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SEMI-COSIMPLICIAL OBJECTS
AND SPREADABILITY

D. GWION EVANS, ROLF GOHM AND CLAUS KÖSTLER

ABSTRACT. To a semi-cosimplicial object (SCO) in a
category, we associate a system of partial shifts on the
inductive limit. We show how to produce an SCO from
an action of the infinite braid monoid B+

∞ and provide
examples. In categories of (noncommutative) probability
spaces, SCOs correspond to spreadable sequences of random
variables; hence, SCOs can be considered as the algebraic
structure underlying spreadability.

1. Introduction. Distributional symmetries have been intensely
studied in probability theory in recent decades, see [11] for an inspiring
overview. More recently, it has emerged that distributional symmetries
are also crucial for the further development of noncommutative proba-
bility theory and that an important role is played by a specific distribu-
tional symmetry (or invariance principle) which is called spreadability,
i.e., the invariance of distribution when passing from a sequence of ran-
dom variables to a subsequence. See [13] for the beginning of the story.
It may be argued that these symmetries become more transparent from
an algebraic point-of-view if probability theory is interpreted as a study
of associative algebras and their states, and thus the point of view of
noncommutative probability theory is a natural one.

In this paper, we deepen these connections to algebra by including
concepts from category theory and homological algebra. Not only
do we obtain a better idea of the meaning of spreadability, we also
derive the natural level of generality for constructing further examples.
Unlike other probabilistic symmetries which are based on group actions,

2010 AMS Mathematics subject classification. Primary 18G30, 20F36, 46L53.
Keywords and phrases. Semi-cosimplicial object, coface operator, partial shift,

braid monoid, cohomology, noncommutative probability space, spreadability,
subfactor.

Received by the editors on August 13, 2015, and in revised form on February 26,
2016.
DOI:10.1216/RMJ-2017-47-6-1839 Copyright c⃝2017 Rocky Mountain Mathematics Consortium

1839



1840 D. GWION EVANS, ROLF GOHM AND CLAUS KÖSTLER

spreadability has a homological flavor. Making this explicit is one of
the main targets of this paper.

For this purpose, we need to study semi-cosimplicial objects (SCOs
for short). We briefly recollect the relevant concepts, see for example
[19, Chapter 8.1], for more details. Some of the most fundamental
ideas of algebraic topology and homological algebra relate to simplices,
and they can be based on the simplicial category ∆. The objects of ∆
are finite ordered sets, usually written as

[n] := {0, 1, . . . , n}, n ∈ N0,

and the morphisms are all non-decreasing maps between these objects.
An interesting subcategory ∆S , called the semi-simplicial category, is
obtained by considering the same objects but only (strictly) increasing
maps as morphisms. Other names in use for this important category
∆S are ‘restricted simplicial’ [2] and ‘incomplete simplicial’ [15], see
[19, subsection 8.1.10] for historical remarks regarding the terms). In
this paper, only the semi-simplicial category ∆S is relevant, and thus,
we give further definitions only in this context. We remark, however,
that it is always interesting to ask whether constructions actually can
be extended to the simplicial category ∆ in some way.

A covariant functor F from the semi-simplicial category ∆S to
another category C is called a semi-cosimplicial object (SCO) in C.
We work out a more explicit description of an SCO by noting that the
morphisms of ∆S are generated by the face maps

δk : [n− 1] −→ [n], m 7−→

{
m if m < k,

m+ 1 if m ≥ k.

Here, k = 0, . . . , n and n ∈ N. Following the usual convention, we
omit the index n in the notation of the δk and leave the domain and
codomain to the context. The δk satisfy the cosimplicial identities

δjδi = δiδj−1 if i < j,

and these cosimplicial identities provide a presentation of the category
∆S . The functor F takes [n] to F [n] and δk to

F (δk) : F [n− 1] −→ F [n].
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Simplifying the notation, we can then write Fn for F [n] and δk for
F (δk) and obtain the explicit definition of an SCO to be used in the
sequel.

Definition 1.1. A semi-cosimplicial object (SCO) in the category C is
a sequence (Fn)n∈N0 of objects in C, together with morphisms (coface
operators)

δk : Fn−1 −→ Fn, k = 0, . . . , n,

satisfying the cosimplicial identities

δjδi = δiδj−1 if i < j.

If there is an additional object F−1 in C together with a morphism

δ0 : F−1 −→ F 0

satisfying the cosimplicial identities, then we have an augmented semi-
cosimplicial object.

The reader is referred to [19, 18, 20], for example, for more infor-
mation regarding (semi co-)simplicial objects and for a development of
the rich and far developed theory.

In this paper, we proceed as follows. In Section 2, we develop some
category theory, which provides a general framework. In particular, we
show that, by forming an inductive limit from a given SCO, we obtain,
in addition, a sequence of adapted endomorphisms with properties
reflecting the SCO. We call this an SCO-system of partial shifts, and
we study some of its properties. The most basic example of an SCO-
system of partial shifts (providing a good guide for intuition) appears
on the set N0 of nonnegative integers, and it consists of the sequence
of maps

αk : N0 −→ N0

(with k ∈ N0) given by αk(m) := m if m < k and αk(m) := m + 1 if
m ≥ k (missing the position k). Note the close similarity to the face
maps described above.

We should emphasize that SCO-systems of partial shifts are nothing
but a convenient tool for handling SCOs; in particular, they are a
useful bridge to the probabilistic contexts studied later, but with the
techniques of Section 2, it is possible to give formulations directly in
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terms of the SCO, if this is preferred. We also include in Section 2
some examples of semi-cosimplicial groups which can be constructed in
an elementary way.

In Section 3, we study a method of constructing SCOs from actions
of the infinite braid monoid B+

∞. This generalizes the idea of braidabil-
ity in [7] (which is discussed briefly later in this introduction) and gives
a somewhat simplified manner of thinking about this concept. To our
knowledge, this is also a new method of creating cosimplicial identities
as needed for an SCO, and it generates a wealth of nontrivial examples
worthy of further study. For instance, there is the corresponding stan-
dard semi-cosimplicial cohomology theory, which we mention briefly in
Remark 3.5 but do not investigate further in this paper.

In Section 4, we first recall the definition of spreadability in various
categories of (noncommutative) probability spaces. Then, we state
Theorem 4.3 which, together with Theorem 4.5, is our main result.
It shows that SCOs in these categories induce spreadable sequences
of random variables and, conversely, the distribution of a spreadable
sequence can always be achieved from an SCO in such a category. We
develop only the most basic part of the theory here, but it should
suffice to convince the reader that SCOs are the fundamental algebraic
structure underlying spreadability.

In order to guide the reader’s intuition through the paper let us
insert here an example in the category of unital associative algebras
(or ∗-algebras) which is fundamental in many ways. Let B be such an
algebra. Then, we can form an SCO (Xn)n∈N0 with tensor products

Xn :=
n⊗
0

B,

together with coface operators

δk :

n−1⊗
0

B −→
n⊗
0

B,

x0 ⊗ · · · ⊗ xn−1 7−→ x0 ⊗ · · · ⊗ xk−1 ⊗ 1l⊗ xk ⊗ · · · ⊗ xn−1.

The cosimplicial identities can easily be directly checked in this case.
Alternatively, the reader who has studied Section 3 is invited to verify
that this is a special case of the theory presented in Theorem 3.1. In
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fact, it comes from the braid group representation factoring through
the representation of the symmetric group, which permutes the tensor
products.

