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CERTAIN K3 SURFACES PARAMETRIZED BY
THE FIBONACCI SEQUENCE

VIOLATE THE HASSE PRINCIPLE

DONG QUAN NGOC NGUYEN

ABSTRACT. For a prime p ≡ 5 (mod 8) satisfying cer-
tain conditions, we show that there exist an infinitude of K3
surfaces parameterized by certain solutions to Pell’s equation
X2 − pY 2 = 4 in the projective 5-space that are counterex-
amples to the Hasse principle explained by the Brauer-Manin
obstruction. Further, these surfaces contain no zero-cycle of
odd degree over Q. As an illustration for the main result, we
show that the prime p = 5 satisfies all of the required condi-
tions in the main theorem, and hence, there exist an infini-
tude of K3 surfaces parameterized by the Fibonacci sequence
that are counterexamples to the Hasse principle explained by
the Brauer-Manin obstruction.

1. Introduction. Let V be a smooth projective geometrically ir-
reducible variety over Q. The variety V is said to satisfy the Hasse
principle if the following holds: V(Q) ̸= ∅ if and only if V(AQ) ̸= ∅,
where AQ denotes the ring of rational adeles. If V has points locally
everywhere but no rational points over Q, we say that V is a counterex-
ample to the Hasse principle. Although the Hasse principle holds for
quadric hypersurfaces of arbitrary dimension, it fails in general. The
first counterexamples of genus 1 curves to the Hasse principle were dis-
covered by Lind [5] in 1940 and independently shortly thereafter by
Reichardt [10].

In 1970, Manin [6] introduced a subset of V(AQ), say V(AQ)
Br, such

that

V(Q) ⊆ V(AQ)
Br ⊆ V(AQ).

If the intermediate set V(AQ)
Br explains the failure of the Hasse

principle, that is, V(AQ)
Br = ∅, but V(AQ) is non-empty, we say that V
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is a counterexample to the Hasse principle explained by the Brauer-
Manin obstruction.

The main interest of this paper lies in constructing a new family
of K3 surfaces of genus 5 for which the following question has an
affirmative answer.

Question 1.1. Is the Brauer-Manin obstruction the only obstruction
to the Hasse principle for K3 surfaces?

To the author’s knowledge, Question 1.1 is still wide open although
there are several explicit examples of K3 surfaces which are counterex-
amples to the Hasse principle explained by the Brauer-Manin obstruc-
tion. We shortly recall some explicit examples of such K3 surfaces.
Note that these examples is just a small part of all the well-known
examples K3 surfaces that are counterexamples to the Hasse principle.

In [8], the author constructs certain quartic del Pezzo surfaces which
are counterexamples to the Hasse principle explained by the Brauer-
Manin obstruction. The construction of these quartic del Pezzo surfaces
generalizes that of a quartic del Pezzo violating the Hasse principle
by Birch and Swinnerton-Dyer [1]. Using these quartic del Pezzo
surfaces, the author [8] constructs algebraic families of K3 surfaces of
genus 5 which are counterexamples to the Hasse principle explained by
the Brauer-Manin obstruction. Thus, Question 1.1 has an affirmative
answer for the algebraic families of K3 surfaces of genus 5 in [8].

Colliot-Thélène, Coray and Sansuc [3] proved that the threefold
Y(5,1,1) in P5, defined by

Y(5,1,1) :

{
u2
1 − 5v21 = 2xy,

u2
2 − 5v22 = 2(x+ 20y)(x+ 25y),

is a counterexample to the Hasse principle explained by the Brauer-
Manin obstruction. Coray and Manoil [4] constructed one K3 surface
of genus 5 lying on the threefold Y(5,1,1) that is a counterexample to
the Hasse principle explained by the Brauer-Manin obstruction.

