∈ Fi for
any 1 ≤ i ≤ r and e ∈ Fi for any r + 1 ≤ i ≤ s. By Remark 2.5 (iii),
∆s(G− e) = ⟨F1, . . . , Fr⟩ and ∆s(G/e) = ⟨Fr+1 \ {e}, . . . , Fs \ {e}⟩. It
is clear that

lk∆s(G)(e) = ∆s(G/e)

and

del∆s(G)(e) = ⟨F1, . . . , Fr⟩ ∪ ⟨Fr+1 \ {e}, . . . , Fs \ {e}⟩.

Let r + 1 ≤ i ≤ s be such that Fi is the edge set of a spanning tree T
of G which contains e. We will show that Fi \ {e} is contained in the
edge set of some spanning tree of G − e. Consider the subgraph H
of T which is obtained by deleting the edge e. Let A and B be the
connected components of H such that every component contains an
endpoint of e. Since e belongs to a cycle C in G, there is an edge e′

in C with endpoints in A and B. It is easily seen that e′ /∈ Fi since,
otherwise, T would contain a cycle. Due to the choice of e′,

Fℓ = (Fi \ {e}) ∪ {e′}

is the edge set of a spanning tree of G. Since e /∈ Fℓ, we have 1 ≤ ℓ ≤ r,
and hence, Fi \ {e} ⊆ Fℓ. This shows that del∆s(G)(e) = ∆s(G− e), as
required. �

The next theorem is one of the main results of this paper, which
introduces a large class of pure vertex decomposable, and hence, Cohen-
Macaulay, simplicial complexes.

Theorem 2.7. The spanning simplicial complex of a multigraph is
vertex decomposable.

Proof. If G is a tree, then ∆s(G) is a simplex, and there is nothing to
prove. Therefore, assume that G is not a tree. We proceed by induction
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on |E(G)|. Assume inductively that the result has been proved for
smaller values of |E(G)|. Since G is a connected multigraph which is
not a tree, G has an edge, say e, such that e is an edge of some cycle
in G. By the inductive hypothesis, ∆s(G− e) and ∆s(G/e) are vertex
decomposable. Hence, Remark 2.5 (iii) and Lemma 2.6 complete the
proof. �

It is known that every vertex decomposable simplicial complex is
shellable, see [4, Theorem 11.3]. In addition, every pure shellable
simplicial complex is Cohen-Macaulay, see [13, Theorem 5.3.18]. These
facts, together with Remark 2.4 and Theorem 2.7, imply the following
result.

Corollary 2.8 (cf., [1, Corollary 3.9]). The spanning simplicial com-
plex of a multigraph is always pure shellable, and hence, Cohen-
Macaulay.

Hereafter, we assume that G is a multigraph with the edge set
{x1, . . . , xm}. Also, we consider the same notion xi for the edges of
G and indeterminates of the polynomial ring R = K[x1, . . . , xm].

Corollary 2.9. Let G be a connected multigraph with the edge set
E(G) = {x1, . . . , xm}, R = K[x1, . . . , xm] the polynomial ring over a
field K and

Ic(G) = (xi1 · · ·xik | {xi1 , . . . , xik} is the edge set of a cycle in G).

Then, R/Ic(G) is a Cohen-Macaulay ring.

Proof. We show that Ic(G) is equal to the Stanley-Reisner ideal
associated to ∆s(G). It is clear that Ic(G) ⊆ I∆s(G).

For the reverse containment, note that the spanning tree of a
connected multigraph can also be defined as a maximal set of edges
ofG which contains no cycle. Therefore, every subgraph without cycles,
by adding edges, can be extended to a maximal subgraph which is
a spanning tree of G. Hence, if xi1 · · ·xik is a generator of I∆s(G),
then {xi1 , . . . , xik} contains the edge set of a cycle in G, and thus,
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xi1 · · ·xik ∈ Ic(G) as required. Therefore,

I∆s(G) = (xi1 · · ·xik | {xi1 , . . . , xik} is the edge set of a cycle in G)

= Ic(G).