We can also illustrate the theory of SCO-systems of partial shifts
from Section 2 with this example. There is an inductive system of
tensor products of the algebra B with itself, with inclusions

x 7−→ x⊗ 1l

and inductive limit

A :=

∞⊗
0

B.

Hence, on A, we have the tensor shift

α0 : A −→ A,

and we obtain the canonically associated SCO-system of partial shifts
by considering the sequence of algebra homomorphisms

αk : A −→ A (with k ∈ N0),

given by

αk(x) :=

{
x if x ∈

⊗k−1
0 B,

α0(x) if x ∈
⊗∞

k B.

By additionally choosing a unital linear functional invariant under
all of these partial shifts, we finally arrive in our example at the theory
of spreadability in (noncommutative) probability spaces. The basic
example is to choose any unital linear functional φB on B and then to
construct the infinite tensor product

φ :=

∞⊗
0

φB.

Convex combinations of such products provide more examples. The
reader familiar with the notion of spreadability, which is reviewed
in Section 4, will have no difficulty verifying that under these cir-
cumstances the embeddings of the noncommutative probability space
(B, φB) into the different positions of the tensor product provide an
example of a spreadable sequence.
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In order to make some finer distinctions we refer in this paper to the
version of spreadability based on ∗-algebras and ∗-homomorphisms,
most relevant for the probabilistic point of view, as ∗-spreadable. An
interesting example, Example 4.4 is provided where, in contrast to
the tensor product example given above, no simplification based on
the more traditional idea of exchangeability is possible, and the full
strength of the results in Section 3 is needed, namely, we construct
spreadable sequences of operators and, in particular, of projections in
the tower associated to a subfactor, in the theory of von Neumann
algebras, see [9]. Spreadability follows for all values of the Jones index
but ∗-spreadability only appears if the index is small, i.e., less than or
equal to 4.

Applications of spreadability are not the topic of this paper; how-
ever, we finish this introduction with a short review of the literature,
including some of our motivations and background as to why, in par-
ticular, the study of ∗-spreadability is important and relevant for a
probabilist. In fact, in the ∗-algebra setting, where we use states in-
stead of unital linear functionals, the above tensor product example is
the basis of what probabilists call exchangeability, an important special
case of spreadability. It is intimately connected to the representation
of the symmetric group mentioned above.

Clearly, the category of ∗-probability spaces includes classical prob-
ability in the sense that we can consider a commutative ∗-algebra of
complex functions on a classical probability space and a positive func-
tional induced by a probability measure. In this case, it is always
possible to find a version of the random variables where spreadabil-
ity and ∗-spreadability amounts to the same thing. In order to avoid
technical difficulties in the following discussion, we always assume that
we have Lebesgue spaces; thus, we can, for example, represent homo-
morphisms of the measure algebras by point transformations (modulo
sets of measure zero). See [17, 1.4C], for more details and further
references.

Here, the interest in spreadability comes from the fact that a
de Finetti-type theorem can be proved, i.e., we can deduce a form
of conditional independence. Using the background and terminology
provided in [11], we have
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Theorem 1.2. Let (ξn)n∈N0 be a sequence of (classical) random vari-
ables (realized by measure-preserving maps between Lebesgue spaces).
Further let Σ∞ denote the σ-algebra generated by the sequence (ξn)n∈N0

and Σn the σ-algebra generated by ξ0, . . . , ξn, for all n ∈ N0. Then the
following are equivalent:

(a) (ξn) is spreadable.

(b) (ξn) is exchangeable.

(c) (ξn) is conditionally i.i.d. (independent and identically distributed).

(d) For all n ∈ N, there exist Σn − Σn−1-measurable and measure-
preserving maps δk, for k = 0, . . . , n, such that (with 0 ≤ N < n) we
have ξN = ξN ◦ δk for N < k and ξN+1 = ξN ◦ δk for N ≥ k.

(e) There exist Σ∞-measurable measure-preserving maps (βk)k≥0

such that we have

ξN = ξN ◦ βk for N < k

and

ξN+1 = ξN ◦ βk for N ≥ k.

We do not further discuss exchangeability in this paper and recom-
mend [7, 13, 8] for additional results regarding exchangeability from
our point-of-view. The equivalence of (a), (b) and (c) is provided by
[11, Theorem 1.1], where not only a proof but much further informa-
tion may be found, see also [10]. In fact, among other things, it is
shown there how, from spreadability, a very transparent proof of the
classical de Finetti theorem (which is the equivalence with (c)) may be
obtained via the mean ergodic theorem.

The equivalence of (a) and (d) is precisely the topic of this paper,
applied to this specific situation. In fact, it is a special case of the equiv-
alence of (2) (a) and (2) (c) in our Theorem 4.3 (or Theorem 4.5). More
explicitly, it follows from spreadability that, omitting ξk from ξ0, . . . , ξn,
yields the same distribution as does ξ0, . . . , ξn−1, and this allows us to
define the measure-preserving transformation δk. Conversely, if we be-
gin with such a δk, then, by δkp := p ◦ δk on polynomials p in the
random variables ξ0, . . . , ξn−1, we obtain an SCO as in Theorem 4.3
(2) (c) and deduce spreadability from that as described there. Note
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that, in (d), we have again used the convention that the dependence
on n of the maps δk is suppressed in notation. Equivalently, by the
theory developed in Section 2, we have the formulation in (e) involving
the measure-preserving maps version of what we call partial shifts.

We now return to the general noncommutative setting. The case of
∗-spreadability for noncommutative random variables in von Neumann
algebras arising from actions of the infinite braid group B∞ by state-
preserving ∗-automorphisms was investigated extensively in [7], and
the sequences obtained in this way were called braidable there (here,
we call them ∗-braidable). The fact that ∗-braidable sequences are
∗-spreadable, obtained in [7], again follows from our Theorem 3.1, to-
gether with Theorem 4.5. The converse question, “is every ∗-spreadable
sequence necessarily also ∗-braidable?,” seems to remain open at the
moment. In fact, this open question was one of the motivations for this
paper. Our expectation is that the characterization of ∗-spreadability
in terms of SCOs achieved in Theorem 4.5 will provide a tool for con-
structing examples which show that the answer is negative.

It was shown [13] that, in the setting of (in general noncommutative)
von Neumann algebras and corresponding noncommutative probability
spaces, there is still a version of de Finetti’s theorem for ∗-spreadable
sequences which makes use of a generalized notion of noncommutative
stochastic independence. The proof involves refined applications of
the mean ergodic theorem, and it is in this context that the idea
of partial shifts first appeared (which follows in Section 2 and is
derived from SCOs). Moreover, the braidability results in [7] show
that, in the noncommutative setting, ∗-spreadability is much more
general than ∗-exchangeability (which involves representations of the
infinite symmetric group while representations of the infinite braid
group are sufficient to produce spreadability, as explained above).
Hence, there are many indications that, in noncommutative probability
theory, the notion of spreadability is actually more fundamental than
exchangeability.

Finally, we mention the notion of quantum spreadability, developed
in [3], which strengthens the notion of spreadability using the idea
of quantum increasing sequence spaces. It has been shown [3] that
quantum spreadability is equivalent to free independence; hence, it is
strong enough to enforce a very specific structure for the noncommu-
tative probability space. In contrast, in this paper, we consider the
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(weaker) classical notion of spreadability but, in general, we apply it
to noncommutative probability spaces as well. Here, we find that this
does not enforce a specific structure for the noncommutative probabil-
ity space but instead yields interesting general results (for example, the
de Finetti-type results) for a wide range of such spaces and, as such, is
worthy of further study.