In [9], the author generalized the construction of the threefold
Y(5,1,1) in P5, violating the Hasse principle by Colliot-Thélène, Coray

and Sansuc [3] to produce arithmetic families of threefolds in P5 which
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are counterexamples to the Hasse principle explained by the Brauer-
Manin obstruction. In this paper, we will construct arithmetic families
of K3 surfaces of genus 5 lying on these same threefolds. Curiously,
there are several K3 surfaces of this type that are parametrized by the
Fibonacci sequence.

We now state a special case of our main theorem, see Theorem 3.1,
that describes certain K3 surfaces parametrized by the Fibonacci se-
quence which are counterexamples to the Hasse principle.

Theorem 1.2. Let (Fn)n≥0 be the Fibonacci sequence, that is, F0 = 0,
F1 = 1 and Fn+2 = Fn+1+Fn for every n ≥ 0. For each integer n ≥ 0,
define: 

λn = F 2
2n/536− 1099/14472,

µn = 55F 2
2n/536− 7669/1608,

νn = −325F 2
2n/268 + 71219/7236.

(1.1)

For each integer n ≥ 0, let Kn ⊂ P5 be the K3 surface defined by :

Kn :


u2 = 2xy + 5z2,

v2 − 5w2 = 2(x+ 20y)(x+ 25y),

w2 = λnx
2 + µnxy + νny

2 + z2.

(1.2)

Then, for every integer n ≥ 0, Kn satisfies the following.

(i) Kn is a counterexample to the Hasse principle explained by the
Brauer-Manin obstruction; and

(ii) Kn contains no zero-cycle of odd degree over Q.

Theorem 1.2 is a corollary to Theorem 3.1 that is a more general
result but requires certain technical conditions. We will prove Theo-
rem 3.1 in subsection 3.1 and Theorem 1.2 in subsection 3.2.

2. Certain threefolds in P5 violating the Hasse principle. In
this section, we recall one of our earlier results in [9] that describes the
construction of certain threefolds in P5 violating the Hasse principle.
The following theorem plays a key role in constructing certain K3
surfaces which are counterexamples to the Hasse principle explained
by the Brauer-Manin obstruction in Section 3.



1696 DONG QUAN NGOC NGUYEN

Theorem 2.1. ([9, Theorem 2.7]). Let p be a prime such that p ≡ 5
(mod 8). Let b and d be integers, and let q := |pd2− 4b2|. Assume that
the following are true:

(A1) 3 is a quadratic non-residue in F×
p .

(A2) b ̸≡ 0 (mod 3), b ̸≡ 0 (mod p) and b and d are odd integers.
(A3) q is either 1 or an odd prime.

Let X be the smooth variety in A5 defined by

X :

{
0 ̸= u2

1 − pv21 = 2x

0 ̸= u2
2 − pv22 = 2(x+ 4pb2)(x+ p2d2).

(2.1)

Let Z be a smooth and proper Q-model of X , and let Y be the singular
variety in P5 defined by

Y :

{
u2
1 − pv21 = 2xy

u2
2 − pv22 = 2(x+ 4pb2y)(x+ p2d2y).

(2.2)

Then,

(i) X ,Y and Z are counterexamples to the Hasse principle explained
by the Brauer-Manin obstruction; and

(ii) X ,Y and Z contain no zero-cycle of odd degree over Q.

Remark 2.2. The author [9] showed that there are infinitely many
triples (p, b, d) satisfying (A1)–(A3) in Theorem 2.1.

Example 2.3. Let (p, b, d) = (5, 1, 1). It is not difficult to verify that
the triple (p, b, d) satisfies (A1)–(A3). Let Y(5,1,1) be the singular Q-

threefold in P5
Q defined by

Y(5,1,1) :

{
u2
1 − 5v21 = 2xy

u2
2 − 5v22 = 2(x+ 20y)(x+ 25y).

By Theorem 2.1, Y(5,1,1) is a counterexample to the Hasse principle
explained by the Brauer-Manin obstruction and has no zero-cycles of
odd degree over Q. The threefold Y(5,1,1) is the well known Colliot-
Thélène-Coray-Sansuc threefold [3, Proposition 7.1].
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3. Certain K3 surfaces violating the Hasse principle. In this
section, we construct certain K3 surfaces of genus 5 which are coun-
terexamples to the Hasse principle explained by the Brauer-Manin ob-
struction.

