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THE PRIME SPECTRUM AND DIMENSION
OF IDEAL TRANSFORM ALGEBRAS

KAMAL BAHMANPOUR

ABSTRACT. Let (R,m) be a commutative Noetherian
local ring of dimension d ≥ 1, and let I be a non-nilpotent
ideal of R such that the ideal transform functor DI(−) is
exact. In this paper, it is shown that the finitely generated
flat R-algebra DI(R) is a Noetherian ring of dimension
n = dimR/ΓI(R) − 1. Also, it is shown that, under Zariski
topologies on the sets SpecDI(R) and SpecR/ΓI(R), there
is a homeomorphism of topological spaces:

η̃∗ : SpecDI(R) −→ SpecR/ΓI(R) \ V ((I + ΓI(R))/ΓI(R)).

1. Introduction. Throughout this paper, let R denote a commu-
tative Noetherian ring (with identity) and I an ideal of R. The local
cohomology modules Hi

I(M), i = 0, 1, 2, . . ., of an R-module M with
respect to I were introduced by Grothendieck [7]. They arise as the
derived functors of the left exact functor ΓI(−), where for an R-module
M , ΓI(M) is the submodule of M consisting of all elements annihilated
by some power of I, i.e.,

∞∪
n=1

(0 :M In).

There is a natural isomorphism:

Hi
I(M) ∼= lim−→

n≥1

ExtiR(R/In,M).

The reader is referred to [3, 7] for more details about local cohomology.
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Recall that, for an R-module M , the cohomological dimension of M
with respect to I is defined as

cd(I,M) := sup{i ∈ Z : Hi
I(M) ̸= 0}.

The cohomological dimension has been studied by several authors,
see, for example, Faltings [5], Hartshorne [8], Huneke-Lyubeznik [12],
Divaani-Aazar, et al. [4], Hellus [9], Hellus-Stückrad [10], Mehrvarz,
et al. [14], and Ghasemi, et al. [6].

Recall that, for any proper ideal I of R, the arithmetic rank of I,
denoted by ara(I), is the least number of elements of I required to
generate an ideal which has the same radical as I. Also, recall that, for
any ideal I of an arbitrary Noetherian ring R, the I-transform functor,
denoted by DI(−), is defined as:

DI(−) = lim−→
n≥1

HomR(I
n,−).

It is well known that the R-module DI(R) has a finitely generated
R-algebra structure whenever the functor DI(−) is exact.

In this paper, as our main result, we shall prove that if the I-
transform functor DI(−) is exact and non-zero, then the finitely
generated flat R-algebra DI(R) is a Noetherian ring of dimensiom
n = dimR/ΓI(R)− 1. In addition, it is shown that, under the Zariski
topologies on the sets SpecDI(R) and SpecR/ΓI(R), there is a home-
omorphism of topological spaces:

η̃∗ : SpecDI(R) −→ SpecR/ΓI(R) \ V ((I + ΓI(R))/ΓI(R)).

For each R-module L, we denote by AsshRL the set {p ∈ AssR L :
dimR/p = dimL}. For any ideal a of R, we denote by V (a) the set
{p ∈ SpecR : p ⊇ a}. Also, for any ideal b of R, the radical of b,
denoted Rad(b), is defined to be the set {x ∈ R : xn ∈ b for some
n ∈ N}. Finally, for each ring T , we denote the set of all maximal
ideals of T by Max(T ). For any undefined notation and terminology
the reader is referred to [3, 13].

2. Preliminaries. In this section, we prove some technical results,
which will be used later. We begin this section with the following well-
known result, which is needed in the proof of Lemma 2.3.
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Lemma 2.1. Let (R,m) be a Noetherian local ring of dimension d ≥ 1,
and let x1, . . . , xd be a system of parameters of R. Then, for each
1 ≤ i ≤ d, there exists a minimal prime ideal p over (x1, . . . , xi) such
that height p = i and dimR/p = d− i.

Proof. See [2, Lemma 3.1]. �

The next definition will be quite useful in this section.

Definition 2.2. Let (R,m) be a Noetherian local ring of dimension d.
Then, we define

Υi(R) := {p ∈ SpecR : height p = i and dimR/p = d− i},

for every integer 0 ≤ i ≤ d.

Note that, if (R,m) is a Noetherian local ring of dimension d, then

Υ0(R) = AsshR R and Υd(R) = {m}.

The following result is needed in the proofs of Lemma 2.4 and
Proposition 2.7.

