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REMARKS ON THE LIFESPAN OF
SOLUTIONS TO WAVE EQUATIONS

WITH A POTENTIAL

QIDI ZHANG

ABSTRACT. In this paper, we show that the solution to
the semilinear wave equation with a potential of quadratic
type blows up in finite time. We also give an upper bound
estimate for the lifespan of the solution.

1. Introduction. The paper is devoted to studying blow up of the
solution to the following semi-linear wave equation:

(1.1)

{
∂2
t u−∆u+ V (x)u = |u|p (x, t) ∈ Rn × R+,

u(x, 0) = εf(x), ∂tu(x, 0) = εg(x),

where V = V (x) is a potential, ε > 0 is a small parameter and (f, g) are
compactly supported smooth functions. Here, n is the space dimension.

Problem (1.1) with V ≡ 0 has been intensively studied in the last
several decades. Let pc(n) be the positive root of the quadratic equation

(n− 1)p2 − (n+ 1)p− 2 = 0.

This is known as the critical exponent in the sense of the following: if
p ∈ (1, pc(n)], then problem (1.1) with V ≡ 0 has no global solution for
nonnegative initial data; while, if p ∈ (pc(n) + ∞), then the solution
to (1.1) exists for all time. This is the well-known Strauss conjecture.
We give only a brief summary here and refer the reader to [12] and
the references therein for details. The case n = 3 was considered by
John [4]. He proved that the solution blows up in finite time when
1 < p < pc(3) and exists globally in time when p > pc(3). The same
result was obtained by Glassey [2, 3] when n = 2. In high dimensions
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n ≥ 4, the proof of the existence of global solutions when p > pc(n) can
be found in the work of [1, 6, 11], while the corresponding blow up
result when 1 < p < pc(n) was established by Sideris [8]. The blow up
result for the critical case p = pc(n) was shown by Schaeffer [7] when
n = 2, 3, and independently by Yordanov and Zhang [13] and Zhou
and Han [15] when n ≥ 4.

When blow up happens, it is also interesting to obtain estimates for
the lifespan T (ε) of the solution, that is, the largest value T such that
the solution exists for x ∈ Rn, 0 ≤ t < T . It is conjectured that

T (ε) ≈ ε[2p(p−1)]/[(n−1)p2−(n+1)p−2] if 1 < p ≤ pc(n),

and

T (ε) ≈ ecε
−p(p−1)

if p = pc(n),

where, by A ≈ B, we mean that there exist positive numbers C1 and C2

such that A ≤ C1B and B ≤ C2A. This conjecture has been verified
when 1 < p < pc(n) and n ≤ 8 in the work of [5, 6, 10, 15]. In
[10, 15], the authors also obtained upper bound lifespan estimates for
solutions in high dimensions, i.e.,

T (ε) ≤ cε[2p(p−1)]/[(n−1)p2−(n+1)p−2] when 1 < p < pc(n);

T (ε) ≤ c′ecε
−p(p−1)

when p = pc(n).

The lower bound estimates for the lifespan in general when n ≥ 9 is
still an open question.

A natural question is to examine what happens if V ̸≡ 0. In [9],
the authors showed that, in dimension 3, if the small potential V (x)
decays as |x| goes to infinity and if p > pc(3), then the solution with
small data exists globally in time; while, if the potential V (x) is negative
and decays in spatial variable, then the solution must blow up in finite
time under some other assumptions. For a locally Hölder continuous
potential V (x) satisfying

0 ≤ V (x) ≤ C

1 + |x|2+δ

(for some C, δ > 0), it was shown in [13] that the solution must blow
up in finite time when 1 < p < pc(n).
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We are interested in what happens when the potential does not
decay. It was shown in [14] that T (ε) ≥ cε−3/2 in dimension n ≥ 2
(slightly better in dimension 1) for V (x) = |x|2 and p = 2.

In the next section, we shall prove that problem (1.1) with V (x) =
|x|2 − n must blow up in finite time no matter how small the data and
obtain an upper bound for the lifespan of the solution.

2. Main result and the proof.

Theorem 2.1. Consider Cauchy problem (1.1) with V (x) = |x|2 − n,
(f, g) ∈ C∞

0 (Rn), f ≥ 0, g ≥ 0, ε > 0. Assume that p > 1. Then, the
solution to (1.1) must blow up in finite time. Moreover, we have the
lifespan estimate:

T (ε) ≤ cε−(p−1)/(p+1),

where c is a positive constant independent of ε.

Remark 2.2. We see that the solution to problem (1.1) with V (x) =
|x|2−n must blow up in finite time for any p > 1 and any n. No critical
exponent appears. This is quite different from the case V (x) ≡ 0.