The result now follows from Corollary 2.8. �

Example 2.10. Assume that G is the graph depicted in Figure 1, and
set E(G) = {x1, x2, x3, x4, x5, x6}. Then,

Ic(G) = (x1x2x5, x3x4x5, x1x2x3x4),

and, in view of Corollary 2.9, R/Ic(G) is a Cohen-Macaulay ring.

Remark 2.11. If ∆s(G) = ⟨F1, . . . , Fs⟩, then

I∆s(G)∨ = (xE(G)\Fi | 1 ≤ i ≤ s).

Thus, it is generated by monomials xi1 · · ·xik such that {xi1 , . . . , xik}
is a subset of E(G) which should be removed from G to make it into a
spanning tree. Clearly, the cardinality of each of these subsets of edges
equals

|E(G)| − |Fi| = |E(G)| − |V (G)|+ 1.

This number is a graph-theoretic invariant of G, called the circuit rank
of G. Hence, I∆s(G)∨ can be generated by monomials with the same
degree of circuit rank of G.

In the next corollary, we introduce a class of ideals with linear quo-
tients and linear resolution. Toward this aim, firstly we recall the
following definition.

Definition 2.12 ([8, Definition 2.1]). Amonomial ideal I inR = K[X]
is called vertex splittable if it can be obtained by the following recursive
procedure:

(i) if u is a monomial and I = (u), I = (0) or I = R, then I is a
vertex splittable ideal.

(ii) If there is a variable x ∈ X and vertex splittable ideals I1 and I2
of K[X \ {x}] such that I = xI1 + I2, I2 ⊆ I1 and G(I) is the
disjoint union of G(xI1) and G(I2), then I is a vertex splittable
ideal.
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Corollary 2.13. For any multigraph G, I∆s(G)∨ is vertex splittable
and then has linear quotients and a linear resolution.

Proof. In light of Theorem 2.7, ∆s(G) is vertex decomposable.
Therefore, [8, Theorems 2.3, 2.4] ensure that I∆s(G)∨ is vertex split-
table and has linear quotients. By Remark 2.11, I∆s(G)∨ is generated
by monomials of the same degree. Hence, [5, Lemma 5.2] implies that
I∆s(G)∨ has linear resolution, as desired. �

By the multigraph gained in Example 2.3 we present an ideal which
has linear resolution and quotients as follows.

Example 2.14. Assume that G is the multigraph in Example 2.3.
Then,

I∆s(G)∨ = (x4x5, x3x5, x2x4, x2x3, x2x5, x1x5, x1x4, x1x3).

Further, in view of Corollary 2.13, I is vertex splittable, has linear
quotients and a linear resolution.

3. Regularity and projective dimension of the Stanley-
Reisner ring of a spanning simplicial complex. This section is
devoted to characterizing some invariants of the Stanley-Reisner ring
K[∆s(G)] in terms of the invariants of G.

We begin with the next theorem which immediately follows from
Lemma 2.6 and [8, Corollary 2.11]. Note that, if G is a tree, then
I∆s(G) = 0; thus, we consider connected multigraphs with at least one
cycle.

Theorem 3.1. Let G be a multigraph with at least one cycle and e an
edge of a cycle in G. Set ∆1 = ∆s(G− e) and ∆2 = ∆s(G/e). Then,
we have the following statements:

(i) βi,j(I∆s(G)∨) = βi,j−1(I∆∨
1
) + βi,j(I∆∨

2
) + βi−1,j−1(I∆∨

2
).

(ii) pd(K[∆s(G)]) = max{pd(K[∆1]) + 1, pd(K[∆2])}.
(iii) reg(K[∆s(G)]) = max{reg(K[∆1]), reg(K[∆2]) + 1}.

The next theorem, another main result of our paper, ties together
graph theory and commutative algebra, in some sense.
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Theorem 3.2. Assume that G is a connected multigraph. Then, we
have

dim(K[∆s(G)]) = |V (G)| − 1,

pd(K[∆s(G)]) = bigheight(I∆s(G))

= ht(I∆s(G))

= |E(G)| − |V (G)|+ 1.

Proof. It is well known that dim(K[∆s(G)]) = dim(∆s(G)) + 1.
Therefore, Remark 2.4 ensures that dim(K[∆s(G)]) = |V (G)| − 1, as
desired.

