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MULTIPLE SOLUTIONS FOR A KIRCHHOFF-TYPE
PROBLEM INVOLVING NONLOCAL FRACTIONAL

p-LAPLACIAN AND CONCAVE-CONVEX
NONLINEARITIES

CHANG-MU CHU, JIAO-JIAO SUN AND ZHI-PENG CAI

ABSTRACT. This paper examines a class of Kirchhoff
nonlocal operators involving concave-convex nonlinearities
and sign-changing weight functions. With the aid of the
Nehari manifold, the existence of multiple nontrivial nonneg-
ative solutions is obtained.

1. Introduction. In this paper, we study the multiplicity of non-
trivial nonnegative solutions to the Dirichlet boundary value problem
by the nonlocal operator:

(1.1)


−M

(∫
R2N

|u(x)− u(y)|pdx dy
)
Lp
Ku

= λf(x)|u|q−2u+ g(x)|u|r−2u in Ω,

u = 0 in RN \ Ω,

where Ω ⊂ RN is an open bounded set with Lipschitz boundary ∂Ω,
M(t) = a+btm and the parameters a, b, λ > 0, 0 < s < 1 < q < p <∞,
N > ps,

0 ≤ m <
ps

N − ps
, (m+ 1)p < r < p∗s =

Np

N − ps
.

The weight functions f(x), g(x) ∈ C(Ω) satisfy f+ = max{f, 0} ̸= 0
and g+ = max{g, 0} ̸= 0. The nonlocal operator Lp

K is defined as:

Lp
Ku(x) = 2 lim

ε→0+

∫
RN\Bε(x)

|u(x)−u(y)|p−2(u(x)−u(y))K(x−y) dy,

2010 AMS Mathematics subject classification. Primary 35A15, 35J60, 35S15.
Keywords and phrases. Kirchhoff-type problem, fractional p-Laplacian, concave-

convex nonlinearities, sign-changing weight functions, Nehari manifold.
This research was supported by the National Natural Science Foundation of

China, grant No. 11661021 and by the Innovation Group Major Program of Guizhou
Province, grant No. KY[2016]029. The first author is the corresponding author.

Received by the editors on March 10, 2016.
DOI:10.1216/RMJ-2017-47-6-1803 Copyright c⃝2017 Rocky Mountain Mathematics Consortium

1803



1804 CHANG-MU CHU, JIAO-JIAO SUN AND ZHI-PENG CAI

x ∈ RN , and K : RN \ {0} → (0,+∞) is a measurable function with
the property:

(1.2)


γK∈L1(RN ) where γ(x)=min{|x|p, 1};
there exists a k0 > 0 such that

K(x) ≥ k0|x|−(N+ps) for any x ∈ RN \ {0};
K(x) = K(−x) for any x ∈ RN \ {0}.

A typical example for K is given by the singular kernel K(x) =
|x|−(N+ps). In this case, problem (1.1) becomes

(1.3)


M

(∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy

)
(−∆)spu

= λf(x)|u|q−2u+ g(x)|u|r−2u in Ω,

u = 0 in RN \ Ω,

where (−∆)sp is the fractional p-Laplace operator which, up to normal-
ization factors, may be defined as

(−∆)spu(x) = −2 lim
ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy.

Setting m = 0 and a+ b = 1, problems (1.1) and (1.3) reduce to

(1.4)

{
−Lp

Ku = λf(x)|u|q−2u+ g(x)|u|r−2u in Ω,

u = 0 in RN \ Ω,

and

(1.5)

{
(−∆)spu = λf(x)|u|q−2u+ g(x)|u|r−2u in Ω,

u = 0 in RN \ Ω.