We expect that the clear identification of SCOs as the algebraic
backbone of spreadability obtained here will lead to the construction
of additional examples and to new theoretical developments.

2. Adaptedness, SCOs and partial shifts. We begin by giving a
definition of adaptedness in terms of category theory and derive a global
formulation for SCOs by the so called SCO-systems of partial shifts.
Later on, this helps us describe the connection between (co)simplicial
and probability theory in a flexible and convenient way. With slight
modifications, here we follow the approach in [6, subsection 3.2]. For
category theory itself, we follow [14]. Consider the category

ω = {0 −→ 1 −→ 2 −→ 3 −→ · · · }

and another category C which allows ω-colimits (which are the same as
inductive limits). We briefly recall what this means. Suppose that

F : ω −→ C

is a functor, i.e., we have

F0
i1−→ F1

i2−→ F2
i3−→ · · ·

with morphisms
in : Fn−1 −→ Fn, n ∈ N,

between C-objects. We also refer to this functor as a filtration (by
a slight abuse of terminology, the sequence of objects is also called a
filtration). An ω-colimit (or inductive limit) is an object

F∞ = lim
→
F

in C which, together with canonical arrows,

µn : Fn −→ F∞ n ≥ 0,
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forms a universal cone, see [14, III.3]. Pictorially, this is a commuting
diagram:

F0
i1 //

µ0

''OO
OOO

OOO
OOO

OOO
OO

µ′
0

��?
??

??
??

??
??

??
??
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F1

i2 //

µ1
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F2
i3 //

µ2
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o

µ′
2

����
��
��
��
��
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��
��
��
��
�

. . .

F∞

∃!f

��
F ′

(µ′
1 not drawn). Thus, the C-object F∞ is determined up to isomor-

phism by the fact that there are morphisms

µn : Fn −→ F∞, n ∈ N0,

which satisfy the equations µn in = µn−1, n ∈ N, and are universal
with respect to any morphisms µ′

n : Fn → F ′, n ∈ N0, which satisfy the
equations µ′

n, in = µ′
n−1, n ∈ N. In many examples, these morphisms

involve inclusions of sets; however, this is not necessarily the case in
general.

Lemma 2.1. Given morphisms

α(n) : Fn−1 −→ Fn, n ∈ N,

such that
µn+1 α

(n+1) in = µn α
(n) (for all n ∈ N)

there exists a unique morphism

α : F∞ −→ F∞

such that
αµn−1 = µn α

(n) (for all n ∈ N).

Proof. If we define µ′
n := µn+1 α

(n+1), then

µ′
n in = µn+1 α

(n+1) in = µn α
(n) = µ′

n−1,

and we obtain α from the universal property (αµn−1 = µ′
n−1). �
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Definition 2.2. A morphism

α : F∞ −→ F∞

given as in Lemma 2.1 is called an adapted endomorphism, with respect
to the filtration, determined by (α(n))n∈N.

Intuitively, α(n) describes how α acts on (the image of) the (n−1)th
object in the filtration and adaptedness describes the compatibility of
these actions. The terminology is motivated by stochastic processes
and their time evolutions, cf., Section 4.

Lemma 2.3. Let α be an adapted endomorphism, with respect to a
filtration. If αµn = µn for some n, then also αµk = µk for all k ≤ n.

Proof. If αµn = µn for some n, then

αµn−1 = µnα
(n) = µn+1α

(n+1)in = αµnin = µnin = µn−1.

By iterating this argument, we obtain the stated result. �

If α satisfies the condition of Lemma 2.3, then we say that α acts
trivially on (the image of) the nth object.

Definition 2.4. Let (αk)k∈N0
be a sequence of adapted endomor-

phisms (with respect to a common filtration). If the sequence satisfies

(1) for each k ∈ N, the endomorphism αk acts trivially on (the image
of) the (k − 1)th object,

(2) αjαi = αiαj−1 if i, j ∈ N0 and i < j,

then we say that (αk)k∈N0 is an SCO-system of partial shifts (for this
filtration).

Note that, if (αk)k∈N0
is an SCO-system of partial shifts, then, for

all ℓ ∈ N, the sequence (αk)k≥ℓ is also an SCO-system of partial shifts
if everything is suitably relabeled (k 7→ k − ℓ).
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Proposition 2.5. Let (αk)k∈N0 be an SCO-system of partial shifts.
Then

αk(α0)
Nµ0 =

{
(α0)

Nµ0 if N < k,

(α0)
N+1µ0 if N ≥ k.

Proof. If N < k, then, using properties (2) and (1) of partial shifts,

αk(α0)
Nµ0 = (α0)

Nαk−Nµ0 = (α0)
Nµ0.

If N ≥ k, then, using property (2) of partial shifts,

αk(α0)
Nµ0 = (α0)

kα0(α0)
N−kµ0 = (α0)

N+1µ0. �

Proposition 2.5 explains the terminology of partial shifts: we regard
α0 as a full shift while αk for k ≥ 1 acts trivially on an initial part and
only shifts the remaining part. We explain the origin of this concept in
the theory of spreadability further in Section 4. Of course, the property
in Proposition 2.5 also reminds us of the origin of coface operators from
face maps, i.e., specific strictly increasing functions missing one point,
mentioned in Section 1; thus, we have come full circle. Note that
Proposition 2.5 applied to the relabeled SCO-systems (as mentioned
above) gives additional relationships.

The next theorem, the main result of this section, gives a corre-
spondence between SCOs and SCO-systems of partial shifts. While we
usually suppress the covariant functor F corresponding to an SCO in
the notation, in this argument, we write it down to make the interplay
with the inductive limit construction explicit.

Theorem 2.6.

(a) Let a covariant functor F from the semi-simplicial category ∆S

to a category C be given, with the corresponding SCO in C described by
F [n], F (δk), k = 0, . . . , n and n ∈ N0. We restrict to a functor from ω
to C, also denoted by F , given by

F [0]
i1−→ F [1]

i2−→ F [2]
i3−→ · · ·

where
in := F (δn) : F [n− 1] −→ F [n] for n ∈ N.

If there exists an ω-colimit F∞, then, on F∞, we obtain an SCO-
system of partial shifts (αk)k∈N0 , where the αk for n ∈ N, k ∈ N0,
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are determined by

α
(n)
k :=

{
F (δk) : F [n− 1] −→ F [n] if k = 0, . . . , n,

F (δn) : F [n− 1] −→ F [n] if k > n.

We call this the SCO-system of partial shifts canonically associated to
the SCO.

(b) Conversely, if (αk)k∈N0 is an SCO-system of partial shifts for a
filtration (Fn)n∈N0 such that the µn : Fn → F∞ are monic, then defining
F [n] := Fn and

F (δk) := α
(n)
k : F [n− 1] −→ F [n] for k = 0, . . . , n, n ∈ N0,

where the α
(n)
k determine αk, yields an SCO and (αk)k∈N0 is canonically

associated to this SCO.

Proof. In (a), it follows that, for all i, j ∈ N0 with i < j,

α
(n+1)
j α

(n)
i = α

(n+1)
i α

(n)
j−1.