The next result is the main theorem in this paper.

Theorem 3.1. We maintain the same notation and assumptions as
in Theorem 2.1. Assume (A1)–(A3). Let (Φ,Ω) ∈ Z2 be a solution to
Pell’s equation X2 − pY 2 = 4, and let λ, µ, ν ∈ Q be rational numbers.
Assume that the following are true:

(B1) ∆ := 2(8b2 − p2 − 1)(2pd2 − p2 − 1) is a perfect square in Z.
(B2) The conic Q2 ⊂ P2 defined by

Q2 : U2 + pV 2 − 2(p− 1 + 8b2)(p− 1 + 2pd2)T 2 = 0

possesses a point (Γ,Λ,Σ) ∈ Z3 such that gcd(Γ,Λ,Σ) = 1.
(B3) (λ, µ, ν) satisfies

4λ+ 2µ+ ν = −Ω2,

p2(p− 1)2Σ2λ+ 2p(p− 1)Σ2µ+ 4Σ2ν = −p2Λ2 − 4Σ2,

p2(p2 + 1)2λ− 2p(p2 + 1)µ+ 4ν = −4.

(3.1)

(B4) λµν ̸= 0 and µ2 − 4λν ̸= 0.

Let K ⊂ P5 be the K3 surface defined by

K :


u2 = 2xy + pz2,

v2 − pw2 = 2(x+ 4pb2y)(x+ p2d2y),

w2 = λx2 + µxy + νy2 + z2.

(3.2)

Then,

(i) K is a counterexample to the Hasse principle explained by the
Brauer-Manin obstruction; and

(ii) K contains no zero-cycle of odd degree over Q.

Remark 3.2. By the definition of K, it is not obvious that K is a K3
surface. In Lemma 3.7, we will prove that K is smooth, and hence, K
is a K3 surface.
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Remark 3.3. Note that the conic Q2 is nonsingular. Indeed, we know
that

(p− 1 + 8b2)(p− 1 + 2pd2) ≡ 1− 8b2 (mod p).

Since 2 is a quadratic non-residue in F×
p , we see that 1 − 8b2 ̸≡ 0

(mod p). Hence, we deduce that

(p− 1 + 8b2)(p− 1 + 2pd2) ∈ Z×
p ,

and thus, (p−1+8b2)(p−1+2pd2) ̸= 0. Therefore, Q2 is nonsingular.

Remark 3.4. Suppose that (Γ,Λ,Σ) ∈ Z3 with gcd(Γ,Λ,Σ) = 1
belongs to Q2(Q). We contend that Γ,Σ ̸≡ 0 (mod p). Indeed, we
know that

Γ2 + pΛ2 − 2(p− 1 + 8b2)(p− 1 + 2pd2)Σ2 = 0.(3.3)

Reducing the equation above modulo p, we deduce that Γ2 ≡ 2(1−8b2)
Σ2 (mod p). Since 2 is not a square modulo p, we see that 1− 8b2 ̸≡ 0
(mod p). Hence, Γ ≡ 0 (mod p) if and only if Σ ≡ 0 (mod p). Assume
that one of these integers is zero modulo p. It then follows that both Γ
and Σ are zero modulo p, and hence,

Γ = pΓ1, Σ = pΣ1,

for some integers Γ1,Σ1. It follows from (3.3) that

pΓ2
1 + Λ2 − 2p(p− 1 + 8b2)(p− 1 + 2pd2)Σ2

1 = 0.

Taking the above equation modulo p, we deduce that Λ ≡ 0 (mod p),
which is a contradiction to the assumption that gcd(Γ,Λ,Σ) = 1.
Therefore, Γ ̸≡ 0 (mod p) and Σ ̸≡ 0 (mod p). It also follows from
the last two congruences that Γ and Σ are nonzero integers.