Recently, much attention has been given to the study of Kirchhoff-
type problems and nonlocal elliptic operators. Kirchhoff-type equations
arise in the description of nonlinear vibrations of an elastic string,
see [16]. Solvability of the Kirchhoff-type problem with the Dirich-
let boundary using variational methods is studied in [1, 3, 7, 17],
and the references therein. Fractional and nonlocal operators arise in
many different contexts, such as the thin obstacle problem, finance,
optimization, quasi-geostrophic flow, etc. There is much literature on
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fractional and nonlocal operators; the interested reader is referred to
[2, 4, 8, 9, 13]–[15, 18, 20, 22]–[26, 28], and the references therein.
However, there is little research concerning the existence of solutions
for Kirchhoff-type problems in the fractional setting. A detailed dis-
cussion regarding the physical meaning underlying fractional Kirchhoff
models and their applications was first provided in [12, Appendix A].
More precisely, Fiscella and Valdinoci proposed a stationary Kirchhoff
variational model, which takes into account the nonlocal aspects of ten-
sion arising from nonlocal measurements of the fractional length of the
string. Some results of Kirchhoff-type problems involving nonlocal op-
erators may also be found in [19, 21, 27], and the references therein.
In these papers, multiple results with concave-convex nonlinearities and
sign changing weight functions were obtained using the Nehari mani-
fold and fibering map analysis. However, as far as is known, there has
been no research on Kirchhoff-type problems and nonlocal operators
with concave-convex nonlinearities and sign changing weight functions.

Here, we use the variational approach on the Nehari manifold to
solve problem (1.1). Motivated by [7, 13], the aim of this paper is to
investigate multiple solutions of problem (1.1) and extend the results
of [8, 13].

Problem (1.1) has variational structure, and solutions may be con-
structed as critical points of an associated energy functional on some
appropriate space. In the norm ∥u∥Hs(RN ), the interaction between Ω

and RN \ Ω provides a positive contribution, which should be consid-
ered when encoding the boundary condition u = 0 in RN \ Ω in the
weak formulation.

Now, we introduce the linear space

X =
{
u | u : RN −→ R is measurable, u|Ω ∈ Lp(Ω)

and (u(x)− u(y)) p
√
K(x− y) ∈ Lp(Q)

}
,

where Q = R2N \ (CΩ × CΩ) with CΩ = RN \ Ω. The space X is
endowed with the norm, defined as

∥u∥X = ∥u∥Lp(Ω) +

(∫
Q

|u(x)− u(y)|pK(x− y) dx dy

)1/p

.
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Moreover, we shall work in the closed linear subspace

X0 = {u ∈ X : u = 0 almost everywhere in RN \ Ω},

with the norm

∥u∥X0 =

(∫
Q

|u(x)− u(y)|pK(x− y) dx dy

)1/p

.

Let
K = RN \ {0} −→ (0,+∞)

satisfy assumption (1.2). We have that C∞
0 (Ω) ⊂ X0, and (X0, ∥ · ∥X0)

is a reflexive Banach space, see [10, 27]. Moreover,

X ⊂W s,p(Ω)

and

X0 ⊂W s,p(RN ),

where W s,p(Ω) is the usual fractional Sobolev space endowed with the
norm

∥u∥W s,p(Ω) = ∥u∥Lp(Ω) +

( ∫
Ω×Ω

|u(x)− u(y)|p

|x− y|n+ps
dx dy

)1/p

.

In addition, the embedding

X0 ↩→ Lp∗
s (Ω)

is continuous, and there exists a positive constant C0 = C0(N, p, s)
such that, for any v ∈ X0, 1 < k < p∗s,

(1.6) ∥v∥Lk(Ω) ≤ C0∥v∥X0 .

Now, the definition of weak solutions for problem (1.1) is given.
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Definition 1.1. We say that u ∈ X0 is a weak solution of problem
(1.1) if u satisfies

M(∥u∥pX0
)

∫
Q

|u(x)−u(y)|p−2(u(x)−u(y))(φ(x)−φ(y))K(x−y) dx dy

= λ

∫
Ω

f(x)|u|q−2uφdx+

∫
Ω

g(x)|u|r−2uφdx,

for any φ ∈ X0.

The main results of this paper are as follows.

Theorem 1.2. Let

K : RN \ {0} −→ (0,+∞)

be a function satisfying (1.2). Suppose thatM(t) = a+btm, f(x), g(x) ∈
C(Ω) satisfy

f+ = max{f, 0} ̸= 0 and g+ = max{g, 0} ≠ 0.

If 0 < s < 1 < q < p < ∞, N > ps, a > 0, b > 0, 0 ≤ m <
ps/(N − ps), (m + 1)p < r < p∗s, then there exists a λ∗ > 0 such that
problem (1.1) for any λ ∈ (0, λ∗) has at least two nontrivial nonnegative
solutions.

Remark 1.3. The multiple solutions of problem (1.4) with p = 2,
f(x) = g(x) ≡ 1, are obtained in [8], and the multiple solutions of
problem (1.5) are obtained in [13]. Obviously, the results there are the
special case of our Theorem 1.2.