In fact, if i ≤ n and j ≤ n+ 1,

α
(n+1)
j α

(n)
i = F (δj)F (δi) = F (δi)F (δj−1) = α

(n+1)
i α

(n)
j−1,

if i > n and j > n+ 1,

α
(n+1)
j α

(n)
i = F (δn+1)F (δn) = α

(n+1)
i α

(n)
j−1,

if i ≤ n and j > n+ 1,

α
(n+1)
j α

(n)
i = F (δn+1)F (δi) = F (δi)F (δn) = α

(n+1)
i α

(n)
j−1.

If the filtration
F [0]

i1−→ F [1]
i2−→ · · ·

with
in := F (δn) = α(n)

n : F [n− 1] −→ F [n],

for n ∈ N, yields an ω-colimit F∞ with morphisms

µn : F [n] −→ F∞,

for all n ∈ N0, satisfying µn+1in+1 = µn, then

in+1α
(n)
k = α

(n+1)
n+1 α

(n)
k = α

(n+1)
k α(n)

n = α
(n+1)
k in
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and, by applying µn+1, we obtain

µnα
(n)
k = µn+1in+1α

(n)
k = µn+1α

(n+1)
k in.

From Lemma 2.1, we obtain, for all k ∈ N0, an adapted endomorphism
αk : F∞ → F∞. We verify the properties of an SCO-system of partial
shifts. First, for k ∈ N0,

αk+1µk = µk+1α
(k+1)
k+1 = µk+1ik+1 = µk,

which is property (1). Second, for all n ∈ N and i < j,

αjαiµn−1 = αjµnα
(n)
i = µn+1α

(n+1)
j α

(n)
i

= µn+1α
(n+1)
i α

(n)
j−1 = · · ·

= αiαj−1µn−1.

This implies αjαi = αiαj−1 if i < j, which is property (2). In fact, for
n ∈ N, we can define

µ′
n−1 := αjαiµn−1 = αiαj−1µn−1

and verify that

µ′
nin = αjαiµnin = αjαiµn−1 = µ′

n−1.

It follows from the universal property that there is a unique morphism
β such that µ′

n−1 = βµn−1 for all n ∈ N. Thus, β = αjαi but, by a
similar argument, β = αiαj−1 as well, which proves our claim

Starting with (b), we merely reverse the above argument to obtain,
for all 0 ≤ i < j ≤ n+ 1, n ∈ N,

µn+1α
(n+1)
j α

(n)
i = αjαiµn−1 = αiαj−1µn−1 = µn+1α

(n+1)
i α

(n)
j−1.

By assumption, the µn are monic, and we obtain

α
(n+1)
j α

(n)
i = α

(n+1)
i α

(n)
j−1,

which gives the cosimplicial identities for

F (δk) := α
(n)
k : F [n− 1] −→ F [n], k = 0, . . . , n, n ∈ N.

Hence, if we apply the construction in (a) to this SCO, then we obtain

an SCO-system of partial shifts with the same α
(n)
k , k = 0, . . . , n, n ∈ N,

as for the original system. However, the remaining α
(n)
k with k > n,
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n ∈ N, are also the same as for the original system. In fact, from
property (1) of partial shifts, we find (for k > n, n ∈ N)

µnα
(n)
k = αkµn−1 = µn−1 = µnin,

and, since the µn are monic, this implies α
(n)
k = in. We conclude that

the original sequence (αk)k∈N0 is canonically associated to the SCO
from which it is constructed. �

Remark 2.7. Note that an SCO-system of partial shifts (αk)k∈N0

canonically associated to an SCO satisfies the stronger local property,
i.e., implying adaptedness, that the following diagram is commutative
for all n ∈ N and 0 ≤ k ≤ n:

F [n− 1]

α
(n)
k

��

in // F [n]

α
(n+1)
k

��
F [n]

in+1

// F [n+ 1]

Of course, this local property is also satisfied by any SCO-system of
partial shifts with filtration

F0
i1−→ F1

i2−→ · · · ,

where each µn : Fn → F∞ is monic. In this case, we are allowed to
switch freely between SCOs and SCO-systems of partial shifts.

In fact, the length of the proof of Theorem 2.6 should not distract
the reader from the fact that, in all of the examples in this paper,
the correspondence is nothing but a rather direct assembling of all δk

(for fixed k and between different objects) into a single morphism αk

on the inductive limit. While in homological algebra, SCOs are the
natural starting point, in probability theory, it is a common practice to
study phenomena by constructing a large universe, i.e., a probability
space common to all variables. Therefore, it may be the SCO-system
of partial shifts which first comes into view. This was indeed the case
in the theory of (noncommutative) spreadability to which we apply our
results in Section 4.
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Before developing some substantive connections with actions of the
braid group and noncommutative probability in subsequent sections,
we first give some examples by direct construction.

Example 2.8. It is worth noting that, in the category of sets, to each
system of mappings

αk : X −→ X, k ∈ N0,

satisfying αjαi = αiαj−1 for i < j, there is a canonical choice of
filtration for which (αk)k∈N0 is an SCO-system of partial shifts, as
follows.

Let X be a set and, for each k ∈ N0, let

αk : X −→ X

be a mapping. Furthermore, suppose that αjαi = αiαj−1 for i, j ∈ N0,
i < j. For each n ∈ N0, let

Xn := {x ∈ X : αn+1(x) = x}

(the fixed point set of αn+1), and let

in : Xn−1 −→ Xn

be the inclusion mapping (which is well-defined since, for x ∈ Xn−1,
we have αn+1(x) = αn+1αn(x) = αnαn(x) = x). We will assume that
X is equal to the inductive limit

X∞ :=
∪

n∈N0

Xn

(if it is not, then we simply replace X by X∞ after noting that
αn(X∞) ⊂ X∞ for all n ∈ N0). We claim that (αk)k∈N0 is an SCO-
system of partial shifts for the filtration

X0
i1−→ X1

i2−→ · · · .

First, we see that each αk is adapted by defining the mapping α
(n)
k :

Xn−1 → Xn by α
(n)
k := (αk)|Xn−1 for all n ∈ N. We see that Definition

2.4 (1) is trivially satisfied and Definition 2.4 (2) is given by assumption.

Through easy modifications of these arguments such a canonical fil-
tration based on fixed points can be obtained in many other categories,
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for example, in the categories of noncommutative probability spaces
considered in Section 4.

Example 2.9. For each n ∈ N0, let Gn be a subgroup of the general
linear group GL(n + 1, R) over a unital ring R such that in+1(Gn) ⊂
Gn+1. Here, in+1 is the canonical embedding of GL(n + 1, R) in
GL(n+ 2, R), i.e.,

in+1(g) =

(
g 0
0 1

)
for all g ∈ GL(n+1, R), where each of the two zeros denotes a column
or a row of n+1 zeros. We view Sn+1 as the group of permutations on
{0, 1, . . . , n} and let ck denote the cycle (k k+1 · · ·n). Let πn+1 be the
action of Sn+1 on GL(n + 1, R) given by conjugation by permutation
matrices, and suppose that Gn is invariant under this action, for all
n ∈ N0.

We can construct an SCO, say F , in the category of groups by
defining

F [n] := Gn

and
F (δk) : F [n− 1] −→ F [n]

by
F (δk) = πn+1(ck)in for 0 ≤ k ≤ n.

