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APPLICATIONS OF VARIATIONAL METHODS TO AN
ANTI-PERIODIC BOUNDARY VALUE PROBLEM OF

A SECOND-ORDER DIFFERENTIAL SYSTEM

YU TIAN AND YAJING ZHANG

ABSTRACT. In this paper, we discuss the existence of
multiple solutions to a second order anti-periodic boundary
value problem{

ẍ(t) +Mx(t) +∇F (t, x(t)) = 0 almost every t ∈ [0, T ],

x(0) = −x(T ) ẋ(0) = −ẋ(T )

by using variational methods and critical point theory.
Furthermore, we obtain the existence of periodic solutions
for corresponding second-order differential systems.

1. Introduction. The study of anti-periodic solutions for nonlinear
evolution equations was initiated by Okochi [26]. Okochi studied the
nonlinear parabolic equation in a real Hilbert space H, which is of the
form

du(t)

dt
+ ∂φ(u(t)) ∋ f(t),

where f ∈ L2
loc(R;H), φ is a proper lower semi-continuous (lsc) convex

functional on H and ∂φ is the subdifferential of φ. By using fixed point
theory, the existence of anti-periodic solutions was obtained in the case
where ∂φ is odd and f is T -anti-periodic. Inspired by [26], anti-periodic
problems for second- and higher-order differential equations have been
extensively studied, see [2, 3, 5, 6, 8, 9, 10, 11, 16, 17, 18, 19,
20, 22, 23, 25, 31] and the references therein. It is very important to
study anti-periodic boundary value problems since they can be applied
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to interpolation problems [13, 15], anti-periodic wavelets [7], the Hill
differential operator [14] and physics [1, 4, 21, 27].

Many results have been obtained by using tools such as topological
degree theory, lower and upper solution methods [2, 3, 5, 6, 10, 16,
17, 18, 23, 31, 32], the maximal monotone or m-accretive operator
[2, 6].

In [6], Aizicovici and Pavel established the existence, uniqueness
and continuous dependence upon data of anti-periodic solutions to
some first- and second-order evolution equations. In [31], Wang and Li
studied the existence of solutions of the following antiperiodic boundary
value problem for a second-order conservative system:

(1.1)

{
q
′′
= u(t, q) t ∈ [0, T ]

q(0) = −q(T ) q′(0) = −q′(T ).

By using fixed point theory together with Green’s function, the exis-
tence result is as follows: assume that there exist constants 0 ≤ c < 8
and M > 0, such that

|u(t, q)| ≤ c

T 2
|q|+M

for all t ∈ [0, T ], q ∈ R1. Problem (1.2) has at least one solution.

In [32], Wang and Shen studied the antiperiodic boundary value
problem as follows

(1.2)

{
x

′′
+ f(t, x(t)) = 0 t ∈ [0, T ]

x(0) = −x(T ) x′(0) = −x′(T ).

By using Schauder’s fixed point theorem and the lower and upper solu-
tions method, some sufficient conditions for the existence of solutions
are obtained: assume that there exist constants 0 < r < 2, l > 0, and
functions p, q, h ∈ C[0, T ] such that

uf(t, u) ≤ p(t)u2 + q(t)|u|r + h(t)

for t ∈ [0, T ], |u| > 1. Further, suppose that∫ T

0

p+(s) ds < 4,
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where p+(t) = max{p(t), 0}. Then (1.2) has at least one solution. To
the best of our knowledge, few authors have studied the existence of
solutions for anti-periodic boundary value problems by using variational
methods and critical point theory. As a result, the motivation of this
paper is to fill the gaps in this area. We study the existence of multiple
solutions to anti-periodic boundary value problems for the second-order
differential system

(1.3)

{
ẍ(t) +Mx+∇F (t, x) = 0 almost every t ∈ [0, T ]

x(0) = −x(T ) ẋ(0) = −ẋ(T ),

x = (x1, x2, . . . , xn)
T ∈ Rn,M is an n× n real symmetric matrix,

F : [0, T ]×Rn −→ R, (t, x) 7−→ F (t, x)

is measurable in t for each x ∈ Rn, and continuously differentiable in x
for almost every t ∈ [0, T ],

∇F (t, x) =

(
∂F (t, x)

x1
,
∂F (t, x)

x2
, . . . ,

∂F (t, x)

xn

)T

.