This paper is organized as follows. In Section 2, we give some nota-
tion and preliminaries regarding the Nehari manifold. In Section 3, we
give the proof of Theorem 1.2.

2. Notation and preliminaries. The energy functional

Jλ : X0 −→ R

associated to problem (1.1) is defined as

Jλ(u) =
1

p
M̂(∥u∥pX0

)− λ

q

∫
Ω

f(x)|u|qdx− 1

r

∫
Ω

g(x)|u|rdx,
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where

M̂(t) =

∫ t

0

M(τ) dτ = at+
b

m+ 1
tm+1.

It is well known that Jλ is of class C1 in X0, and the solutions of
problem (1.1) are critical points of the energy functional Jλ in X0. In
fact,

⟨J ′
λ(u), φ⟩ =M(∥u∥pX0

)

∫
Q

|u(x)− u(y)|p−2(u(x)− u(y))

× (φ(x)− φ(y))K(x− y) dx dy

− λ

∫
Ω

f(x)|u|q−2uφdx−
∫
Ω

g(x)|u|r−2uφdx.

Since r > (m+1)p, it is easy to see that Jλ is unbounded from below on
X0. In order to obtain the existence results, we introduce the Nehari
manifold

Nλ = {u ∈ X0 \ {0} : ⟨J ′
λ(u), u⟩ = 0},

where ⟨ , ⟩ denotes the duality between X0 and its dual space. Thus,
u ∈ Nλ if and only if

(2.1) M(∥u∥pX0
)∥u∥pX0

− λ

∫
Ω

f(x)|u|qdx−
∫
Ω

g(x)|u|rdx = 0.

It is clear that all nonzero solutions of problem (1.1) must lie on Nλ,
and Nλ is a much smaller set than X0. Thus, it is easier to study Jλ
on Nλ. The Nehari manifold Nλ is closely linked to the behavior of
functions of the form

ψu : t −→ Jλ(tu) for t > 0.

Such maps are called fiber maps, introduced by Drabek and Pohozaev
in [11] and discussed by Brown and Zhang in [6]. For u ∈ X0, we have

ψu(t) =
1

p
M̂(tp∥u∥pX0

)− λtq

q

∫
Ω

f(x)|u|qdx− tr

r

∫
Ω

g(x)|u|rdx,

ψ′
u(t)= t

p−1M(tp∥u∥pX0
)∥u∥pX0

−λtq−1

∫
Ω

f(x)|u|qdx−tr−1

∫
Ω

g(x)|u|rdx,

ψ′′
u(t) = (p− 1)tp−2M(tp∥u∥pX0

)∥u∥pX0
+ pt2p−2M ′(tp∥u∥pX0

)∥u∥2pX0

− λ(q − 1)tq−2

∫
Ω

f(x)|u|qdx− (r − 1)tr−2

∫
Ω

g(x)|u|rdx.
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Clearly,

tψ′
u(t) =M(tp∥u∥pX0

)∥tu∥pX0
− λ

∫
Ω

f(x)|tu|qdx−
∫
Ω

g(x)|tu|rdx,

and thus, for u ∈ X0 and t > 0, ψ′
u(t) = 0 if and only if tu ∈ Nλ. In

particular, ψ′
u(1) = 0 if and only if u ∈ Nλ. Therefore, it is natural to

split Nλ into three parts corresponding to local minima, local maxima
and points of inflection. For this, we set

N+
λ = {u ∈ Nλ : ψ′′

u(1) > 0},
N 0

λ = {u ∈ Nλ : ψ′′
u(1) = 0},

N−
λ = {u ∈ Nλ : ψ′′

u(1) < 0}.

Thus, for each u ∈ Nλ, we have

ψ′′
u(1) = pM ′(∥u∥pX0

)∥u∥2pX0
(2.2)

+ (p− q)M(∥u∥pX0
)∥u∥pX0

− (r − q)

∫
Ω

g(x)|u|rdx,

or

ψ′′
u(1) = pM ′(∥u∥pX0

)∥u∥2pX0
(2.3)

− (r − p)M(∥u∥pX0
)∥u∥pX0

+ λ(r − q)

∫
Ω

f(x)|u|qdx.