In view of Corollary 2.8, K[∆s(G)] is Cohen-Macaulay. Therefore,
I∆s(G) is unmixed and

pd(K[∆s(G)]) = bigheight(I∆s(G)) = ht(I∆s(G)),

by [9, Corollary 3.33]. Also,

ht(I∆s(G)) = |E(G)| − |V (G)|+ 1,

which completes the proof. �

In graph theory, the circuit rank, cyclomatic number or nullity
of a graph G is the minimum number r of edges to remove all its
cycles from G, making it into a forest. It may easily be seen that
r = |E(G)|−|V (G)|+c, where c is the number of connected components
of G. The set of edges, the removal of which leaves G acyclic, may
be found as the complement of a spanning forest of G. The minimum
cardinality of such a set is, in fact, the circuit rank ofG. The cyclomatic
number is also the dimension of the cycle space of G, see [2].

Topologically, G may be viewed as an example of a one-dimensional
simplicial complex, and its cyclomatic number is the rank of the first
homology group of this complex, see [10]. Also, the circuit rank con-
trols the number of ears in an ear decomposition of a graph, see [15].
Hence, Theorem 3.2 investigates the circuit rank of a connected multi-
graph from an algebraic point of view. In fact, it shows that the circuit
rank of a connected multigraph G is also the projective dimension of
the Stanley-Reisner ring of the spanning simplicial complex associated
to G.
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The next corollary, which immediately follows from Theorem 3.2,
may be valuable in turn.

Corollary 3.3. Assume that G is a connected multigraph, E(G) =
{x1, . . . , xm} and R = K[x1, . . . , xm], where K is a field.

(i) G is a tree if and only if K[∆s(G)] is a projective (free) R-module.

(ii) If G has exactly r cycles such that no two cycles share a common
edge, i.e., all cycles in G are induced, then

pd(K[∆s(G)]) = r.

(iii) If G is an r-cyclic multigraph with a common edge, then
pd(K[∆s(G)]) = r.

(iv) Let G be an r-cyclic multigraph with a common edge and trees
rooted on its vertices, that is, there is an r-cyclic graph H and trees
T1, . . . , Tk, such that

G = H ∪ T1 ∪ · · · ∪ Tk,

where, for each distinct integer 1 ≤ i, j ≤ k,

V (Ti) ∩ V (Tj) = ∅ and |V (Ti) ∩ V (H)| = 1.

Then, pd(K[∆s(G)]) = r.

Proof.

(i) A connected multigraph G is a tree if and only if |E(G)| =
|V (G)| − 1 and, by Theorem 3.2, it holds if and only if pd(K[∆s

(G)]) = 0. Also, if G is a tree, then I∆s(G) = 0; thus, K[∆s(G)] = R is
a free R-module.

(ii) It may easily be seen that, in this case, |E(G)| = |V (G)|+(r−1).
Therefore, Theorem 3.2 shows that pd(K[∆s(G)]) = r.

(iii) If G is an r-cyclic multigraph with a common edge Gt1,...,tr ,
then we have

V (G) =

r∑
i=1

(ti − 2) + 2 and E(G) =

r∑
i=1

(ti − 1) + 1.

Thus, by means of Theorem 3.2, we have pd(K[∆s(G)]) = r, as desired.
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(iv) In view of Theorem 3.2, if G is an r-cyclic multigraph with a
common edge and trees rooted on its vertices, then

pd(K[∆s(G)]) = pd(K[∆s(Gt1,...,tr )]).

Therefore, the result follows from (iii). �

We conclude this paper with the following result concerning the reg-
ularity of the Stanley-Reisner ring of the spanning simplicial complex
associated to special multigraphs.

Corollary 3.4.

(i) Assume that G is a connected multigraph which has exactly r
cycles C1, . . . , Cr such that no two cycles share a common edge. Then,

reg(K[∆s(G)]) =

r∑
i=1

|E(Ci)| − r.

(ii) If G is an r-cyclic multigraph Gt1,...,tr with a common edge and
(possible) trees rooted on its vertices, then

reg(K[∆s(G)]) =
r∑

i=1

(ti − 2) + 1 = |E(Gt1,...,tr )| − r.