Remark 3.5. Let (Φ,Ω) ∈ Z2 be a solution to Pell’s equation X2 −
pY 2 = 4. It is well known that there are infinitely many solutions to the
last equation. Let (p, b, d) be a triple of integers satisfying (A1)–(A3)
and (B2). It is not difficult to show that there exists (λ, µ, ν) ∈ Q3

that satisfies (3.1), i.e., (B3) is satisfied. Indeed, the matrix M on the
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right-hand side of (3.1), defined by

M =

 4 2 1
p2(p− 1)2Σ2 2p(p− 1)Σ2 4Σ2

p2(p2 + 1)2 −2p(p2 + 1) 4

 ,

is of determinant

−2p2(p+ 1)(p2 − p− 4)(p3 + p+ 4)Σ2 ̸= 0.

Upon computing the inverse of M , we deduce that (λ, µ, ν) can be
explicitly defined by

λµ
ν

 =


−4

(p2−p−4)(p3+p+4)
1

p2(p+1)(p2−p−4)Σ2
1

p2(p+1)(p3+p+4)

−2p(p2−p+2)
(p2−p−4)(p3+p+4)

p3+p−4
2p2(p+1)(p2−p−4)Σ2

−p2+p−4
2p2(p+1)(p3+p+4)

p2(p−1)(p2+1)
(p2−p−4)(p3+p+4)

−p2−1
p(p+1)(p2−p−4)Σ2

p−1
p(p+1)(p3+p+4)


(3.4)

×

 −Ω2

−p2Λ2 − 4Σ2

−4

 ,

where “×” denotes the matrix multiplication.

We will prove Theorem 3.1 in subsection 3.1.

We now prove some lemmata that we will need in the proof of
Theorem 3.1.

Lemma 3.6. We maintain the same notation and assumptions as in
Theorem 3.1. Then,

C1C2C3C4C5C6C7C8C9 ̸= 0,

where 
C1 := 16p2b4λ− 4pb2µ+ ν + 8b2,

C2 := p4d4λ− p2d2µ+ ν + 2pd2,

C3 := ν + 8b2d2p2,

C4 := λ+
2

p
,
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

C5 := (pµ+ 8b2p+ 2d2p2 − 2)2 − 4p(ν + 8b2d2p2)(pλ+ 2),

C6 := (2− pµ)2 − 4p2λν,

C7 := 16p2b4λ− 4pb2µ+ ν,

C8 := p4d4λ− p2d2µ+ ν,

C9 := p(µ+ 8b2 + 2pd2)2 − 4(pλ+ 2)(ν + 8b2d2p2).

Proof. By definition, we see that Ci is a rational number for each
1 ≤ i ≤ 9. For each 1 ≤ i ≤ 9, denote the numerator of Ci by Di.
By (3.4) and computation, it can be shown that, for each 2 ≤ i ≤ 9,
there exist positive integers ni and ki such that Di satisfies

Di ≡ 2niΣki (mod p).

Take any integer i with 2 ≤ i ≤ 9. If Ci = 0, then Di is zero, and
hence,

Di ≡ 0 (mod p).

It thus follows that
2niΣki ≡ 0 (mod p),

which is a contradiction to Remark 3.4. Therefore, Ci ̸= 0 for each
2 ≤ i ≤ 9.

We now prove that C1 ̸= 0. By (3.4) and computation, we can show
that

D1 ≡ −16Σ2(8b2 − 1) (mod p).

By Remark 3.4, we know that Σ ̸≡ 0 (mod p). Since 2 is a quadratic
non-residue in F×

p , we deduce that 8b2 − 1 ̸≡ 0 (mod p), and thus,
D1 ̸≡ 0 (mod p). Therefore, D1 ̸= 0, and hence, C1 ̸= 0. Hence, our
contention follows. �

Lemma 3.7. We maintain the same notation and assumptions as in
Theorem 3.1. Then K is smooth, that is, K is a K3 surface.