Define

ϕλ(u) = ⟨J ′
λ(u), u⟩ =M(∥u∥pX0

)∥u∥pX0
(2.4)

− λ

∫
Ω

f(x)|u|qdx−
∫
Ω

g(x)|u|rdx.

Then, for u ∈ Nλ,

⟨ϕ′λ(u), u⟩ = (p− 1)M(∥u∥pX0
)∥u∥pX0

+ pM ′(∥u∥pX0
)∥u∥2pX0

(2.5)

− (q − 1)λ

∫
Ω

f(x)|u|qdx− (r − 1)

∫
Ω

g(x)|u|rdx

= ψ′′
u(1).

Similar to the argument of [6, Theorem 2.3], we conclude the
following result.
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Lemma 2.1. Suppose that u0 is a local minimizer for Jλ on Nλ and
u0 /∈ N 0

λ . Then, J ′
λ(u0) = 0 in X∗

0 .

Proof. Since u0 is a local minimizer on Nλ to Jλ, by the theory of
Lagrange multipliers and (2.4), there exists a σ ∈ R such that

J ′
λ(u0) = σϕ′λ(u0).

Thus,
⟨J ′

λ(u0), u0⟩ = σ⟨ϕ′λ(u0), u0⟩ = σψ′′
u0
(1).

Since u0 /∈ N 0
λ , we have ψ′′

u0
(1) ̸= 0. Hence, σ = 0, that is, J ′

λ(u0)
= 0. �

Lemma 2.2. Jλ is coercive and bounded from below on Nλ.

Proof. For u ∈ Nλ, by (1.6) and (2.1),

Jλ(u) =
1

p
M̂(∥u∥pX0

)− λ

q

∫
Ω

f(x)|u|qdx− 1

r

∫
Ω

g(x)|u|rdx

=
1

p
M̂(∥u∥pX0

)− 1

r
M(∥u∥pX0

)∥u∥pX0
− (r − q)λ

rq

∫
Ω

f(x)|u|qdx

≥ (r − p)a

pr
∥u∥pX0

+
(r − (m+ 1)p)b

(m+ 1)pr
∥u∥(m+1)p

X0

− (r − q)λ

rq
∥f+∥∞Cq

0∥u∥
q
X0
.

Since 0 < q < 1 < p, (m+ 1)p < r < p∗s, we obtain that Jλ is coercive
and bounded from below on Nλ. �

Lemma 2.3. There exists a λ1 > 0 such that N 0
λ = ∅ for any λ ∈

(0, λ1).

Proof. We argue by contradiction. Assume that N 0
λ ̸= ∅ for any

λ > 0. Then, for u ∈ N 0
λ , we have ⟨J ′

λ(u), u⟩ = 0 and ψ′′
u(1) = 0. In

addition, from (2.2) and (2.3),

(p− q)M(∥u∥pX0
)∥u∥pX0

+ pM ′(∥u∥pX0
)∥u∥2pX0

= (r − q)

∫
Ω

g(x)|u|rdx,
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and

(r − p)M(∥u∥pX0
)∥u∥pX0

− pM ′(∥u∥pX0
)∥u∥2pX0

= λ(r − q)

∫
Ω

f(x)|u|qdx.

From (1.6),

((m+ 1)p− q)b∥u∥(m+1)p
X0

≤ Cr
0(r − q)∥g+∥∞∥u∥rX0

,

and
(r − (m+ 1)p)b∥u∥(m+1)p

X0
≤ Cq

0(r − q)λ∥f+∥∞∥u∥qX0
.

This yields that(
((m+1)p−q)b
Cr

0(r−q)∥g+∥∞

)1/(r−(m+1)p)

≤∥u∥X0 ≤
(
(r−q)∥f+∥∞Cq

0λ

(r−(m+ 1)p)b

)1/((m+1)p−q)

.

This is impossible if λ is sufficiently small. Thus, we obtain that a
λ1 > 0 exists such that N 0

λ = ∅ for any λ ∈ (0, λ1). �

By Lemma 2.3, for λ ∈ (0, λ1), we write Nλ = N+
λ ∪N−

λ and define

a+λ = inf
u∈N+

λ

Jλ(u), a−λ = inf
u∈N−

λ

Jλ(u).

Let

λ2 =
a(r − p)

(r − q)Cq
0∥f+∥∞

(
a(p− q)

(r − q)Cr
0∥g+∥∞

)(p−q)/(r−p)

.