In particular, our aim of this paper is to apply critical point theory to
problem (1.3) and prove the existence of at least two solutions when
the eigenvalues of M are less than π2/T 2. In addition, we obtain the
existence of 2T -periodic solutions for ẍ + Mx + ∇F (t, x) = 0. The
constraint conditions on F are new.

The main difficulties in the above problem are as follows:

(1) the construction of a suitable Banach space X;
(2) the construction of a functional φ on the space X;
(3) how to prove the critical point of the functional φ is only the

solution of BVP (1.3).

In order to overcome these difficulties, especially (3), we prove an
important fundamental lemma, which plays an important role in the
proof of Lemma 2.4. The idea of this paper comes from [24, 28, 29].

The following lemmas will be needed in our argument, which may
be found in [12, 24, 29, 33].

Lemma 1.1. ([33, Theorem 38A]). For the functional

F : S ⊆ X −→ [−∞,+∞] with S ̸= ∅,
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minu∈S F (u) = α has a solution in the following cases:

(i) X is a real reflexive Banach space;
(ii) S is bounded and weak sequentially closed ;
(iii) F is weak sequentially lower semi-continuous on S, i.e., by defi-

nition, for each sequence (un) in S such that un ⇀ u as n → ∞,
we have that F (u) ≤ limn→∞F (un) holds.

Lemma 1.2 ([12, 24, 29]). Let E be a Banach space and φ ∈
C1(E,R) satisfy the Palais-Smale condition, i.e., every sequence {xn}
in E satisfying φ(xn) is bounded, and φ′(xn) → 0 has a convergent
subsequence. Assume that there exist x0, x1 ∈ E and a bounded open
neighborhood Ω of x0 such that x1 ∈ E \ Ω and

max{φ(x0), φ(x1)} < inf
x∈∂Ω

φ(x).

Let

Γ = {h | h : [0, 1] −→ E is continuous and h(0) = x0, h(1) = x1}

and
c = inf

h∈Γ
max
s∈[0,1]

φ(h(s)).

Then, c is a critical value of φ, that is, there exists an x∗ ∈ E such
that φ′(x∗) = Θ and φ(x∗) = c, where c > max{φ(x0), φ(x1)}.

The remainder of the paper is organized as follows. In Section 2,
some preliminary results will be given. In Section 3, we will state and
prove the main results of the paper, as well as present some applications
to (1.3).

2. Related lemmas. In order to begin, we introduce some nota-
tion. Here, and in the sequel, we assume that T > 0 is the limit. For
x ∈ Rn, x = 0 means

x = (x1, x2, . . . , xn)
T = (0, 0, . . . , 0)T
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and x > 0 means xi > 0 for all i = 1, 2, . . . , n. For x = (x1, x2,
. . . , xn)

T , y = (y1, y2, . . . , yn)
T ∈ Rn,

x · y =
n∑

i=1

xiyi.

For x = (x1, x2, . . . , xn)
T ∈ Rn,

|x| =
( n∑

i=1

x2
i

)1/2

.

We define the space X = {x ∈ H1([0, T ], Rn) : x(0) = −x(T )}
equipped with the norm

∥x∥X =

(∫ T

0

|ẋ(t)|2 + |x(t)|2dt
)1/2

.

We claim that (X, ∥ · ∥X) is a reflexive Banach space. In fact,
(H1([0, T ], Rn), ∥ · ∥X) is a reflexive Banach space.

Now, we shall show that (X, ∥ · ∥X) is a closed subspace of
(H1([0, T ], Rn), ∥ · ∥X). For any (xn) ∈ X,xn → x∗ in X, i.e.,
∥xn − x∗∥X → 0 as n → ∞, which yields

xn −→ x∗ in C([0, T ], Rn) and x∗ ∈ H1([0, T ], Rn).

Since xn(0) = −xn(T ), we have x∗(0) = −x∗(T ). Thus, (X, ∥ · ∥X) is
a closed subspace of (H1([0, T ], Rn), ∥ · ∥X). By fundamental analysis,
(X, ∥ · ∥X) is a reflexive Banach space.