Remark 3.8. We will use the Jacobian criterion to prove Lemma 3.7
in subsection A.1. Since the proof of Lemma 3.7 is rather technical, we
postpone the proof of Lemma 3.7 until Appendix A.



K3 SURFACES VIOLATING THE HASSE PRINCIPLE 1701

3.1. Proof of Theorem 3.1. In this subsection, we will prove The-
orem 3.1. Before proceeding, we recall the following lemma which will
be needed in the proof of Theorem 3.1.

Lemma 3.9. ([4, Lemma 4.8]). Let k be a number field, and let V1

and V2 be (proper) k-varieties. Assume that there is a k-morphism
α : V1 → V2 and that V2(Ak)

Br = ∅. Then, V1(Ak)
Br = ∅.

Proof of Theorem 3.1. Letting

(u, z, v, w) = (u1, v1, u2, v2),

we deduce that K lies on the threefold Y in Theorem 2.1. Hence, there
exists a Q-morphism

σ : K −→ Y,

and it thus follows from Theorem 2.1 (ii) and Lemma 3.9 that K con-
tains no zero-cycle of odd degree over Q and K(AQ)

Br = ∅. Therefore,
it remains to show that K is everywhere locally solvable. For any odd
prime l ̸= p, we see that at least one of −1, p, −p is a square in Q×

l .
Hence, it suffices to consider the following cases.

⋆ Case 1. l is an odd prime such that −1 is a square in Q×
l . Define

K1 : = (x : y : z : u : v : w)

= (p(p− 1)Σ : 2Σ : 2Σ : 2pΣ : pΓ : pΛ
√
−1).

We contend that K1 lies on K. Indeed, it is obvious that K1 satisfies
the first equation of (3.2). By (B2), we know that

Γ2 + pΛ2 = 2(p− 1 + 8b2)(p− 1 + 2pd2)Σ2.

Hence, multiplying both sides of the above identity by p2 and writing

p
(
p2Λ2

)
as −p

(
pΛ

√
−1

)2
, we deduce that K1 satisfies the second

equation of (3.2). Furthermore, it follows from the second equation
of (3.1) that K1 satisfies the third equation of (3.2). Since −1 is a
square in Q×

l , we deduce that K1 ∈ K(Ql), and therefore, K is locally
solvable at l.

⋆ Case 2. l = ∞ or l is an odd prime such that p is a square in Q×
l .

Define

K2 := (x : y : z : u : v : w) = (0 : 0 : 1 :
√
p :

√
p : 1).
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It can easily be verified that K2 ∈ K(Ql), and hence, K is locally
solvable at l.

⋆ Case 3. l is an odd prime such that −p is a square in Q×
l . Define

K3 : = (x : y : z : u : v : w)

= (−p(p2 + 1) : 2 : 2 : 2p
√
−p : p

√
∆ : 0),

where ∆ is defined in (B1) of Theorem 3.1. It is obvious that K3

satisfies the first equation of (3.2). Using (B1), it can easily be checked
that K3 satisfies the second equation of (3.2). Furthermore, it follows
from the third equation of (3.1) that the third equation of (3.2) holds
for K3. Since

√
−p ∈ Q×

l , we deduce that K3 ∈ K(Ql). It thus follows
that K is locally solvable at l.

⋆ Case 4. l = 2. Define

K4 : = (x : y : z : u : v : w)

= (2 : 1 : Ω : Φ : 2
√

(1 + 2pb2)(2 + p2d2) : 0).

Since Φ2 = 4+ pΩ2, it can easily be verified that K4 lies on K. Since b
and d are odd, we know that b2 ≡ d2 ≡ 1 (mod 8). Since p ≡ 5
(mod 8), it may be deduced that

(1 + 2pb2)(2 + p2d2) ≡ (1 + 10)(2 + 52) ≡ 1 (mod 8).

Hence,
√
(1 + 2pb2)(2 + p2d2) ∈ Q×

2 , and thus, K4 ∈ K(Q2). There-
fore, K is locally solvable at 2.