(This means inserting a kth row and column with a 1 at the intersection
and 0s elsewhere. From that, the cosimplicial identities are easy to
check.) Through this construction, we see, in particular, that

(GL(n,C))n, (U(n,C)))n,
(SU(n,C))n, (Sn)n

are semi-cosimplicial groups, and it follows from Theorem 2.6 that we
obtain SCO-systems of partial shifts on their inductive limits

GL(∞,C), U(∞,C),
SU(∞,C), S∞,

respectively.
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For the symmetric groups (Sn)n∈N, we express the structure as a
semi-cosimplicial group in a more direct way. In this case, we have

F [n] = Gn = Sn+1 for n ∈ N0.

We think of
F [0] = G0 = S1

as the trivial group while, for n ≥ 1, we have Coxeter generators
σN := (N − 1 N) or star generators

γN := (0 N), for N = 1, . . . , n

in both cases. Then, we can check that F (δ0)σN = σN+1 for all N
while, for k ≥ 1,

F (δk)(γN ) =

{
γN if N < k,

γN+1 if N ≥ k.

The formula for k ≥ 1 may be considered as an instance of Proposi-
tion 2.5 for the relabeling k 7→ k − 1.

These examples of semi-cosimplicial groups belong to a general
scheme of producing SCOs which we develop in its full generality in
the next section.

3. Semi-cosimplicial objects from actions of the braid monoid
B+
∞. The braid groups Bn were introduced by Artin [1], see [12] for

a recent overview. For n ≥ 2, Bn is presented by n − 1 generators
σ1, . . . , σn−1 satisfying the relations

σiσjσi = σjσiσj if |i− j| = 1;(B1)

σiσj = σjσi if |i− j| > 1.(B2)

The inclusions
B2 ⊂ B3 ⊂ · · · ⊂ B∞

are apparent, where B∞ denotes the inductive limit. The Artin
generator σi will be presented as a geometric braid as follows:

q q q q q q0 1 i− 1 i



SEMI-COSIMPLICIAL OBJECTS AND SPREADABILITY 1857

Our convention in drawing diagrams of braids is that reading for-
mulae from left to right corresponds to top-down compositions in the
diagram.

It turns out that, for the following arguments, we do not need
inverses of the Artin generators. Hence, we consider B+

∞, the monoid
generated by (σi)i∈N.

Suppose that B+
∞ acts on a set X; we simply write gx ∈ X for the

result of g ∈ B+
∞ acting on x ∈ X. We define for n ∈ Z, n ≥ −1,

Xn := {x ∈ X : σkx = x if k ≥ n+ 2},

which gives an increasing sequence

X−1 ⊂ X0 ⊂ X1 ⊂ · · ·

of subsets of the set X.

Theorem 3.1. (Xn)n≥−1 is an augmented semi-cosimplicial set (an
augmented SCO in the category of sets), with the coface operators δk

given by

δk : Xn−1 −→ Xn (k = 0, . . . , n, n ∈ N0)

x 7−→ σk+1 . . . σn+1 x.

Note that σn+1x = x, for x ∈ Xn−1; thus, if x ∈ Xn−1, then for
k < n, we can also write δkx = σk+1 · · ·σnx and, for k = n, we have
δnx = x. Hence,

δn : Xn−1 −→ Xn

is only the inclusion map; in particular, this applies to the augmentation

δ0 : X−1 −→ X0.

Proof. We use a double induction argument to prove

δjδi = δiδj−1 : Xn−1 −→ Xn+1

for all n ∈ N0 and i = 0, . . . , n, j = 1, . . . , n + 1 such that i < j. Fix
n ∈ N0. First, suppose that j = n+ 1. If i = n, then, for x ∈ Xn−1,

δjδix = δn+1δnx = x = δnδnx = δiδj−1x.
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If, for all x ∈ Xn−1, the equation δjδix = δiδj−1x is valid for j = n+1
and for some i with 1 ≤ i ≤ n, then,

δi−1δj−1x = σiδ
iδj−1x = σiδ

jδix = δjσiδ
ix = δjδi−1x.

We conclude by induction that, for all x ∈ Xn−1 and j = n + 1, the
equation δjδix = δiδj−1x is valid for all 0 ≤ i ≤ n.

Now, suppose that, for all x ∈ Xn−1 and some j with 2 ≤ j ≤ n+1,
we have δjδix = δiδj−1x for all 0 ≤ i < j. Then, for i < j − 1,

δj−1δix = σjδ
jδix = σjδ

iδj−1x

= σjσi+1 · · ·σj−1σjσj+1 · · ·σn+1σj · · ·σn+1x

= σi+1 · · ·σjσj−1σjσj+1 · · ·σn+1σj · · ·σn+1x

= σi+1 · · ·σj−1σjσj−1σj+1 · · ·σn+1σj · · ·σn+1x

= σi+1 · · ·σn+1σj−1σj · · ·σn+1x = δiδj−2x.

(Here, · · · always stands for σs with subscripts increasing by steps of 1,
including the case where we have the same σ to the left and to the right
of · · · .) By an induction argument for j, this proves the theorem. �

We remark that the theorem and the proof are still valid if the Xn

are replaced by any subsets X̃n ⊂ Xn such that

δk(X̃n−1) ⊂ X̃n

is always satisfied.

An alternative proof may be based on checking the following braid
equalities:

(σj+1 · · ·σn+1)(σi+1 · · ·σn+1)σn+1 = (σi+1 · · ·σn+1)(σj · · ·σn+1)

(for 0 ≤ i < j ≤ n) in B+
∞, illustrated in the following diagram, together

with σn+1 x = x for x ∈ Xn−1.

Note by looking at the diagram that the i- and j-strands are not
entangled with the other strands (which are always above them), but
they are entangled with each other.

Combining Theorem 3.1 with Theorem 2.6 provides us with an SCO-
system of partial shifts (αk)k∈N0 canonically associated to an action
of B+

∞. For an application of Proposition 2.5 to such a situation in
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i j n

=

i j n

Example 4.4, we provide the following simplified formulae for powers
of these partial shifts.

Lemma 3.2. If x ∈ Xn ⊂ X (with n ∈ N0), then, for all N ≥ 1,

(αn)
N (x) = σn+N . . . σn+1x.

Proof. From Theorem 3.1, we have

(αn)
N (x) = (σn+1 · · ·σn+N )(σn+1 · · ·σn+N−1) · · ·σn+1x

(understood to be σn+1x if N = 1). This simplifies as shown above, as
can be seen with an induction proof using the braid relations together
with x ∈ Xn. �

We are mainly interested in situations where we have a (left) B+
∞-

module V , in which case Theorem 3.1 yields (at least) an augmented
semi-cosimplicial abelian group. We give examples in a probabilistic
setting in Section 4. However, here we will give a few direct applications
of Theorem 3.1.

Example 3.3. It follows from Theorem 3.1 that the sequence (Bn)n
is a semi-cosimplicial group with the conjugation action of braids on
themselves. In this case, we choose X := B∞ and Xn := Bn+1 for all
n ∈ N0 (and we define X0 = B1 to be the trivial group). In fact, as
required in our definition of Xn, we have

Bn+1 = {x ∈ B∞ : σkxσ
−1
k = x for all k ≥ n+ 2},
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see for example, [7, Proposition 4.12] for a proof. Then, for x ∈
Xn−1 = Bn, with n ∈ N, we have

δk(x) := σk+1 · · ·σn+1xσ
−1
n+1 · · ·σ

−1
k+1.