For each x ∈ X, put

(2.1) φ(x) :=

∫ T

0

1

2
|ẋ(t)|2 − 1

2
Mx(t) · x(t)− F (t, x(t)) dt.

Clearly, φ is a Gâteaux differentiable functional whose Gâteaux deriv-
ative at the point x ∈ X is the functional φ′(x) ∈ X∗, given by

(2.2) ⟨φ′(x), v⟩ =
∫ T

0

ẋ(t) · v̇(t)−Mx(t) · v(t)−∇F (t, x(t)) · v(t) dt,

for every v ∈ X. Obviously, φ′ : X → X∗ is continuous.
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Now, we shall cite an important fundamental lemma, which is useful
in proving Lemma 2.4, i.e., the critical point of φ is only the solution
of BVP (1.3).

Let Z = {g ∈ C∞([0, T ], Rn) : g(0) = −g(T )}.

Lemma 2.1. ([30, Lemma 3.4]). Let u, v ∈ L1([0, T ], Rn). If, for
every f ∈ Z,

(2.3)

∫ T

0

(u(t), ḟ(t)) dt = −
∫ T

0

(v(t), f(t)) dt,

where (·, ·) denotes the inner product and ḟ is the derivative of the
vector function f , then

(2.4)
2

T

∫ T

0

u(t) + tv(t) dt =

∫ T

0

v(t) dt

and

u(t) =

∫ t

0

v(s) ds+ a0 for almost every t ∈ [0, T ], a0 ∈ Rn.

Remark 2.2. A function v satisfying (2.3) is called a weak derivative
of u. By a Fourier series argument, the weak derivative, if it exists, is
unique. The weak derivative of u will be denoted by u̇.

Definition 2.3. A function x ∈ X is said to be a classical solution of
problem (1.3) if x satisfies equation in (1.3) for almost every t ∈ [0, T ]
and the boundary conditions of (1.3).

Lemma 2.4. If the function x ∈ X is a critical point of the func-
tional φ, then x is a classical solution of problem (1.3).

Proof. Let x ∈ X be a critical point of the functional φ. Then
⟨φ′(x), v⟩ = 0 for every v ∈ X, i.e.,∫ T

0

ẋ(t) · v̇(t)−Mx(t) · v(t)−∇F (t, x(t)) · v(t) dt = 0,
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for all v ∈ X, and hence, for all v ∈ Z. By Lemma 2.1,

ẋ(t) = −
∫ t

0

Mx(s) +∇F (s, x(s)) ds+ a0

for almost every t ∈ [0, T ], a0 ∈ Rn. By Remark 2.2, ẋ has a weak
derivative ẍ and

ẍ = −Mx−∇F (t, x(t)).

Since x ∈ X and∇F (t, x) are continuous in x for almost every t ∈ [0, T ],
ẍ exists and is continuous for almost every t ∈ [0, T ]. Thus, ẍ is a
classical derivative of ẋ for almost every t ∈ [0, T ]. Therefore, x satisfies
the equation in (1.3) for almost every t ∈ [0, T ].

Moreover, since the derivative of ẋ is ẍ, by (2.4) in Lemma 2.1, we
have

2

T

∫ T

0

ẋ(t) + tẍ(t) dt =

∫ T

0

ẍ(t) dt.

Now,

2

T

∫ T

0

ẋ(t)+ tẍ(t) dt =
2

T

[ ∫ T

0

ẋ(t) dt+T ẋ(T )−
∫ T

0

ẋ(t) dt

]
= 2ẋ(T ),

and ∫ T

0

ẍ(t) dt = ẋ(T )− ẋ(0).

Thus, ẋ(0) = −ẋ(T ). Furthermore, x ∈ X implies x(0) = −x(T ).
Therefore, x is a classical solution of (1.3). �

Next, we shall show some properties between the norms which are
useful in estimating the norm ∥ · ∥X .

Lemma 2.5. If x ∈ X, then

∥x∥L2 ≤ 1√
λ0

∥ẋ∥L2 and ∥x∥∞ ≤
√
T

2
∥ẋ∥L2 ,

where
∥x∥∞ = max

t∈[0,T ]
|x(t)|,
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λ0 = π2/T 2 is the first nonzero eigenvalue of the eigenvalue problem

(2.5)

{
ẍ(t) + λx(t) = 0 t ∈ [0, T ], λ ∈ R

x(0) = −x(T ) ẋ(0) = −ẋ(T ).