Lemma 2.3. Let (R,m) be a Noetherian local ring of dimension d ≥ 1.
Let x ∈ m, and let n be an integer such that 0 ≤ n ≤ d− 1. If x /∈ q for
some q ∈ Υ0(R), then there exists a prime ideal p ∈ Υn(R) such that
q ⊆ p and x /∈ p.

Proof. As the assertion is clear for n = 0, we may assume that
1 ≤ n ≤ d− 1. Since, by hypothesis, we have x /∈ q and q ∈ Υ0(R), it
follows that

dimR/(q+Rx) = dimR/q− 1 = d− 1,

and thus, y1 := x+q is a subset of a system of parameters for the local
ring R/q. Then, there are elements y2 = x2 + q, . . . , yd = xd + q ∈ m/q
such that y1, y2, . . . , yd is a system of parameters for the local ring
R/q. Then, by Lemma 2.1, there exists a minimal prime ideal p/q over
(y2, . . . , yn+1) such that height p/q = n and dim(R/q)/(p/q) = d − n.
Now, it is straightforward to see p ∈ [Υn(R)

∩
V (q)] and y1 /∈ p/q,

which implies that x /∈ p. �
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The following result plays a key role in the proof of Theorem 3.1.

Lemma 2.4. Let (R,m) be a Noetherian local ring of dimension d ≥ 1,
and let n be an integer such that 0 ≤ n ≤ d− 1. Then, we have∩

p∈Υn(R)

p =
∩

p∈Υ0(R)

p.

In particular, we have∩
p∈Υ0(R)

p =
∩

p∈Υ1(R)

p = · · · =
∩

p∈Υd−2(R)

p =
∩

p∈Υd−1(R)

p.

Proof. As the assertion is clear for n = 0, we may assume that
1 ≤ n ≤ d − 1. Now, let p ∈ Υn(R). Since, by hypothesis, we have
height p = n, it follows that a chain of distinct prime ideals of R exists
as

q0 ⊂ q1 ⊂ · · · ⊂ qn−1 ⊂ p.

Also, by the hypothesis, dimR/p = d − n. Thus, a chain of distinct
prime ideals of R exists as

p ⊂ p1 ⊂ · · · ⊂ pd−n−1 ⊂ pd−n = m.

Now, from the chain

q0 ⊂ q1 ⊂ · · · ⊂ qn−1 ⊂ p ⊂ p1 ⊂ · · · ⊂ pd−n−1 ⊂ pd−n = m,

we conclude that q0 ∈ Υ0(R), and thus, we have∩
p∈Υ0(R)

p ⊆ q0 ⊆ p.

This yields ∩
p∈Υ0(R)

p ⊆
∩

p∈Υn(R)

p.

Therefore, it is enough to prove that∩
p∈Υn(R)

p ⊆
∩

p∈Υ0(R)

p.
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In order to do this, assume the opposite. There is an element

x ∈
[( ∩

p∈Υn(R)

p

)]
\
( ∩

p∈Υ0(R)

p

)]
.

Then, there exists an element q ∈ Υ0(R) such that x /∈ q. Now, it
follows from Lemma 2.3 that x /∈ P for some P ∈ [Υn(R)

∩
V (q)].

However, this is a contradiction since, by hypothesis, we have x ∈∩
p∈Υn(R) p. �

The following results are some consequences of Lemma 2.4.

Corollary 2.5. Let (R,m) be a Noetherian local domain of dimension
d ≥ 1. Then, we have

0 =
∩

p∈Υ1(R)

p = · · · =
∩

p∈Υd−2(R)

p =
∩

p∈Υd−1(R)

p.

Proof. This follows from Lemma 2.4. �

Corollary 2.6. Let (R,m) be a Noetherian local Cohen-Macaulay ring
of dimension d ≥ 1, and let n be an integer such that 0 ≤ n ≤ d − 1.
Then, we have ∩

p∈Υn(R)

p = Rad(0).

In particular, this yields

Rad(0) =
∩

p∈Υ0(R)

p =
∩

p∈Υ1(R)

p = · · · =
∩

p∈Υd−2(R)

p =
∩

p∈Υd−1(R)

p.

Proof. The assertion is clear by [13, Theorems 17.3, 17.4] and
Lemma 2.4. �

We close this section with the next result.