Then, we have following results.

Lemma 2.4. Suppose that 0 < λ < λ2. Then, for each u ∈ X0 with∫
Ω

g(x)|u|rdx > 0,

there exists a tb,max > 0 such that,

(i) if ∫
Ω

f(x) dx ≤ 0,

then there is a unique t− > tb,max such that t−u ∈ N−
λ and

Jλ(t
−u) = sup

t≥0
Jλ(tu);
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(ii) if ∫
Ω

f(x) dx > 0,

then there are unique t+ and t− with 0 < t+ < tb,max < t− such that
t±u ∈ N±

λ and

Jλ(t
+u) = inf

0≤t≤tb,max

Jλ(tu), Jλ(t
−u) = sup

t≥tb,max

Jλ(tu).

Proof. Fix u ∈ X0 with∫
Ω

g(x)|u|rdx > 0.

Let

hb(t) = atp−q∥u∥pX0
+ bt(m+1)p−q∥u∥(m+1)p

X0
− tr−q

∫
Ω

g(x)|u|rdx,

for a, t ≥ 0. Clearly, tu ∈ Nλ if and only if

hb(t) = λ

∫
Ω

f(x)|u|qdx.

Since r > (m+ 1)p and ∫
Ω

g(x)|u|rdx > 0,

we have hb(0) = 0,

h(t) −→ −∞ as t→ ∞.

Moreover, there is a unique tb,max > 0 such that hb(t) achieves its
maximum at tb,max, increasing for t ∈ [0, tb,max) and decreasing for
t ∈ (tb,max,+∞). In addition,

t0,max =

(
a(p− q)∥u∥pX0

(r − q)
∫
Ω
g(x)|u|rdx

)1/(r−p)

,

and

h0(t0,max) =

(
a(p− q)∥u∥pX0

(r − q)
∫
Ω
g(x)|u|rdx

)(p−q)/(r−p)

a∥u∥pX0



SOLUTIONS FOR A KIRCHHOFF-TYPE PROBLEM 1813

−
(

a(p− q)∥u∥pX0

(r − q)
∫
Ω
g(x)|u|rdx

)(r−q)/(r−p) ∫
Ω

g(x)|u|rdx(2.6)

= ∥u∥pX0

a(r − p)

r − q

(
a(p− q)∥u∥rX0

(r − q)
∫
Ω
g(x)|u|rdx

)(p−q)/(r−p)

≥ ∥u∥pX0

a(r − p)

r − q

(
a(p− q)

(r − q)Cr
0∥g+∥∞

)(p−q)/(r−p)

.

(i) ∫
Ω

f(x) dx ≤ 0.

There is a unique t− > tb,max such that

hb(t
−) = λ

∫
Ω

f(x)|u|qdx

and h′b(t
−) < 0. Now,

ψ′
t−u(1) = t−ψ′

u(t
−)

=M(∥t−u∥pX0
)∥t−u∥pX0

− λ

∫
Ω

f(x)|t−u|qdx−
∫
Ω

g(x)|t−u|rdx(2.7)

= (t−)q
(
hb(t

−)− λ

∫
Ω

f(x)|u|qdx
)

= 0,

and

(2.8) ψ′′
t−u(1) = (t−)2ψ′′

u (t
−) = (t−)q+1h′b(t

−) < 0.

Thus, t−u ∈ N−
λ . Since t > tb,max, we have h′b(t) < 0. It follows from

(2.7) and (2.8) that

Jλ(t
−u) = ψu(t

−) = sup
t≥0

ψu(t) = sup
t≥0

Jλ(tu).

(ii) ∫
Ω

f(x) dx > 0.
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From (1.6) and (2.6), we have

hb(0) = 0 < λ

∫
Ω

f(x)|u|qdx ≤ λ∥f+∥∞Cq
0∥u∥

q
X0

≤ ∥u∥qX0

a(r − p)

r − q

(
a(p− q)

(r − q)Cr
0∥g+∥∞

)(p−q)/(r−p)

≤ h0(t0,max) < hb(tb,max),

for λ ∈ (0, λ2). Therefore, there are unique t+ and t− such that
0 < t+ < tb,max < t−,

hb(t
+) = λ

∫
Ω

f(x)|u|qdx = hb(t
−) and h′b(t

+) > 0 > h′b(t
−).