Proof. As is well known, (2.5) possesses a sequence of eigenvalues
(λk), λk = (2k + 1)2π2/T 2, with

0 < λ0 < λ1 < · · · < λj < · · · .

For each λk, k = 0, 1, 2, . . ., (2.5) possesses eigenfunctions

φk(t) = ak cos
√
λkt+ bk sin

√
λkt, ak, bk ∈ Rn.

Let

x(t) =

{
x(t− 2kT ) t ∈ [2kT, (2k + 1)T ],

−x(t− (2k + 1)T ) t ∈ [(2k + 1)T, (2k + 2)T ].

Then x is a 2T -periodic function on Rn satisfying x(t) = −x(t + T ).
By the expression of Fourier expansion, we have

x(t) =
∞∑
k=0

(ak cos
√
λkt+ bk sin

√
λkt).

Thus,∫ T

0

|x(t)|2dt = 1

2

∫ 2T

0

|x(t)|2dt

=
1

2

∫ 2T

0

∣∣∣∣ ∞∑
k=0

(ak cos
√

λkt+ bk sin
√

λkt)

∣∣∣∣2dt
=

1

2

∫ 2T

0

∞∑
k=0

|ak|2 cos2
√

λkt+ |bk|2 sin2
√
λkt dt

=
1

2

∞∑
k=0

[
|ak|2

∫ 2T

0

cos2
√
λkt dt+ |bk|2

∫ 2T

0

sin2
√
λkt dt

]

=
T

2

∞∑
k=0

(|ak|2 + |bk|2).
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By the Parseval equality,∫ T

0

|ẋ(t)|2dt = 1

2

∫ 2T

0

|ẋ(t)|2dt

=
1

2

∫ 2T

0

∣∣∣∣ ∞∑
k=0

(−ak
√
λk sin

√
λkt+ bk

√
λk cos

√
λkt)

∣∣∣∣2dt
=

1

2

∫ 2T

0

∞∑
k=0

|ak|2λk sin
2
√
λkt+ |bk|2λk cos

2
√
λkt dt

=
T

2

∞∑
k=0

(|ak|2 + |bk|2)λk.

Hence, we have ∥x∥L2 ≤ 1/
√
λ0 ∥ẋ∥L2 .

For the last inequality, we cite it from [11, Lemma 2.3]. For
convenience, we prove it as follows. For x ∈ X, we have

x(t) = x(0) +

∫ t

0

ẋ(s) ds and x(t) = x(T )−
∫ T

t

ẋ(s) ds.

Thus, we have

2x(t) =

∫ t

0

ẋ(s) ds−
∫ T

t

ẋ(s) ds

≤
∫ t

0

|ẋ(s)| ds+
∫ T

t

|ẋ(s)| ds

=

∫ T

0

|ẋ(s)| ds.

It follows from Hölder’s inequality that the result follows. �

Since M is a real symmetric matrix, M has n real eigenvalues, we
denote λM

1 , λM
2 , . . . , λM

n .

Lemma 2.6. For max1≤i≤n{λM
i } < λ0 = π2/T 2, we have

θ1∥ẋ∥L2 ≤
(∫ T

0

|ẋ(t)|2 −Mx(t) · x(t) dt
)1/2

(2.6)

≤ θ2∥ẋ∥L2 for any x ∈ X,
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where

θ1 =

{√
1− (max1≤i≤n{λM

i }/λ0) 0 ≤ max1≤i≤n{λM
i } < λ0,

1 max1≤i≤n{λM
i } < 0,

and

θ2 =



1 0 ≤ min1≤i≤n{λM
i }

< max1≤i≤n{λM
i } < λ0,√

1− (min1≤i≤n{λM
i }/λ0) min1≤i≤n{λM

i } < 0

< max1≤i≤n{λM
i } < λ0,√

1− (min1≤i≤n{λM
i }/λ0) max1≤i≤n{λM

i } < 0,

that is to say, (∫ T

0

|ẋ(t)|2 −Mx(t) · x(t) dt
)1/2

is equivalent to ∥ẋ∥L2 .