Proposition 2.7. Let (R,m) be a Noetherian local ring of dimension
d ≥ 2, and let n be an integer such that 1 ≤ n ≤ d− 1. Then, for each
q1 ∈ Υ0, the following set is infinite:

Φn(q1) := {p ∈ Υn(R) : {q ∈ Υ0(R) : p ∈ V (q)} = {q1}}.
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Proof. If we have Υ0(R) = {q1}, then the assertion is clear by
Lemma 2.4. Thus, we may assume Υ0(R) ̸= {q1}. Then, there is
an element

x ∈
[( ∩

q∈(Υ0(R)\{q1})

q

)
\ q1

]
.

By Lemma 2.3, there exists a prime ideal P ∈ [V (q1) ∩ Υn(R)] such
that x /∈ P . In particular, we have P ∈ Φn(q1), and thus, Φn(q1) ̸= ∅.

Now, we claim that Φn(q1) is an infinite set. Assume the oppo-
site. Then the set Φn(q1) is a nonempty finite set. Let Φn(q1) =
{P1, . . . , Pk}. Thus, by definition, we have[( ∩

q∈(Υ0(R)\{q1})

q

)∩( k∩
i=1

Pi

)]
̸⊆ q1.

Hence, there exists an element

x1 ∈
[( ∩

q∈(Υ0(R)\{q1})

q

)∩( k∩
i=1

Pi

)]
such that x1 /∈ q1. Then, by Lemma 2.3, a prime ideal Q ∈ [V (q1) ∩
Υn(R)] exists such that x1 /∈ Q. In particular, we have Q ∈ Φn(q1)
and x1 /∈ Q, which is a contradiction. �

3. Main results. In this section we shall prove our main results,
Theorems 3.1 and 3.2.

Theorem 3.1. Let (R,m) be a Noetherian local ring of dimension
d ≥ 1, and let I be an ideal of R with cd(I,R) = 1. Then, DI(R) is a
Noetherian flat R-algebra of dimension n = dimR/ΓI(R)− 1.

Proof. Let dimR/ΓI(R) = d′. First, note that, since we have
cd(I,R) = 1, it follows from [3, Lemma 6.3.1] that the functor DI(−)
is exact. Thus, by [3, Proposition 6.3.5], we have DI(R) = IDI(R).
Hence, it follows from [3, Proposition 6.3.4] that DI(R) is a finitely
generated R-algebra. Therefore, DI(R) is a Noetherian ring. Moreover,
it follows from [1, Theorem 3.11] that the ring DI(R) is a Noetherian
flat R-algebra.
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Now, in order to prove dimDI(R) = dimR/ΓI(R) − 1 (as a ring),
first we use the isomorphismDI(R) ≃ DI(R/ΓI(R)), given in [3, Corol-
lary 2.2.8 (ii)]. By this isomorphism, and using [3, Corollary 2.1.7 (iii)],
replacing R/ΓI(R) with R, without loss of generality, we may assume
that ΓI(R) = 0, cd(I,R) = 1 and dimR = d′. Then, we must prove
dimDI(R) = dimR − 1 = d′ − 1. However, under this hypothesis, it
follows from [3, Theorem 6.2.7] that grade(I,R) = 1. Now, using this
fact, it follows from [3, Corollary 6.3.6] that height I = 1. Therefore,
we have

I ̸⊆
∪

p∈Υ0(R)

p,

where Υ0(R) = AsshR R. In particular,

I ̸⊆
∩

p∈Υ0(R)

p.

Then, by Lemma 2.4, we have

I ̸⊆
∩

p∈Υd′−1(R)

p =
∩

p∈Υ0(R)

p.

Therefore, by definition, there exists an element Q ∈ Υd′−1(R) such
that I ̸⊆ Q. Then, we have Rad(I + Q) = m and heightQ = d′ − 1.
Since the R-module H1

I (R) is I-torsion, in view of [3, Exercise 2.1.9],
we have

Hi
Q(H1

I (R)) ≃ Hi
I+Q(H1

I (R)) = Hi
m(H

1
I (R)),

for each integer i ≥ 0. In particular, we have SuppHi
Q(H1

I (R)) ⊆
{m} for each integer i ≥ 0. On the other hand, since heightQ =
d′ − 1, it follows from Grothendieck’s non-vanishing theorem that

Q ∈ SuppHd′−1
Q (R). Next, by [3, Theorem 2.2.4], there exists an

exact sequence

0 −→ R −→ DI(R) −→ H1
I (R) −→ 0,

which induces the following exact sequence

Hd′−2
Q (H1

I (R)) −→ Hd′−1
Q (R) −→ Hd′−1

Q (DI(R)) −→ Hd′−1
Q (H1

I (R)).