Similar to the argument in part (i), we conclude that t+u ∈ N+
λ and

t−u ∈ N−
λ . Moreover,

Jλ(t
−u) ≥ Jλ(tu) ≥ Jλ(t

+u) for each t ∈ [t+, t−]

and

Jλ(t
+u) ≤ Jλ(tu) for each t ∈ [0, t+].

Thus,

Jλ(t
+u) = inf

0≤t≤tb,max

Jλ(tu), Jλ(t
−u) = sup

t≥tb,max

Jλ(tu). �

Lemma 2.5. Suppose that 0 < λ < λ2. Then, for each u ∈ X0 with∫
Ω

f(x)|u|qdx > 0,

there exists a tb,max > 0 such that,

(i) if ∫
Ω

g(x)|u|rdx ≤ 0,

then there is a unique 0 < t+ < tb,max such that t+u ∈ N+
λ and

Jλ(t
+u) = inf

t≥0
Jλ(tu);
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(ii) if ∫
Ω

g(x)|u|rdx > 0,

then there are unique t+ and t− with 0 < t+ < tb,max < t− such that
t±u ∈ N±

λ and

Jλ(t
+u) = inf

0≤t≤tb,max

Jλ(tu), Jλ(t
−u) = sup

t≥tb,max

Jλ(tu).

Proof. Fix u ∈ X0 with∫
Ω

f(x)|u|qdx > 0.

Let

hb(t) = atp−r∥u∥pX0
+ bt(m+1)p−r∥u∥(m+1)p

X0
− λtq−r

∫
Ω

f(x)|u|qdx,

for a, t ≥ 0. Clearly,

hb(t) −→ −∞ as t→ 0+

and

hb(t) −→ 0 as t→ +∞.

Moreover, there is a unique tb,max > 0 such that hb(t) achieves its
maximum at tb,max, increasing for t ∈ [0, tb,max) and decreasing for
t ∈ (tb,max,+∞). In addition,

t0,max =

(
(r − q)λ

∫
Ω
f(x)|u|qdx

a(r − p)∥u∥pX0

)1/(p−q)

,

and

h0(t0,max) =

(
a(r − p)∥u∥pX0

(r − q)λ
∫
Ω
f(x)|u|qdx

)(r−p)/(p−q)

a∥u∥pX0

−
(

a(r − p)∥u∥pX0

(r − q)λ
∫
Ω
f(x)|u|qdx

)(r−q)/(p−q)

λ

∫
Ω

f(x)|u|qdx

= ∥u∥rX0

a(p− q)

r − q

(
a(r − p)∥u∥qX0

(r − q)λ
∫
Ω
f(x)|u|qdx

)(r−q)/(p−q)
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≥ ∥u∥rX0

a(p− q)

r − q

(
a(r − p)

(r − q)λCq
0∥f+∥∞

)(r−q)/(p−q)

.

The results of Lemma 2.5 are obtained by repeating the same argument
of Lemma 2.4. �

Lemma 2.6. Suppose that 0 < λ < (qλ2)/(2p). Then, we have

(i) α+
λ < 0,

(ii) α−
λ > d0 for some d0 > 0.

Proof.

(i) Let u ∈ N+
λ . We have ψ′′

u(1) > 0. By (2.2),

(r − q)

∫
Ω

g(x)|u|rdx ≤ a(p− q)∥u∥pX0
+ ((m+ 1)p− q)b∥u∥(m+1)p

X0
.

Therefore,

Jλ(u) =
1

p
M̂(∥u∥pX0

)− λ

q

∫
Ω

f(x)|u|qdx− 1

r

∫
Ω

g(x)|u|rdx

=
1

p
M̂(∥u∥pX0

)− 1

q
M(∥u∥pX0

)∥u∥pX0
+
r − q

rq

∫
Ω

g(x)|u|rdx

≤ a(q − p)

pq
∥u∥pX0

+
(q − (m+ 1)p)b

(m+ 1)pq
∥u∥(m+1)p

X0

+
r − q

rq
(a(p− q)∥u∥pX0

+ ((m+ 1)p− q)b∥u∥(m+1)p
X0

)

≤ −a(p− q)(r − p)

pqr
∥u∥pX0

− ((m+ 1)p− q)(r − (m+ 1)p)b

(m+ 1)prq
∥u∥(m+1)p

X0

< 0.