Proof. If 0 ≤ max1≤i≤n{λM
i } < λ0, we have by Lemma 2.5(∫ T

0

|ẋ(t)|2 −Mx(t) · x(t) dt
)1/2

≥
(∫ T

0

|ẋ(t)|2 − max
1≤i≤n

{λM
i }|x(t)|2dt

)1/2

≥
(∫ T

0

|ẋ(t)|2 − max1≤i≤n{λM
i }

λ0
|ẋ(t)|2dt

)1/2

= θ1∥ẋ∥L2 .

If min1≤i≤n{λM
i } < 0 < max1≤i≤n{λM

i } < λ0,(∫ T

0

|ẋ(t)|2 −Mx(t) · x(t) dt
)1/2

≤
(∫ T

0

|ẋ(t)|2 − min
1≤i≤n

{λM
i }|x(t)|2dt

)1/2

≤
(∫ T

0

|ẋ(t)|2 − min1≤i≤n{λM
i }

λ0
|ẋ(t)|2dt

)1/2

≤ θ2∥ẋ∥L2 .
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If 0 < min1≤i≤n{λM
i } < max1≤i≤n{λM

i } < λ0,(∫ T

0

|ẋ(t)|2 −Mx(t) · x(t) dt
)1/2

≤
(∫ T

0

|ẋ(t)|2 − min
1≤i≤n

{λM
i }|x(t)|2dt

)1/2

≤ ∥ẋ∥L2 .

If max1≤i≤n{λM
i } < 0,

∥ẋ∥L2 ≤
(∫ T

0

|ẋ(t)|2 −Mx(t) · x(t) dt
)1/2

≤
(∫ T

0

|ẋ(t)|2 − min1≤i≤n{λM
i }

λ0
|ẋ(t)|2dt

)1/2

≤ θ2∥ẋ∥L2 .

The result follows. �

Remark 2.7. ∥ · ∥X is equivalent to ∥ẋ∥L2 . In fact, by Lemma 2.5,

(2.7) ∥ẋ∥L2 ≤ ∥x∥X =

(∫ T

0

|ẋ|2 + |x|2dt
)1/2

≤
√

1 +
1

λ0
∥ẋ∥L2 .

Remark 2.8. If max1≤i≤n{λM
i } < λ0 = π2/T 2, ∥x∥X , ∥ẋ∥L2 and(∫ T

0

|ẋ(t)|2 −Mx(t) · x(t) dt
)1/2

are equivalent.

Lemma 2.9. Suppose that max1≤i≤n{λM
i } < λ0 = π2/T 2, where λM

i ,
i = 1, 2, . . . , n, are n real eigenvalue of matrix M , and

(C1) there exist µ > 2, l1, l2 > 0, r ∈ L1([0, T ], R+),

H(t, x) : [0, T ]×Rn −→ R

continuous in x for almost every t ∈ [0, T ], H(t, x) > 0 for x > 0,
t ∈ [0, T ], such that

F (t, x) =
r(t)|x|µ

µ
+H(t, x),
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where

(2.8) lim sup
|x|→+∞

µH(t, x)−∇H(t, x) · x
|x|2

= l0.

(C2) l0/λ0 < (µ/2−1)θ21, where θ1 is defined in Lemma 2.6. Then, φ
satisfies the Palais-Smale condition.

Proof. Let (xn) ⊂ X satisfy φ(xn) is bounded and

φ′(xn) −→ 0 as n → ∞.

First, we shall show that (xn) is a bounded sequence in X. By
(2.1)–(2.2),

(2.9)

(
µ

2
− 1

)[
∥ẋn∥2L2 −

∫ T

0

Mxn · xn(t) dt

]
= µφ(xn)− ⟨φ′(xn), xn⟩+ µ

∫ T

0

F (t, xn) dt

−
∫ T

0

∇F (t, xn) · xn dt.

By (C1) and Lemma 2.5,
(2.10)

µ

∫ T

0

F (t, xn) dt−
∫ T

0

∇F (t, xn) · xn dt

=

∫ T

0

r(t)|xn|µ + µH(t, xn)− [r(t)ϕµ(xn) +∇H(t, xn)] · xn dt

=

∫ T

0

r(t)|xn|µ + µH(t, xn)−
[
r(t)|xn|µ +∇H(t, xn) · xn

]
dt

=

∫ T

0

µH(t, xn)−∇H(t, xn) · xn dt,

where ϕµ(x) = |x|µ−2x.