Now, the last exact sequence implies that Q ∈ SuppHd′−1
Q (DI(R)). In
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particular, using the Independence theorem, we have

Hd′−1
QDI(R)(DI(R)) ≃ Hd′−1

Q (DI(R)) ̸= 0.

Thus, it follows from Grothendieck’s vanishing theorem that dimDI(R)
≥ d′ − 1.

At this point, it is enough to prove dimDI(R) ≤ d′ − 1.

By [3, Theorem 2.2.4] there exists an exact sequence

0 −→ R
ηR−→ DI(R)

ζ0
R−→ H1

I (R) −→ 0,

ofR-modules andR-homomorphisms. Moreover, by [3, Exercise 2.2.10],
the map ηR is a ring homomorphism. Therefore, without loss of gen-
erality, we may assume that R is a subring of the ring DI(R) and
H1

I (R) = DI(R)/R. Now, let n be an arbitrary maximal ideal ofDI(R).
Since we have IDI(R) = DI(R), I ⊆ R ⊆ DI(R) and n ̸= DI(R), it
follows that there exists an element a ∈ I such that a /∈ n. Since
the R-module H1

I (R) = DI(R)/R is I-torsion, from the hypothesis
a ∈ I, it follows that (DI(R)/R)a = 0, where (DI(R)/R)a is the lo-
calization of the R-module DI(R)/R to the multiplicatively closed set
{1R , a, a

2, a3, . . .}. In particular, we have Ra = (DI(R))a. Now, since
{1

R
, a, a2, a3, . . .} ⊆ (DI(R) \ n), we have the following isomorphism of

DI(R)-modules: (DI(R))n ≃ ((DI(R))a)n. Hence, we have:

height n = dim(DI(R))n = dim((DI(R))a)n ≤ dim(DI(R))a

= dimRa ≤ dimR− 1 = d′ − 1,

whence,

dimDI(R) = sup{height n : n ∈ Max(DI(R))} ≤ d′ − 1,

as required. �

Note that, if A and B are two commutative rings with identities
and φ : A → B is a ring homomorphism, then, for each prime ideal q
of B, the ideal p = φ−1(q) of A is a prime ideal, and hence, φ induces
a mapping φ∗ : SpecB → SpecA. Also, it is well known that φ∗

is a continuous map, under the Zariski topologies on both SpecB
and SpecA. Now, let (R,m) be an arbitrary Noetherian local ring
and I a non-nilpotent ideal of R. Then, by [3, Exercise 2.2.10], there
is a ring homomorphism η : R/ΓI(R) → DI(R/ΓI(R)) which is a
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monomorphism. Also, there is a ring isomorphism DI(R/ΓI(R)) ≃
DI(R). Therefore, there is a natural mapping η∗ : SpecDI(R) →
SpecR/ΓI(R) which is a continuous map.

Theorem 3.2. Let (R,m) be a Noetherian local ring of dimension
d ≥ 1, and let I be an ideal of R with cd(I,R) = 1. Consider the
sets SpecDI(R) and subspace SpecR/ΓI(R) \ V ((I + ΓI(R))/ΓI(R))
of SpecR/ΓI(R) with the usual Zariski topologies. Then, there is a
homeomorphism

η̃∗ : SpecDI(R) −→ SpecR/ΓI(R) \ V ((I + ΓI(R))/ΓI(R)),

which is induced by η∗.

Proof. Without loss of generality, we may assume that ΓI(R) = 0.
Then, we must find a homeomorphism

η̃∗ : SpecDI(R) −→ SpecR \ V (I).

In order to do this, by the notation of [3, Theorem 2.2.4], there is
a ring monomorphism ηR : R → DI(R) which induces a mapping
η∗R : SpecDI(R) → SpecR. We claim that im η∗R = SpecR \ V (I). In
order to do so, as by hypothesis we have cd(I,R) = 1, it follows from
[3, Lemma 6.3.1] that the ideal transform functor DI(−) is exact.
Therefore, by [3, Proposition 6.3.5], we have DI(R) = IDI(R). Now,
it is clear that im η∗R ⊆ SpecR \ V (I). On the other hand, for every
p ∈ SpecR \ V (I), there is an element a ∈ I such that a /∈ p. Then, by
the same argument as in the proof of Theorem 3.1, we may assume that
R is a subring of DI(R) and (DI(R))a = Ra. Thus, there is an ideal
Q of DI(R) such that Q(DI(R))a = pRa. Now it is straightforward to
see that η∗R(Q) = p. Hence, we have im η∗R = SpecR \ V (I).