(ii) Let u ∈ N−
λ . We have ψ′′

u(1) < 0. From (1.6) and (2.2),

a(p− q)∥u∥pX0
≤ (r − q)

∫
Ω

g(x)|u|rdx− ((m+ 1)p− q)b∥u∥(m+1)p
X0

(2.9)

≤ (r − q)

∫
Ω

g(x)|u|rdx
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≤ (r − q)Cr
0∥g+∥∞∥u(x)∥rX0

.

It follows from (2.9) that

∥u∥X0 >

(
a(p− q)

Cr
0∥g+∥∞(r − q)

)1/(r−p)

.

According to (1.6) and (2.1), we have

Jλ(u) =
1

p
M̂(∥u∥pX0

)− λ

q

∫
Ω

f(x)|u|qdx− 1

r

∫
Ω

g(x)|u|rdx

=
1

p
M̂(∥u∥pX0

)− 1

r
M(∥u∥pX0

)∥u∥pX0

− (r − q)λ

rq

∫
Ω

f(x)|u|qdx

=
(r − p)a

pr
∥u∥pX0

+
(r − (m+ 1)p)b

(m+ 1)pr
∥u∥(m+1)p

X0

− (r − q)λ

rq

∫
Ω

f(x)|u|qdx

≥ (r − p)a

pr
∥u∥pX0

+
(r − (m+ 1)p)b

(m+ 1)pr
∥u∥(m+1)p

X0

− (r − q)λ

rq
∥f+∥∞Cq

0∥u∥
q
X0

≥ ∥u∥qX0

(
a(p−q)
rp

∥u∥p−q
X0

− (r−q)λ
rq

∥f+∥∞Cq
0

)
≥
(

a(p−q)
Cr

0∥g+∥∞(r−q)

)q/(r−p)(
a(r−p)
rp

(
a(p−q)

Cr
0∥g+∥∞(r−q)

)(p−q)/(r−p)

− (r−q)λ
rq

∥f+∥∞Cq
0

)
.

Thus, if λ < (qλ2)/(2p), then α
−
λ > d0 for some d0 > 0. �

3. Proof of the main result. In this section, we show the existence
of minimizers in N+

λ and N−
λ for λ > 0 small enough. Let

λ∗ = min

{
λ1,

q

2p
λ2

}
.

We have the following results.
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Proposition 3.1. If 0 < λ < λ∗, then the functional Jλ has a
minimizer u+0 in N+

λ and satisfies:

(i) Jλ(u
+
0 ) = α+

λ = infu∈N+
λ
Jλ(u) < 0,

(ii) u+0 is a nonzero solution of problem (1.1).

Proof. Since Jλ is bounded from below on N+
λ , there exists a

minimizing sequence {un} ⊂ N+
λ such that

(3.1) lim
n→∞

Jλ(un) = α+
λ .

Thus, by Lemma (2.2), the sequence {un} is bounded in X0. Then,
there exists a u+0 , up to a sequence, such that

un ⇀ u+0 weakly in X0 as n→ ∞.

Moreover, by [23, Lemma 8],

un −→ u+0 in Lk(RN ),

un −→ u+0 almost everywhere in RN

as n → ∞. For any 1 ≤ k < p∗s, by [5, Theorem IV-9], there exists an
l(x) ∈ Lk(RN ) such that

|un(x)| ≤ l(x) almost everywhere in RN .

Therefore, by the dominated convergence theorem, we have that

λ

∫
Ω

f(x)|un|qdx −→ λ

∫
Ω

f(x)|u+0 |qdx,(3.2) ∫
Ω

g(x)|un|rdx −→
∫
Ω

g(x)|u+0 |rdx,

as n→ ∞. Now, on Nλ, we have

λ(r − q)

rq

∫
Ω

f(x)|un|qdx =
a(r − p)

pr
∥un∥pX0

(3.3)

+
[r − (m+ 1)p]b

(m+ 1)pr
∥un∥(m+1)p

X0
− Jλ(un).
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Letting n→ ∞, from Lemma 2.6, (3.1) and (3.2), we obtain∫
Ω

f(x)|u+0 |qdx > 0.

By Lemma 2.5, there exists a t1 > 0 such that

t1u
+
0 ∈ N+

λ .

Next, we show that

un −→ u+0 strongly in X0.

Suppose that this is not true. Then,

∥u+0 ∥X0 < lim inf
n→∞

∥un∥X0 .