By (2.8), for any

(2.11) ε ∈
(
0, λ0

(
µ

2
− 1

)
θ21 − l0

)
,
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there exists a positive constant C > 0 satisfying

µH(t, x)−∇H(t, x) · x
|x|2

< l0 + ε for all |x| > C.

Thus, there exists a sufficiently large number C ′ > 0 satisfying

(2.12) µH(t, x)−∇H(t, x) · x < (l0 + ε)|x|2 + C ′

for all x ∈ Rn.

By (2.10)–(2.12) and Lemma 2.5, we have

µ

∫ T

0

F (t, xn) dt−
∫ T

0

∇F (t, xn) · xn dt ≤ (l0 + ε)∥xn∥2L2 + C ′T

(2.13)

≤ l0 + ε

λ0
∥ẋn∥2L2 + C ′T.

By (2.6) and (2.9), we have

(2.14)

(
µ

2
−1

)[
∥ẋn∥2L2−

∫ T

0

Mxn(t)·xn(t) dt

]
≥

(
µ

2
−1

)
θ21∥ẋn∥2L2 .

Substituting (2.13) and (2.14) into (2.9), we have(
µ

2
− 1

)
θ21∥ẋn∥2L2 ≤ µφ(xn)− ⟨φ′(xn), xn⟩(2.15)

+
l0 + ε

λ0
∥ẋn∥2L2 + C ′T.

Suppose that (ẋn) is unbounded in L2[0, T ]. Passing to a subsequence,
we may assume, if necessary, that ∥ẋn∥L2 → ∞ as n → ∞. Dividing
both sides of (2.15) by ∥ẋn∥2L2 , we have(

µ

2
− 1

)
θ21 ≤ µφ(xn)

∥ẋn∥2L2

− ⟨φ′(xn), xn⟩
∥ẋn∥2L2

+
l0 + ε

λ0
+

C ′T

∥ẋn∥2L2

.

Since φ(xn) is bounded and φ′(xn) → 0, let n → ∞ in the above
inequality. Then, we have, by (2.11),(

µ

2
− 1

)
θ21 ≤ l0 + ε

λ0
<

(
µ

2
− 1

)
θ21,
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which is a contradiction. Therefore, ∥ẋn∥L2 < ∞, which, together with
Remark 2.8, gives ∥xn∥X < ∞.

From the reflexive property of X, we may extract a weakly con-
vergent subsequence, which we call, for simplicity, (xn), xn ⇀ x. In
the following we shall show that (xn) converges strongly to x, i.e.,
∥xn − x∥X → 0 as n → ∞. By (2.2),

⟨φ′(xn)− φ′(x), xn − x⟩ =
∫ T

0

|ẋn − ẋ|2 −M(xn − x)

· (xn − x)− (∇F (t, xn)−∇F (t, x), xn − x) dt.

By xn ⇀ x in X, we see that (xn) converges uniformly to x in C([0, T ]),
i.e., ∥xn − x∥∞ → 0 as n → ∞. Hence,∫ T

0

(∇F (t, xn)−∇F (t, x)) · (xn − x) dt −→ 0 as n → ∞.

By φ′(xn) → 0 and xn ⇀ x, we have

⟨φ′(xn)− φ′(x), xn − x⟩ −→ 0.

Therefore,∫ T

0

|ẋn − ẋ|2 −M(xn − x) · (xn − x) dt −→ 0 as n → ∞.

By Remark 2.8, ∥xn − x∥X → 0 as n → ∞. �

3. Main results.

Theorem 3.1. Suppose that max1≤i≤n{λM
i } < λ0 = π2/T 2 (λM

i , i =
1, 2, . . . , n, are n real eigenvalues of real symmetric matrix M), and
(C1)–(C2) hold. Furthermore, we assume that :

(C3) there exists K0 > 0 such that

θ21λ0

2(1 + λ0)
K2

0 − ∥r∥L1Tµ/2

µ2µ
Kµ

0 − max
|x|≤(

√
TK0/2)

∫ T

0

H(t, x) dt

+

∫ T

0

H(t, 0) dt > 0.

Then BVP (1.3) has at least two solutions.
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Proof. We complete the proof with the following three steps.

Step 1. By Lemma 2.9, the functional φ satisfies the Palais-Smale
condition.

Step 2. We shall show that there exists a K0 > 0 such that the
functional φ has a local minimum x0 ∈ BK0 := {x ∈ X : ∥x∥X < K0}.