Proof.

(i) If r = 0, then G is a tree and I∆s(G) = 0. Thus,

reg(K[∆s(G)]) = 0 =
r∑

i=1

|E(Ci)| − r.

Therefore, we assume that r ≥ 1 and use induction on |E(G)|. Since G
has at least one cycle and no loop, then |E(G)| ≥ 2. If |E(G)| = 2,
then G is a cycle of length 2. Let E(G) = {x1, x2}. Thus, I∆s(G) =
(x1x2), and then, reg(K[∆s(G)]) = 1. Also, |E(C1)| − 1 = 2 − 1 = 1.
Therefore,

reg(K[∆s(G)]) = |E(C1)| − 1.

Assume that |E(G)| > 2, and let e ∈ E(Cr), ∆1 = ∆s(G − e) and
∆2 = ∆s(G/e). Then, by Theorem 3.1,

reg(K[∆s(G)]) = max{reg(K[∆1]), reg(K[∆2]) + 1}.
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Note that G− e has exactly r − 1 cycles C1, . . . , Cr−1. Then,

reg(K[∆1]) =

r−1∑
i=1

|E(Ci)| − (r − 1).

In addition, G/e has exactly r cycles C1, . . . , Cr−1, Cr/e. Thus,

reg(K[∆2]) =

r−1∑
i=1

|E(Ci)|+ |E(Cr/e)| − r.

Since |E(Cr/e)| = |E(Cr)| − 1, we have

reg(K[∆2]) =
r∑

i=1

|E(Ci)| − r − 1.

Therefore,

reg(K[∆s(G)]) = max

{ r−1∑
i=1

|E(Ci)| − (r − 1),
r∑

i=1

|E(Ci)| − r

}
.

The result now follows from the obvious inequality

r−1∑
i=1

|E(Ci)| − (r − 1) ≤
r∑

i=1

|E(Ci)| − r.

(ii) Next, note that, if G is an r-cyclic multigraph Gt1,...,tr with a
common edge and trees possibly rooted on its vertices, then reg(K[∆s

(G)]) = reg(K[∆s(Gt1,...,tr )]). Thus, we can assume that G is an r-
cyclic multigraph Gt1,...,tr with a common edge. We prove the assertion
by induction on |E(G)|. If |E(G)| = 2, then G is a cycle graph of length
2 and, as was shown in (i), reg(K[∆s(G)]) = 1 = (t1 − 2) + 1.

Assume that |E(G)| > 2, and the result is true for all r′-cyclic
multigraphs G′ with |E(G′)| < |E(Gt1,...,tr )|. If r = 1, then G is a
cycle graph; thus, by (i), reg(K[∆s(G)]) = |E(G)| − 1 = (t1 − 1).
Also, if t1 = · · · = tr = 2, then ∆s(G) is a zero-dimensional simplicial
complex and

reg(K[∆s(G)]) = 1 =
r∑

i=1

(ti − 2) + 1.
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Therefore, without loss of generality, assume that r > 1 and tr > 2.
Let e be an edge on the cycle Gtr , which is not the common edge.
Then, we have

reg(K[∆s(G− e)]) = reg(K[∆s(Gt1,...,tr−1)])

and

∆s(G/e) = ∆s(Gt1,...,tr−1,tr−1).

Hence, by Theorem 3.1, we have

reg(K[∆s(G)]) = max{reg(K[∆s(Gt1,...,tr−1)]),

reg(K[∆s(Gt1,...,tr−1,tr−1)]) + 1}.

By the induction hypothesis, we have

reg(K[∆s(Gt1,...,tr−1)]) =
r−1∑
i=1

(ti − 2) + 1 <
r∑

i=1

(ti − 2) + 1,

since tr > 2, and

reg(K[∆s(Gt1,...,tr−1,tr−1)]) =

r−1∑
i=1

(ti − 2) + (tr − 1− 2) + 1

=
r∑

i=1

(ti − 2).

Thus,

reg(K[∆s(G)]) =
r∑

i=1

(ti − 2) + 1. �
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