Remark 2.3. The initial data need not be smooth. We assume that
(f, g) ∈ C∞

0 (Rn) for the convenience of exposition.

In order to prove this theorem, we shall need the following lemma.

Lemma 2.4. Let p > 1, a ≥ 1 and (p− 1)a > q− 2. If F ∈ C2([0, T ))
satisfies

(i) F (t) ≥ δ(t− 1)a;
(ii) d2F (t)/dt2 ≥ k(t+ 1)−q[F (t)]p,

with some positive constants δ and k, then F (t) will blow up in finite
time, T < ∞. Furthermore, we have the following estimate for the
lifespan T (δ) of F (t):

T (δ) ≤ cδ−(p−1)/[(p−1)a−q+2],

where c is a positive constant independent of δ.
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We omit the proof since this is [16, Lemma 2.1].

Proof of Theorem 2.1. Denote by

H = −∆+ |x|2

the harmonic oscillator on L2(Rn). We know that it is self-adjoint and
its first eigenvalue is λ = n. Let

ϕ(x) = π−n/4e−|x|2/2

be the eigenfunction associated to the eigenvalue λ = n. Thus,

(2.1) Hϕ = nϕ.

The first equation of (1.1) may be written as

∂2
t u = −Hu+ nu+ |u|p.

Consequently, if we define

(2.2) F (t) =

∫
Rn

u(x, t)ϕ(x) dx = ⟨u(·, t), ϕ(·)⟩,

where ⟨·, ·⟩ is the L2 pair with respect to the spatial variable, we get

d2

dt2
F (t) =

∫
Rn

∂2
t u(x, t)ϕ(x) dx(2.3)

= −⟨Hu, ϕ⟩+ n⟨u, ϕ⟩+
∫
Rn

|u(x, t)|pϕ(x) dx.

Due to the fact that H is is self-adjoint, and by (2.1), we know

(2.4) −⟨Hu, ϕ⟩+ n⟨u, ϕ⟩ = −⟨u,Hϕ⟩+ n⟨u, ϕ⟩ = 0.

Thus, (2.3) becomes

(2.5)
d2

dt2
F (t) =

∫
Rn

|u(x, t)|pϕ(x) dx.

Since by Hölders inequality and the fact that ϕ > 0,∣∣∣∣ ∫
Rn

u(x, t)ϕ(x) dx

∣∣∣∣p ≤
∣∣∣∣ ∫

Rn

|u(x, t)|pϕ(x) dx
∣∣∣∣∣∣∣∣ ∫

Rn

ϕ(x) dx

∣∣∣∣p/p′

= c

∫
Rn

|u(x, t)|pϕ(x) dx
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for some c > 0, where p′ = p/(p− 1), from (2.5) we obtain

(2.6)
d2

dt2
F (t)| ≥ k|F (t)|p

for some other positive constant k. This means that Lemma 2.2 (ii)
holds with q = 0.

We multiply by ϕ(x) on both sides of the first equation of (1.1) and
integrate over Rn × [0, t]. Then we get

(2.7)

∫ t

0

∫
Rn

∂2
t u(x, t)ϕ(x) dx dt+

∫ t

0

⟨(H − n)u, ϕ⟩ dt

=

∫ t

0

∫
Rn

|u(x, t)|pϕ(x) dx dt.

By (2.4), the second term disappears. Therefore, (2.7) becomes∫
Rn

∂tu(x, t)ϕ(x) dx−
∫
Rn

∂tu(x, 0)ϕ(x) dx =

∫ t

0

∫
Rn

|u(x, t)|pϕ(x) dx dt.

Since ϕ > 0, we obtain∫
Rn

∂tu(x, t)ϕ(x) dx ≥
∫
Rn

∂tu(x, 0)ϕ(x) dx,

that is,
d

dt
F (t) ≥ ε

∫
Rn

g(x)ϕ(x) dx.

Integrating over [0, t] yields

(2.8) F (t) ≥ εt

∫
Rn

g(x)ϕ(x) dx+ ε

∫
Rn

f(x)ϕ(x) dx ≥ cε(t+ 1)

for some constant c > 0 and large enough t since f ≥ 0, g ≥ 0 and
g ̸≡ 0. This means that Lemma 2.2 (i) holds with a = 1 and δ = cε,
where c > 0 is independent of ε.

Now we apply Lemma 2.2 with q = 0, a = 1, δ = cε. It is obvious
that (p − 1)a > q − 2 if p > 1. Thus, from Lemma 2.2, we know that
F (t) must blow up in finite time, and we also have

T (ε) ≤ cε−(p−1)/(p+1).

This concludes the proof. �
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