Let K > 0, which will be determined later. First, we claim that
BK is bounded and weakly sequentially closed. In fact, let (un) ⊆ BK

and (un) ⇀ u as n → ∞. By the Mazur theorem [24], there exists a
sequence of convex combinations

vn =

n∑
j=1

αnjuj ,

n∑
j=1

αnj = 1, αnj ≥ 0, j ∈ N,

such that vn → u in X. Since BK is a closed convex set, (vn) ⊂ BK

and u ∈ BK . Now, we claim that φ has a minimum x0 ∈ BK . We will
show that φ is weakly sequentially lower semi-continuous on BK . For
this, let

φ1(x) =
1

2

∫ T

0

|ẋ|2 −Mx · x dt, φ2(x) =

∫ T

0

−F (t, x) dt.

Then, φ(x) = φ1(x) + φ2(x). By xn ⇀ x on X, we have (xn)
uniformly converges to x in C([0, T ]). Thus, φ2 is weakly sequentially
continuous. By Remark 2.8, φ1 is continuous, which, together with
the convexity of φ1, gives that φ1 is weakly sequentially lower semi-
continuous. Therefore, φ is weakly sequentially lower semi-continuous
on BK . Further, X is a reflexive Banach space, BK is a bounded and
weak sequentially closed set; thus, our claim follows from Lemma 1.1.
Without loss of generality, we assume that φ(x0) = minx∈BK

φ(x).
Now we will show that

(3.1) φ(x0) < inf
x∈∂BK

φ(x).

If this is true, the result of Step 2 holds.

In fact, for any x ∈ ∂BK , by Lemma 2.5, we have,

∥x∥∞ ≤
√
T

2
∥x∥X =

√
T

2
K.
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By (C1), (2.6), (2.7) and Lemma 2.5, we have

(3.2)

φ(x) ≥ θ21
2
∥ẋ∥2L2 −

∫ T

0

r(t)
|x|µ

µ
+H(t, x) dt

≥ θ21λ0

2(1 + λ0)
K2 − ∥r∥L1

µ
∥x∥µ∞ −

∫ T

0

H(t, x) dt

≥ θ21λ0

2(1 + λ0)
K2 − ∥r∥L1Tµ/2

µ2µ
∥ẋ∥µL2 −

∫ T

0

H(t, x) dt

≥ θ21λ0

2(1 + λ0)
K2 − ∥r∥L1Tµ/2

µ2µ
∥x∥µX −

∫ T

0

H(t, x) dt

≥ θ21λ0

2(1 + λ0)
K2 − ∥r∥L1Tµ/2

µ2µ
Kµ

− max
|x|≤(

√
T/2)K

∫ T

0

H(t, x) dt.

Noting

φ(0) = −
∫ T

0

F (t, 0) dt = −
∫ T

0

H(t, 0) dt,

and φ(x0) ≤ φ(0), let K = K0. By (C3), we have infx∈∂BK0
φ(x) >

φ(0) ≥ minx∈BK0
φ(x). Thus, (3.1) holds and x0 ∈ BK0 .

Step 3. We shall show that there exists an x1 ∈ X with ∥x1∥X > K0

such that φ(x1) < infx∈∂BK0
φ(x).

Let ẽ(t) = sin(π/T )t(1, 0, . . . , 0)T , λ > 0. Then, by (C1),

φ(λẽ) =

∫ T

0

1

2
|λ ˙̃e|2 − 1

2
Mλẽ · λẽ− F (t, λẽ) dt

(3.3)

≤
∫ T

0

1

2

∣∣∣∣λ π

T
cos

πt

T

∣∣∣∣2 + max1≤i≤n{|λM
i |}

2

∣∣∣∣λ sin
πt

T

∣∣∣∣2
− F

(
t, λ sin

πt

T
e1

)
dt

=

(
λ
π

T

)2
T

4
+ max

1≤i≤n
{|λM

i |}|λ|2T
4
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−
∫ T

0

r(t)|λ|µ sinµ(πt/T )
µ

dt−
∫ T

0

H

(
t, λ sin

πt

T
e1

)
dt

≤
(
λ
π

T

)2
T

4
+ max

1≤i≤n
{|λM

i |}|λ|2T
4
− |λ|µ

∫ T

0

r(t) sinµ(πt/T )

µ
dt.