From the braid relations, we can check that δ0(σN ) = σN+1 for all
N . If we use the so-called square roots of free generators γ1, . . . , γn as
generators for Bn+1, defined by

γN := (σ1 · · ·σN−1)σN (σ−1
N−1 · · ·σ

−1
1 )

then we have, for k ≥ 1, a direct way of describing the coface operators
by

δk(γN ) =

{
γN if N < k,

γN+1 if N ≥ k.

The formula for k ≥ 1 may be considered as an instance of Proposi-
tion 2.5 for the relabeling

k 7−→ k − 1.

Again, this can be checked by direct computation using the braid
relations. Alternatively, a detailed study of the so-called square roots
of free generators of the braid groups and of the corresponding partial
shifts may be found in [7, Section 4]. It is not accidental that this looks
very similar to our Example 2.9 with the sequence of symmetric groups
considered as a semi-cosimplicial group. In fact, it is instructive to
check that we can go from the braid groups example to the symmetric
groups example via the natural quotient map. More generally, because
the braid groups have symmetric groups as quotients, we can always
produce examples of SCOs from Theorem 3.1 by actions of symmetric
groups (interpreting them as actions of braid groups). The semi-
cosimplicial groups produced in Example 2.9 are all of this type.

Example 3.4. For another class of examples, we can consider solutions
of the Yang-Baxter equations. For illustration, we choose the most
basic setting: If Y is a set and r is a function from Y ×Y to itself, then
r is called a set-theoretic solution of the Yang-Baxter equation if, on
Y × Y × Y , it satisfies r12 r23 r12 = r23 r12 r23, where the superscript
indicates on which copies r acts. See, for example, [5] for a recent
investigation into such solutions. Clearly, this defines an action of
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B+
∞ on an infinite Cartesian product X of copies of Y , where σk is

represented by rk−1,k.

Remark 3.5. Finally, we mention here that, on B+
∞-modules, we

obtain among other things a version of the standard semi-cosimplicial
cohomology theory which is always defined for SCOs in a module
category. In fact, for all n ∈ N0, the differential

dn :=

n∑
k=0

(−1)kδk : V n−1 −→ V n

satisfies dn+1dn = 0 and gives rise to the cohomology groups

Hn := ker(dn+1)/ im(dn).

We shall perform a few direct computations for the SCOs produced
from Theorem 3.1. On V −1, we have

d0 = δ0 : x 7−→ x.

In addition,
d1 = δ0 − δ1 : V 0 −→ V 1;

hence, d1x = σ1x−x. It follows that both im(d0) and ker(d1) are equal
to the fixed point set of σ1; thus, H

0 is trivial. Further,

d2 = δ0 − δ1 + δ2 : V 1 −→ V 2;

thus,
d2x = σ1σ2x− σ2x+ x

for x ∈ V 1, and we find

H1 = {x ∈ V 1 : (σ2 − σ1σ2)x = x}/{x ∈ V 1 : x = σ1y− y for y ∈ V 0}.

We are unaware of any interpretation of these cohomology groups;
however, it may be interesting to investigate when these groups are
nontrivial and if they can play a role in the study of braid group
representations.

We remark that other connections between the simplicial category
and braid groups are investigated in the literature, see for example,
[20]. However, it is unclear at the moment how these investigations
are related to our results above.
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4. Semi-cosimplicial objects and spreadability in noncom-
mutative probability. In this section, we develop our theory within
various categories of noncommutative probability spaces. We begin
with a very general situation and then, by specializing, make contact
with settings that have a genuine probabilistic interpretation, as dis-
cussed in Section 1. We refer to [16] for further motivation to study
these categories.

First, consider a category with objects (A, φ), where A is a unital
associative algebra over C and

φ : A −→ C

is a linear functional with φ(1l) = 1, i.e., unital, and with morphisms

α : (A, φ) −→ (B, ψ),

where α is an algebra homomorphism satisfying α(1l) = 1l, i.e., unital,
and ψ ◦α = φ. We call this the category of noncommutative probability
spaces (as in [16]). We mention here that there is no particular
difficulty working out the following theory in a non-unital setting, but,
for definiteness, we will concentrate on this standard version.

Let (A, φ) be a noncommutative probability space. If B is a unital
associative algebra and

ι : B −→ A

a unital algebra homomorphism, then we may think of it as a morphism

ι : (B, φB) −→ (A, φ)

with φB := φ ◦ ι. This is called a (noncommutative) random variable.
A sequence (ιN )∞N=0 of such random variables is called a (noncommu-
tative) random process, and any expression of the form

φ(ιN1(b1), . . . , ιNk
(bk)), bi ∈ B,

(repetitions allowed), is called a moment of the process. If the variables
do not commute, we cannot speak of a joint distribution in the classical
sense; however, there is the following replacement for it.

Let Af := ∗∞N=0B be the (unital) free product of infinitely many
copies of B. See for example, [4] for further uses of this construction
in noncommutative probability. Let

λN : B −→ Af
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denote the canonical unital homomorphisms arising from this construc-
tion. The universal property ensures that there exists a unique unital
homomorphism

π : Af −→ A

such that π ◦ λN = ιN for all N ∈ N0. The unital linear functional φf

on Af defined by φf := φ ◦ π is called the distribution of the random
process. Another way to think of a distribution is as a collection of all
moments.

Remark 4.1. In the literature, it is often a sequence of elements
(xN )N∈N0 in a noncommutative probability space which is called a
noncommutative random process. This is merely a special case of our
setting where B has a single generator and its image under ιN is called
xN . The more flexible setting chosen here allows us to include multi-
variable processes without much additional effort.

Processes with the same distribution are called stochastically equiv-
alent. Therefore, if we are satisfied with stochastically equivalent ver-
sions, it is possible to restrict our attention to free products: the pro-
cesses (ιn) and (λn) given above have the same distribution if we endow
Af with the functional φf .

Definition 4.2. A sequence (ιN )N∈N0 of unital homomorphisms from
B to the noncommutative probability space (A, φ) is called spreadable
if its distribution is unchanged when passing to a subsequence, i.e., if,
for all N ∈ N0, ιN is replaced by ιi(N) such that N1 < N2 implies
i(N1) < i(N2).

Spreadability is a distributional symmetry (or invariance principle).
It only depends on the distribution, and a sequence (ιN )N∈N0 is spread-
able if and only if the corresponding canonical sequence (λN )N∈N0

is spreadable (where Af is equipped with the functional φf defined
above). As indicated above, an equivalent description may be given
in terms of moments where the definition of spreadability reduces to a
system of equalities for numbers.

This leads us to the main theorem. Informally stated, any appear-
ance of SCOs in the category of noncommutative probability spaces
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always induces spreadability and, conversely, for any spreadable se-
quence, we may always find an SCO which reproduces its distribution.
Hence, SCOs can be interpreted as the fundamental algebraic structure
underlying spreadability.

Theorem 4.3.

(1) Let an SCO be given in the category of noncommutative proba-
bility spaces with filtration (An, φn)n∈N0 and inductive limit (A∞, φ∞).
Let

ι0 := µ0 : A0 −→ A∞

and

ιN := (α0)
N ι0 for N ∈ N0.

Then, (ιN )N∈N0 is spreadable. (Here, α0 is what we call the full shift
among the partial shifts associated to the SCO, see Section 2.)