⋆ Case 5. l = p. Since p ≡ 5 (mod 8), we know that −1 is a square
in Q×

p . Hence, it follows from Case 1 that K is locally solvable at p.

Therefore, in each case, K is everywhere locally solvable, and thus,
our contention follows. �

3.2. Proof of Theorem 1.2. In this subsection, we prove Theo-
rem 1.2 using Theorem 3.1.

Proof of Theorem 1.2. Throughout the proof, we maintain the same
notation as in Theorem 3.1. Let (p, b, d) = (5, 1, 1). It can easily be
verified that the triple (p, b, d) = (5, 1, 1) satisfies Theorem 2.1 (A1)–
(A3).
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We see that ∆ = 576 = 242, where ∆ is defined as in Theorem
3.1 (B1). Hence, (B1) is true.

We know that the conic Q2 in (B1) of Theorem 3.1, defined by

Q2 : U2 + 5V 2 − 336T 2 = 0,

has a point (Γ : Λ : Σ) = (52 : 8 : 3). Thus, (B2) holds.

Let (Ln)n≥0 be the Lucas sequence, that is, L0 = 2, L1 = 1 and
Ln+2 = Ln+1 + Ln for every n ≥ 0. It is well known [7, page 61] that

(3.5) L2
2n − 5F 2

2n = 4

for every nonnegative integer n ≥ 0. Thus, the pair (X,Y ) :=
(L2n, F2n) satisfies Pell’s equation X2 − 5Y 2 = 4 for every n ≥ 0.

Let n be an arbitrary nonnegative integer. We see that the triple
(λn, µn, νn) defined by (1.1) satisfies system (3.1) in Theorem 3.1 (B3),
where p, Ω, Λ, Σ are taken to be 5, F2n, 8, 3, respectively. Hence,
(λn, µn, νn) satisfies (B3).

It is clear from (1.1) that λn, µn, νn are nonzero. Furthermore, we
see that

µ2
n−4λnνn=

5625

287296

(
F 2
2n−

16

75
F2n−

73417

2025

)(
F 2
2n+

16

75
F2n−

73417

2025

)
.

Since F2n is a positive integer and the polynomial defined by(
X2 − 16

75
X − 73417

2025

)(
X2 +

16

75
X − 73417

2025

)
has no zeros in Q, we deduce that µ2

n − 4λnνn is non-zero. Thus, (B4)
is true.

Let Kn be the K3 surface defined by (1.2). It is easily seen that
Kn is precisely the K3 surface defined by (3.2) with 5, 1, 1, λn, µn,
νn in the roles of p, b, d, λ, µ, ν, respectively. It, thus, follows from
Theorem 3.1 that Kn satisfies Theorem 1.2 (i), (ii). Therefore, our
contention follows. �
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APPENDIX

A. Proof of Lemma 3.7.

A.1. Proof of Lemma 3.7. In this subsection, we prove Lemma 3.7.
We prove that K is smooth if and only if

9∏
i=1

Ci ̸= 0,

where the Ci are as defined in Lemma 3.6. We use the Jacobian
criterion to prove that K is smooth. Assume the contrary, that is, K is
singular at some point P := (x : y : z : u : v : w). Then, the Jacobian
matrix of K, defined by
(A.1)

JK =
(

2y 2x 2pz −2u 0 0

4x + 2(p2d2 + 4pb2)y 16b2d2p3y + 2(p2d2 + 4pb2)x 0 0 −2v 2pw
2λx + µy 2νy + µx 2z 0 0 −2w

)
,

is of rank less than 3. Consider the following cases.