Since ∫ T

0

r(t) sinµ
πt

T
dt > 0

and µ > 2, we have
lim

λ̄−→+∞
φ(λẽ) = −∞.

Thus, there exists a sufficiently large λ0 > 0 with ∥λ0ẽ∥ > K0 such
that

φ(λ0ẽ) < inf
x∈∂BK0

φ(x).

Therefore, let x1 = λ0ẽ and

φ(x1) < inf
x∈∂BK0

φ(x).

Lemma 1.2 now gives the critical value

c = inf
h∈γ

max
t∈[0,1]

φ(h(t)),

where

γ = {h | h : [0, 1] −→ X is continuous and h(0) = x0, h(1) = x1},

that is, there exists an x∗ ∈ X such that φ′(x∗) = 0. Therefore, x0 and
x∗ are two critical points of φ, ∥x0∥X < K0. By Lemma 2.4 x0 and x∗

are two classical solutions of (1.3). �

By Lemma 2.9 and Theorem 3.1, we have the following corollary.

Corollary 3.2. Suppose that max1≤i≤n{λM
i } < λ0, (λM

i , i = 1,
2, . . . , n, are n real eigenvalues of real symmetric matrix M), (C3) and

(C4) there exist µ > 2, l1, l2 > 0, r ∈ L1([0, T ], R+),

H(t, x) : [0, T ]×Rn −→ R
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continuous in x for almost every t ∈ [0, T ], H(t, x) > 0 for x > 0,
t ∈ [0, T ], such that

F (t, x) =
r(t)|x|µ

µ
+H(t, x),

and µH(t, x) < ∇H(t, x) · x for |x| sufficiently large. Then, BVP (1.3)
has at least one solution.

Proof. Condition (C4) implies (C1) and (C2). Therefore, the result
follows. �

Finally, we consider the system

(3.4) ẍ+Mx+∇F (t, x) = 0, almost everywhere t ∈ R,

where
F : R×Rn −→ R and (t, x) 7−→ F (t, x)

is measurable in t for each x ∈ Rn, and continuously differentiable in x
for almost every t ∈ R,

∇F (t, x) =

(
∂F (t, x)

∂x1
,
∂F (t, x)

∂x2
, . . . ,

∂F (t, x)

∂xn

)T

.

Theorem 3.3. Assume that max1≤i≤n{λM
i } < λ0 = (π2/T 2), (λM

i ,
i = 1, 2, . . . , n, are eigenvalues of real symmetric matrix M), (C1),
(C2), (C3), and

(C5) F (t+ T, x) = F (t, x), ∇F (t,−x) = −∇F (t, x) hold.
Then, (3.4) has at least two 2T -periodic solutions.

Proof. Assume that x(t) is a solution of BVP (1.3). Let x1(t) =
−x(t− T ) for t ∈ [T, 2T ]. Then, ẍ1(t) = −ẍ(t− T ). By (C5), we have

∇F (t, x1(t)) = ∇F (t− T,−x(t− T )) = −∇F (t− T, x(t− T )).

Thus,

ẍ1(t) +Mx1(t) +∇F (t, x1(t)) =− ẍ(t− T )−Mx(t− T )

−∇F (t− T, x(t− T )) = 0
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and

x1(T ) = −x(0), x1(2T ) = −x(T ),

ẋ1(T ) = −ẋ1(0), ẋ1(2T ) = −ẋ1(T ).

Let

x(t) =

{
x(t) t ∈ [0, T ],

x1(t) t ∈ [T, 2T ].

Then, x(t) is a solution of (3.4) with x(0) = x(2T ), ẋ(0) = ẋ(2T ).
Since F (t, x) is 2T-periodic in t, x can be extended by 2T -periodic
over R to give a 2T -periodic solution of (3.4), and Theorem 3.1 gives
the existence of two solutions. The result follows. �

By Corollary 3.2 and Theorem 3.3 we have the following corollary.

Corollary 3.4. Suppose that max1≤i≤n{λM
i } < λ0 = (π2/T 2), (λM

i ,
i = 1, 2, . . . , n, are n real eigenvalues of real symmetric matrix M),
(C3), (C4) and (C5) hold. Then, (3.4) has at least one 2T -periodic
solution.
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