Also, we claim that the map η∗R is injective. In order to see this,
let Q1 and Q2 be distinct elements of SpecDI(R) such that η∗R(Q1) =

η∗R(Q2). Then, we have η−1
R (Q1) = η−1

R (Q2). Now, again, by the same
argument as in the proof of Theorem 3.1, we may assume that R is a
subring of DI(R). Since we have I ̸⊆ η−1

R (Q1) = η−1
R (Q2), it follows

that there is an element a ∈ I such that a /∈ η−1
R (Q1) = η−1

R (Q2).

Next, we have a /∈ Q1 and a /∈ Q2. Then, as R is a subring of DI(R)
and (DI(R))a = Ra, it follows that Q1(DI(R))a ̸= Q2(DI(R))a, and
thus, Q1Ra ̸= Q2Ra; however, (Q1 ∩ R)Ra = (Q2 ∩ R)Ra, which is
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a contradiction. Therefore, the map η∗R is injective. Furthermore, the
map η∗R induces a mapping

η̃∗ : SpecDI(R) −→ SpecR \ V (I),

which is injective and surjective.

Let ε := η̃∗. We claim that ε is a homeomorphism. In order to
prove this assertion, we must show that both of the maps ε and ε−1

are continuous. First, we show that ε is continuous. In order to see
this, let Y be an open subset of SpecR\V (I). Then, there is an ideal J
of R such that

Y = [SpecR \ V (I)] ∩ [SpecR \ V (J)] = SpecR \ V (I ∩ J).

Thus, Y is an open subset of SpecR. Therefore, the set X =
(η∗R)

−1(Y ) = ε−1(Y ) is an open subset of SpecDI(R). (Note that
the map η∗R is continuous.) Hence, by the definition, the map ε is
continuous. Now, in order to prove that ε−1 is continuous, let X be a
closed subset of SpecDI(R). If X = ∅, then it is clear that ε(X) = ∅ is
a closed subset of SpecR \ V (I). Thus, we may assume X ̸= ∅. Then,
there is a proper ideal J of DI(R) such that X = V (J). Since DI(R) is
a Noetherian ring, it follows that there are prime ideals Q1,Q2, . . . ,Qn

such that

V (J) =
n∪

i=1

V (Qi).

Let pi = η∗R(Qi) for i = 1, 2, . . . , n. Then, it is straightforward to see
that

ε(V (J)) = V

( n∩
i=1

pi

)
\ V (I) = [Spec(R) \ V (I)]

∩
V

( n∩
i=1

pi

)
,

which implies that ε(V (J)) is a closed subset of Spec(R)\V (I). Hence,
the map ε−1 is continuous. Therefore, the map ε is a homeomorphism,
as required. �

The next corollary of Theorem 3.2 shows that the algebra DI(R)
is rarely semilocal, whenever I is an ideal of a Noetherian local ring
(R,m) with cd(I,R) = 1.
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Corollary 3.3. Let (R,m) be a Noetherian local ring, and let I be an
ideal of R with cd(I,R) = 1. Then, the Noetherian ring DI(R) is not
semilocal if and only if dimR/ΓI(R) ≥ 2.

Proof. Since we have DI(R) ≃ DI(R/ΓI(R)), replacing R with
R/ΓI(R), without loss of generality, we may assume that ΓI(R) = 0.
Then, it is easy to see that the set of maximal elements of the set
Spec(R)\V (I) is not finite if, and only if, dimR ≥ 2. Now the assertion
follows from Theorem 3.2. �

Remark 3.4. Let (R,m) be a Noetherian local ring of dimension d ≥ 1.
In the case where I = Rx for some nilpotent element x ∈ m, we
have ara(I) = cd(I,R) = 1 and, by [3, Theorem 2.2.16], we have
DI(R) ≃ Rx. Therefore, the veracity of Theorems 3.1 and 3.2 can
easily be seen in this case. However, there are examples of Noetherian
local rings (R,m) with proper ideals I for which cd(I,R) = 1 and
ara(I) ≥ 2. For instance, the following example is given by Hellus and
Stückrad in [11].

Example 3.5. Let k be a field, and let S = k[[x, y, z, w]], where x,
y, z and w are independent indeterminates over k. Let f = xw − yz,
g = y3 − x2z and h = z3 − w2y. Let R = S/fS and I = (f, g, h)S/fS.
Then, R is a Noetherian local ring of dimension 3 with maximal ideal
m = (x, y, z, w)S/fS. Also, for the ideal I of R, we have cd(I,R) = 1
and ara(I) = 2. (See [11, Remark 2.1 (ii)].)
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