⋆ Case 1. uv ̸= 0. We know that the matrix defined by−2u 0 2pz
0 −2v 0
0 0 2z


is of determinant 8zuv. Since uv ̸= 0, we deduce that z = 0, and it
thus follows from the first equation of (3.2) that 2xy = u2 ̸= 0. Hence,
x ̸= 0 and y ̸= 0. Since rank(JK) < 3, we know that both of the
matrices defined by−2u 0 2y

0 −2v 4x+ 2(p2d2 + 4pb2)y
0 0 2λx+ µy


and −2u 0 2x

0 −2v 16b2d2p3y + 2(p2d2 + 4pb2)x
0 0 2νy + µx


are of determinant 0. Therefore, it follows that 2λx+µy = 2νy+µx = 0.
Eliminating x and y in the last two equations, we deduce that
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µ2 − 4λν = 0,

which is a contradiction to (B4).

⋆ Case 2. u = 0 and v = 0. In this case, we consider the following
subcases.

• Subcase 1. w = 0. It follows from the second equation of (3.2)
that x = −4pb2y or x = −p2d2y. If x = −4pb2y, then it follows from
the first equation of (3.2) that pz2 = −2xy = 8pb2y2. We contend that
y ̸= 0; otherwise, x = y = z = u = v = w = 0, which is a contradiction.
Thus, y ̸= 0, and, with no loss of generality, we can assume that y = 1.
Therefore, x = −4pb2 and z2 = 8b2. Substituting the last two identities
into the third equation of (3.2), we deduce that

C1 = 16p2b4λ− 4pb2µ+ ν + 8b2 = 0,

which is a contradiction to Lemma 3.6.

If x = −p2d2y, then, repeating the same arguments as above, we
deduce that

C2 = p4d4λ− p2d2µ+ ν + 2pd2 = 0,

which is a contradiction to Lemma 3.6.

• Subcase 2. w ̸= 0. First assume that z = 0. By the first equation of
(3.2), we see that x = 0 or y = 0. If x = 0, then it follows from (3.2) that
w2 = −8b2d2p2y2 and w2 = νy2. Using the last two identities, it can
be shown that yw ̸= 0. Eliminating y and w in the last two identities,
we deduce that C3 = ν + 8b2d2p2 = 0, which is a contradiction to
Lemma 3.6. If y = 0, then, repeating the same arguments as above, we
deduce that C4 = λ+(2/p) = 0, which is a contradiction to Lemma 3.6.

Now suppose that z ̸= 0. By (3.2), we know that xy=−pz2/2 ̸= 0.

The matrices defined by2pz 0 2y

0 2pw 4x+ 2(p2d2 + 4pb2)y
2z −2w 2λx+ µy


and 2pz 0 2x

0 2pw 16b2d2p3y + 2(p2d2 + 4pb2)x
2z −2w 2νy + µx


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are of determinants

4pzw(y(pµ+ 8b2p+ 2d2p2 − 2) + 2x(pλ+ 2))

and

4pzw(x(pµ+ 8b2p+ 2d2p2 − 2) + 2py(8b2d2p2 + ν)),

respectively. Since P is a singular point of K and zw ̸= 0, it follows
that

y(pµ+ 8b2p+ 2d2p2 − 2) + 2x(pλ+ 2) = x(pµ+ 8b2p+ 2d2p2 − 2)

+ 2py(8b2d2p2 + ν) = 0.

Eliminating x and y in the last two equations, we deduce that

C5 = (pµ+ 8b2p+ 2d2p2 − 2)2 − 4p(ν + 8b2d2p2)(pλ+ 2) = 0,

which is a contradiction to Lemma 3.6.

⋆ Case 3. u = 0 and v ̸= 0. First assume that w ̸= 0. We know that
the matrices defined by 2x 0 0

16b2d2p3y + 2(p2d2 + 4pb2)x −2v 2pw
2νy + µx 0 −2w


and  2y 0 0

4x+ 2(p2d2 + 4pb2)y −2v 2pw
2λx+ µy 0 −2w


are of determinant 0. Since vw ̸= 0, it follows that x = y = 0, and it
thus follows from (3.2) that z = w = 0, a contradiction.