(2) Let (ιN )N∈N0 be a sequence of unital homomorphisms from the
unital algebra B to the noncommutative probability space (A, φ), and
let (Af , φf ) be the corresponding (unital) free product equipped with
the distribution (as described above, with λN , N ∈ N0, denoting the
canonical embeddings, etc.). Consider the following statements (a), (b)
and (c):

(a) (ιN )N∈N0 is spreadable.

(b) Let Af
n be generated by λ0(B), . . . , λn(B) (as a unital algebra),

for all n ∈ N0. The sequence (Af
n, φ

f
n)n∈N0 is an SCO in the category

of noncommutative probability spaces with coface operators given by

δk : (Af
n−1, φ

f
n−1) −→ (Af

n, φ
f
n),

for k = 0, . . . , n (with φf
n the restriction of φf to Af

n), determined (for
b ∈ B) by

λN (b) 7−→

{
λN (b) if N < k,

λN+1(b) if N ≥ k.

(c) Let An be generated by ι0(B), . . . , ιn(B) (as a unital algebra), for
all n ∈ N0. The sequence (An, φn)n∈N0 is an SCO in the category of
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noncommutative probability spaces with coface operators given by

δk : (An−1, φn−1) −→ (An, φn),

for k = 0, . . . , n (with φn the restriction of φ to An), determined (for
b ∈ B) by

ιN (b) 7−→

{
ιN (b) if N < k,

ιN+1(b) if N ≥ k.

Then, (a) ⇔ (b) ⇐ (c).

Proof. We begin by proving (1). Note that, in the category of
noncommutative probability spaces, we can form inductive limits, and
hence, we can go from SCOs to SCO-systems of partial shifts (as
established in Section 2) whenever convenient. (The same applies to
the ∗-setting studied later.)

Let φ(q) be a moment of a subsequence (ιi(N))N∈N0 . We define p
to be the finite product obtained by replacing each factor ιi(N) in q by
ιN . Suppose that the subscripts N appearing in this way are

N1 < N2 < · · · < NR.

Let M1 := N1 and, for 2 ≤ r ≤ R, define

Mr := Nr + [i(Nr−1)−Nr−1].

Then, Nr ≤ Mr ≤ i(Nr) and, using the properties of partial shifts
stated in Proposition 2.5, we can verify that

α
i(NR)−MR

MR
· · ·αi(N1)−M1

M1
(p) = q.

In fact, successively applying the partial shifts results in replacement
of the factors of p with the corresponding factors in q. Since the partial
shifts preserve the functional φ, the proof is complete.

Now we prove the equivalence of (2) (a) and (2) (b). The formula
in (b) always determines an algebra homomorphism δk between the

free products Af
n−1 and Af

n, for k = 0, . . . , n and n ∈ N. It is easily

verified that these δk satisfy the cosimplicial identities. (Therefore, this
is always an SCO in the category of algebras.)
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If (ιN )N∈N0 is spreadable, then φf
n ◦ δk = φf

n−1 since we may always
consider the subsequence which misses the kth position. Hence, (a)
implies (b).

Conversely, given (b), the morphism δk (for 0 ≤ k ≤ n − 1) maps
any polynomial in

λ0(b0), . . . , λn−1(bn−1), bi ∈ B,

in Af
n−1 into the corresponding polynomial in

λ0(b0), . . . , λk−1(bk−1), λk+1(bk), . . . , λn(bn−1)

in Af
n. (Note that

δn : Af
n−1 −→ Af

n

is merely the embedding of Af
n−1 into Af

n. Compare with our construc-
tion of the inductive limit from an SCO in Section 2.) If

i : N0 −→ N0

is any strictly increasing function, then, by an induction argument,
we can always find a composition of coface operators which sends a
polynomial p in

λN1(b1), . . . , λNR
(bR)

into the corresponding polynomial q in

λi(N1)(b1), . . . , λi(NR)(bR).

(We have seen an explicit formula for this, using partial shifts, in the
proof of (1).) Hence, (b) implies (a).

Finally, we find that the implication from (2) (c) to 2 (a) is, in
fact, a special case of (1). Here, we identify each An with its image
in the inductive limit and omit each morphism µn, which is merely an
embedding of An into A∞ ⊂ A. �

We may now use our construction of SCOs from representations of
braid monoids in Section 3 to produce many examples of spreadable
sequences. This includes exchangeability which comes from represen-
tations of the symmetric groups. As an example, reconsider the tensor
product presented in Section 1. The general case of exchangeability
is characterized from this point of view in [7, Theorem 1.9]. We can
also begin with the semi-cosimplicial groups constructed in Sections 2
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and 3 and obtain SCOs in the category of noncommutative probability
spaces based on the corresponding group algebras. For B∞, the group
von Neumann algebra is studied from this point of view in [7, Section
5]. A study of other groups is postponed to future work.

Example 4.4. Instead, we illustrate our theory here with an interest-
ing example of spreadable sequences from the theory of subfactors in
von Neumann algebras. For this, we follow [9], in particular subsec-
tion 4.4, where more details may be found. Note that, to get a better fit
with our previous notation, we use a different numbering of the tower
from that used in [9].

Let N ⊂ M be an inclusion of finite factors with finite Jones index
β = [M : N ]. Then, with M−1 := N , M0 := M, Jones’ basic
construction yields a tower

M−1 ⊂ M0 ⊂ M1 ⊂ · · · ,

and its weak closure with respect to the Markov trace tr yields the finite
factor M∞. (In order to interpret the finite factor M∞ as an inductive
limit, we need a category of von Neumann algebras and von Neumann
algebraic noncommutative probability spaces, but, for the following
arguments, we can also stay in the category of unital associative
algebras and linear functionals introduced above where the inductive
limit is merely the union of all Mk.) The algebra M∞ is generated (as
a von Neumann algebra) by M together with a sequence of orthogonal
projections (en)n∈N, called the Temperley-Lieb projections, satisfying
en ∈ Mn and

enen±1en = β−1en, enem = emen if |n−m| ≥ 2

(for all n,m). Then, with β = 2 + q + q−1, and defining

gn := qen − (1l− en),

it turns out that the gn satisfy the braid relations. Therefore, this
determines a representation

B∞ ∋ σ 7−→ g ∈ M∞

by invertible elements g ∈ M∞ which, in particular, maps the Artin
generator σn to gn, for all n. Hence, we can define an action of B∞ on
M∞ by σx := gxg−1 for σ ∈ B∞ and x ∈ M∞. Clearly, the Markov
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trace is invariant for this action (since it is a trace). Further, note
that M = M0 commutes with en, and hence, with gn for n ≥ 2. From
Theorem 3.1 (and Theorem 2.6) we obtain an SCO (and an SCO-system
of partial shifts), and hence, from Theorem 4.3 we obtain spreadable
sequences. Explicitly, with Lemma 3.2, we conclude that the sequence
(ιn)n∈N0 of noncommutative random variables

ιn : M −→ M∞

given by ι0 := id and, for n ≥ 1,

ιn := Ad(gn · · · g1)

is spreadable. In particular, for any x ∈ M, the sequence (xN )N∈N0

given by

x0 := x, x1 := g1xg
−1
1 , . . . , xN := gN · · · g1xg−1

1 · · · g−1
N , . . .

is spreadable, always with respect to the Markov trace.