Thus, for un ∈ N+
λ ,

lim
n→∞

ψ′
un

(t1) = lim
n→∞

(
tp−1
1 M(tp1∥un∥

p
X0

)∥un∥pX0

− λtq−1
1

∫
Ω

f(x)|un|qdx− tr−1
1

∫
Ω

g(x)|un|rdx
)

> tp−1
1 M(tp1∥u

+
0 ∥

p
X0

)∥u+0 ∥
p
X0

− λtq−1
1

∫
Ω

f(x)|u+0 |qdx− tr−1
1

∫
Ω

g(x)|u+0 |rdx

= ψ′
u+
0
(t1)

= 0,

that is, ψ′
un

(t1) > 0 for n large enough. Since un = 1 ·un ∈ N+
λ , we see

that ψ′
un

(t) < 0 for t ∈ (0, 1) and ψ′
un

(1) = 0 for all n. Therefore, we
must have t1 > 0. On the other hand, ψun(t) is decreasing on (0, t1);
thus,

Jλ(t1u
+
0 ) ≤ Jλ(u

+
0 ) < lim

n→∞
Jλ(un) = α+

λ ,

a contradiction. Hence,

un −→ u+0 strongly in X0.

This implies

Jλ(un) −→ Jλ(u
+
0 ) = α+

λ as n→ ∞,
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namely, u+0 is a minimizer of Jλ on N+
λ . Using Lemma 2.1, u+0 is a

nonzero solution to problem (1.1). �

Proposition 3.2. If 0 < λ < λ∗, then the functional Jλ has a mini-
mizer u−0 in N−

λ and satisfies:

(i) Jλ(u
−
0 ) = α−

λ = infu∈N−
λ
Jλ(u) > 0,

(ii) u−0 is a nonzero solution of problem (1.1).

Proof. Jλ is bounded from below such that

(3.4) lim
J→∞

Jλ(ũn) = α−
λ .

By the same argument given in the proof of Proposition 3.1, there exists
a u−0 , up to a sequence, such that

ũn ⇀ u−0 weakly in X0,

ũn −→ u−0 in Lk(RN )

and

ũn −→ u−0 almost everywhere in RN ,

as n→ ∞, for any 1 ≤ k ≤ p∗s. Moreover,

λ

∫
Ω

f(x)|ũn|qdx −→ λ

∫
Ω

f(x)|u−0 |qdx,(3.5) ∫
Ω

g(x)|ũn|rdx −→
∫
Ω

g(x)|u−0 |rdx,

as n→ ∞. Similarly, we have

r−q
rq

∫
Ω

g(x)|ũn|rdx=Jλ(ũn)+
a(p−q)
pq

∥ũn∥pX0
+
((m+1)p−q)b
(m+1)pq

∥ũn∥(m+1)p
X0

.

Letting n→ ∞, from Lemma 2.6, (3.4) and (3.5), we obtain∫
Ω

g(x)|u−0 |rdx > 0.

From Lemma 2.4, there exists a t2 > 0 such that t2u
−
0 ∈ N−

λ .
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Next, we show that

ũn −→ u−0 strongly in X0.

Suppose that this is not true. Then,

∥u−0 ∥X0 < lim inf
n→∞

∥ũn∥X0 .

Thus, for ũn ∈ N−
λ , similar to the argument in the proof of Proposi-

tion 3.1, we have

Jλ(t2u
−
0 ) < lim inf

n→∞
Jλ(t2ũn) ≤ lim

n→∞
Jλ(t2ũn) ≤ lim

n→∞
Jλ(ũn) = α−

λ ,

a contradiction. Hence, ũn → u−0 strongly in X0. This implies

Jλ(ũn) −→ Jλ(u
−
0 ) = α−

λ as n→ ∞,

namely, u−0 is a minimizer of Jλ on N−
λ . Using Lemma 2.1, u−0 is a

nonzero solution to problem (1.1). �

Proof of Theorem 1.1. By Propositions 3.1 and 3.2, we obtain that
problem (1.1) has two nonzero solutions u+0 ∈ N+

λ and u−0 ∈ N−
λ in X0.

Since
Jλ(u

±
0 ) = Jλ(|u±0 |) and |u±0 | ∈ N±

λ ,

we may assume that u±0 are nonnegative solutions of problem (1.1).
The proof of Theorem 1.1 is complete. �
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