Now suppose that w = 0. If z = 0, then it follows from (3.2)
that x = 0 or y = 0. By the third equation of (3.2), we deduce that
x = νy2 = 0 or y = λx2 = 0. Therefore, x = y = 0, and hence, v = 0,
a contradiction. Thus, z is nonzero, and hence, xy ̸= 0.

The matrices defined by 2y 2pz 0

4x+ 2(p2d2 + 4pb2)y 0 −2v
2λx+ µy 2z 0


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and  2x 2pz 0
16b2d2p3y + 2(p2d2 + 4pb2)x 0 −2v

2νy + µx 2z 0


are of determinants

4vz((2− pµ)y − 2pλx)

and
4vz((2− pµ)x− 2pνy),

respectively. Since vz ̸= 0, it follows that

(2− pµ)y − 2pλx = (2− pµ)x− 2pνy = 0.

Eliminating x and y in the above equations, we deduce that

C6 = (2− pµ)2 − 4p2λν = 0,

a contradiction to Lemma 3.6.

⋆ Case 4. u ̸= 0 and v = 0. We know that the matrix defined by−2u 2pz 0
0 0 2pw
0 2z −2w


is of determinant 8pzuw. Hence, z = 0 or w = 0. We consider the
following subcases.

• Subcase 1. z = 0. By the first equation of (3.2), we deduce that
xy = u2/2 ̸= 0. We contend that w ̸= 0; otherwise, it follows from
the second equation of (3.2) that x = −4pb2y or x = −p2d2y. If
x = −4pb2y, it then follows from the third equation of (3.2) that

C7 = 16p2b4λ− 4pb2µ+ ν = 0,

a contradiction to Lemma 3.6.

If x = −p2d2y, then, using the same arguments as above, we deduce
that

C8 = p4d4λ− p2d2µ+ ν = 0,
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a contradiction to Lemma 3.6. Hence, w ̸= 0. We know that the
matrices defined by−2u 0 2y

0 2pw 4x+ 2(p2d2 + 4pb2)y
0 −2w 2λx+ µy


and −2u 0 2x

0 2pw 16b2d2p3y + 2(p2d2 + 4pb2)x
0 −2w 2νy + µx


are of determinants

−4uw
(
(2pλ+ 4)x+ (pµ+ 8pb2 + 2p2d2)y

)
and

−4uw
(
(pµ+ 8pb2 + 2p2d2)x+ (2pν + 16b2d2p3)y

)
,

respectively. Since uw ̸= 0, we deduce that{
(2pλ+ 4)x+ (pµ+ 8pb2 + 2p2d2)y = 0

(pµ+ 8pb2 + 2p2d2)x+ (2pν + 16b2d2p3)y = 0.

Eliminating x and y in the equations above, it is easily seen that

C9 = p(µ+ 8b2 + 2pd2)2 − 4(pλ+ 2)(ν + 8b2d2p2) = 0,

a contradiction to Lemma 3.6.

• Subcase 2. w = 0. By subcase 1, it may be assumed that z ̸= 0.
We know that the matrix defined by−2u 2pz 2y

0 0 4x+ 2(p2d2 + 4pb2)y
0 2z 2λx+ µy


is of determinant

8zu(2x+ (p2d2 + 4pb2)y).

It thus follows that

(A.2) 2x+ (p2d2 + 4pb2)y = 0.
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On the other hand, it follows from the second equation of (3.2) that
x = −4pb2y or x = −p2d2y. We contend that xy ̸= 0; otherwise,
x = y = 0, and hence, it follows from the third equation of (3.2) that
z = 0, a contradiction. If x = −4pb2y, then it follows from (A.2) that

p2d2 − 4pb2 = 0.

Hence, it follows that

pq = ±p(pd2 − 4b2) = ±(p2d2 − 4pb2) = 0,

a contradiction to (A3). If x = −p2d2y, then the same arguments as
above show that pq = 0, a contradiction to (A3).

From these arguments, we deduce that K is smooth.

Acknowledgments. The computations in the proof of Lemma 3.6
were carried out using Magma computational algebra software [2].
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