With the following modification, we can find further spreadable
sequences. For any m ∈ N0, consider the m-shifted action of B∞ on
M∞, determined by

σn 7−→ gn+m, for all n ∈ N.

It follows that the sequence (ιn)n∈N0 of noncommutative random vari-
ables

ιn : Mm −→ M∞,

given by ι0 := id and, for n ≥ 1,

ιn := Ad(gm+n · · · gm+1)

is spreadable. In particular for any x ∈ Mm, the sequence (xN )N∈N0 ,
given by

x0 := x, x1 := gm+1xg
−1
m+1, . . . ,

xN := gm+N · · · gm+1xg
−1
m+1 · · · g

−1
m+N , . . .

is spreadable, with respect to the Markov trace, and, for all m ∈ N, we
find a spreadable sequence of projections (em,N )N∈N0 , given by

em,0 := em, em,1 := gm+1emg
−1
m+1, . . . ,

em,N := gm+N · · · gm+1emg
−1
m+1 · · · g

−1
m+N , . . . .
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Note that, in general, the braid group representations are not unitary,
and hence, the coface operators and partial shifts in these arguments are
algebra homomorphisms, but not necessarily ∗-homomorphisms. This
implies that the projections em,N may be non-orthogonal projections.
We comment further on this at the end of the section.

Now, in the final part of this paper, we turn to ∗-algebras and to the
probabilistic setting from where the notion of spreadability originally
comes. Again, this general setting can also be found in [16]. If, in a
noncommutative probability space (A, φ), A is a (unital) ∗-algebra and
φ is a unital positive linear functional (i.e., a state, which is positive
in the sense that φ(a∗a) ≥ 0 for all a ∈ A) then we call (A, φ)
a noncommutative ∗-probability space. We obtain the corresponding
category by requiring morphisms

α : (A, φ) −→ (B, ψ)

to be unital ∗-homomorphisms such that ψ◦α = φ. There is no need to
repeat the definitions of random variables, moments, distributions and
spreadability since they remain the same; however, we now refer to the
new category of noncommutative ∗-probability spaces. In particular, to
define ∗-spreadability we need ∗-homomorphisms in Definition 4.2. In
practice, this can make a big difference. For example, in the situation
of a random process specified by a sequence (xN )N∈N0 of elements in a
noncommutative probability space, see Remark 4.1, if we work in the
category of noncommutative ∗-probability spaces, we must take into
account not only the elements xN themselves but also their adjoints
x∗N . In order to make the difference clear, we talk about ∗-moments, ∗-
distributions and ∗-spreadability but the reader should be aware that,
in the literature, exclusively working in this setting, the latter is usually
merely called spreadability.

It may be immediately verified that we can transfer our previous
arguments to the category of noncommutative ∗-probability spaces and,
in this way, successfully deal with ∗-spreadability. For convenience,
we repeat Theorem 4.3 explicitly in the ∗-setting and add a useful
simplification which is available for faithful states. Recall that a
positive functional φ is called faithful if φ(a∗a) = 0 for a ∈ A implies
a = 0.
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Theorem 4.5.

(1) Let an SCO be given in the category of noncommutative ∗-
probability spaces with filtration (An, φn)n∈N0 and inductive limit (A∞,
φ∞). Let

ι0 := µ0 : A0 −→ A∞

and
ιN := (α0)

N ι0 for N ∈ N0.

Then, (ιN )N∈N0 is ∗-spreadable. (Here α0 is what we call the full shift
among the partial shifts associated to the SCO.)

(2) Let (ιN )N∈N0 be a sequence of unital ∗-homomorphisms from the
unital ∗-algebra B to the noncommutative ∗-probability space (A, φ),
and let (Af , φf ) be the corresponding (unital) free product equipped
with the ∗-distribution (with λN , N ∈ N0, denoting the canonical
embeddings, etc.). Consider the following statements (a), (b), (c):

(a) (ιN )N∈N0 is ∗-spreadable.
(b) Let Af

n be generated by λ0(B), . . . , λn(B) (as a unital ∗-algebra),
for all n ∈ N0. The sequence (Af

n, φ
f
n)n∈N0 is an SCO in the category

of noncommutative ∗-probability spaces with coface operators given by

δk : (Af
n−1, φ

f
n−1) −→ (Af

n, φ
f
n),

for k = 0, . . . , n, with φf
n the restriction of φf to Af

n, determined (for
b ∈ B) by

λN (b) 7−→

{
λN (b) if N < k,

λN+1(b) if N ≥ k.

(c) Let An be generated by ι0(B), . . . , ιn(B) (as a unital ∗-algebra),
for all n ∈ N0. The sequence (An, φn)n∈N0 is an SCO in the category
of noncommutative ∗-probability spaces with coface operators given by

δk : (An−1, φn−1) −→ (An, φn),

for k = 0, . . . , n, with φn the restriction of φ to An, determined (for
b ∈ B) by

ιN (b) 7−→

{
ιN (b) if N < k,

ιN+1(b) if N ≥ k.

Then (a) ⇔ (b) ⇐ (c). Moreover, if φ is faithful, then (a) =⇒ (c).
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Proof. All except the final statement regarding the faithful case can
be proved by checking that the proof of Theorem 4.3 can be adapted
to the category of noncommutative ∗-probability spaces. Now, assume
that φ is faithful and that (ιN )N∈N0

is ∗-spreadable. If we try to define
coface operators δk by the formulae in (c), we note that these formulae
guarantee the cosimplicial identities on the generators, and hence, on
An−1 if we can extend these formulae to morphisms, necessarily in a
unique way, by the ∗-homomorphism property. Thus, we only need
check that extending the formulae given in (c) for δk as morphisms
is well defined. Indeed, if p is any noncommutative polynomial in
ι0(b0), . . . , ιn−1(bn−1), bi ∈ B, then, by ∗-spreadability, we find that
φ(δkp) = φ(p) and

φ(p∗p) = φ((δkp∗)(δkp));

thus, p = 0 implies δkp = 0 (since φ is faithful). This shows that
δk is well defined as a morphism in the category of noncommutative
∗-probability spaces. �

Note that, all that is needed for the converse direction (a) ⇒ (c) is
the well-definedness of the morphisms δk. The assumption that φ is
faithful is merely a convenient sufficient condition to enforce that.

We conclude by revisiting the spreadable sequences in towers of
von Neumann algebras studied in Example 4.4. This example shows
that some care must be taken in distinguishing spreadability and ∗-
spreadability. As noted in [9, Example 4.2.10], when the index β is
mall, i.e., β ≤ 4, the representations of B∞ are unitary. This implies
that the corresponding SCO-systems of partial shifts are given by ∗-
endomorphisms, and hence, we are in the setting of Theorem 4.5. We
conclude that, when the index is small, these sequences are actually
∗-spreadable. Of course, ∗-spreadability fits better into the category
of von Neumann algebras as specific ∗-algebras, and the whole theory
of ∗-braidability developed in [7] is now applicable in this situation.
It is less clear how to make good use of spreadability when the index
β is big, i.e., β > 4, when we cannot expect ∗-spreadability and the
de Finetti-type results of [7, 13] (also briefly discussed in Section 1)
to be available.

The reader may refer back to the discussion in Section 1 for a more
comprehensive view of the importance of ∗-spreadability in (noncom-
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mutative) probability theory. Many additional examples may be found
in [7].
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