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FRONT-LIKE ENTIRE SOLUTIONS
FOR A DELAYED NONLOCAL DISPERSAL
EQUATION WITH CONVOLUTION TYPE

BISTABLE NONLINEARITY

GUO-BAO ZHANG AND RUYUN MA

ABSTRACT. This paper is concerned with front-like en-
tire solutions of a delayed nonlocal dispersal equation with
convolution type bistable nonlinearity. Here, a solution de-
fined for all (z,t) € R? is an entire solution. It is known
that the equation has an increasing traveling wavefront with
nonzero wave speed under some reasonable conditions. We
first give the asymptotic behavior of traveling wavefronts at
infinity. Then, by the comparison argument and sub-super-
solutions method, we construct new types of entire solutions
other than traveling wavefronts and equilibrium solutions
of the equation, which behave like two increasing traveling
wavefronts propagating from both sides of the z-axis and
annihilate at a finite time. Finally, various qualitative prop-
erties of the entire solutions are also investigated.

1. Introduction. In this paper, we study the entire solutions of the
following delayed nonlocal dispersal equation:

(1.1) %:J*u—u—du—l—/RK(y)b(u(:E—y,t—T))dy.

This model represents the population dynamics of a single species with
age-structure and dispersal, see the first author of this paper[31] and
Huang et al. [12] for more details. Here, u(x,t) represents the total
mature population of the species (after the maturation age 7 > 0) at
location z, time t, d > 0 the coefficient of death for the mature species
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and b(-) the birth function. J * u — u is a nonlocal dispersal operator
and represents transportation due to long range dispersion mechanisms,
where J * u is a spatial convolution defined by

(7 u)(w.t) = [ T =uta.0)dy.
As stated in [3, 7], if J(z —y) is the probability distribution of jumping
from location y to location z, then the rate at which individuals arrive
to location z from all other places is

(T u)last) = [ Jo = pyuly.t)dy,

R
and the rate at which they leave location = to travel to all other places
is

u(z,t) = /RJ(SC —y)u(zx,t)dy.

The kernel function K(x — y) accounts for the probability that an
individual born at location y, time ¢ — 7, will be at location x at time ¢.
Throughout this paper, we assume that:

(H) Both kernels J € CY(R) and K € C%*(R) satisfy J(z) =
J(—z) >0 and K(z) = K(—x) >0 for z € R;

/RJ(Q;) do =1, /RK(Q;) do = 1;

J, K are compactly supported.
(B) Birth function b € C%(R):
(B1) b(0) = da—b(a) =d —b(1) =0 for some 0 < o < 1.
(B2) v'(u) >0 for u € (0,1), b(u) < du for 0 < u < a and b(u) > du
for a <u < 1.
(B3) 0 < max{b/'(0),t'(1)} < d < b'(«) (bistable nonlinearity).
(B4) fol [b(u) — du] du > 0 (unbalanced case).

A typical birth function which has been widely used in the mathemat-
ical biology literature is b(u) = pu’e~7", with constants p > 0 and
v > 0, and satisfies the above assumptions for a wide range of param-
eters p and v, see [31].

We mention two special cases of (1.1) covered by the following
analysis. If K(x) = d(x), where §(-) is the Dirac delta function, then
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equation (1.1) reduces to the following nonlocal dispersal equation with
local nonlinearity term [20]:

ou
(1.2) 5 =Jxu—u—du(z,t)+b(u(z,t—1)).
Furthermore, while taking 7 = 0 and f(u) = —du+b(u), (1.2) becomes
the more general nonlocal dispersal equation [1, 2, 6, T]:

(1.3) %:J*u—u—i—f(u).

In recent years, nonlocal dispersal equations (1.1)—(1.3) have at-
tracted significant attention due to their important applications in
many scientific disciplines, such as material science [1], biology [6],
epidemiology [16] and neural networks [36]. For such equations, the
most attractive object is the spatial dynamics, including asymptotic be-
havior, spreading speeds, traveling wave solutions and entire solutions,
see [1, 2, 3, 4, 5, 6, 7, 14, 19, 20, 22, 30, 33], and the references
cited therein.

In this paper, we are interested in front-like entire solutions of (1.1)
which are obtained by the interaction of traveling wavefronts. It is well
known that the traveling wavefront is an important class of solutions
for dynamical models in biology since it can explain spatial spread
or invasion of the species. Mathematically, a traveling wave solution
of (1.1) connecting {ey, e2} C {0, v, 1} is a special translation invariant
solution of the form u(z,t) = U(§), £ = x+ct, U the wave profiles that
propagate through the one-dimensional spatial domain at a constant
velocity c¢. If U(€) is monotone in £ € R, then it is called a traveling
wavefront.

Traveling wave solutions of (1.1) have been investigated and are quite
well understood, see [12, 31, 32, 34, 35]. The first author [31] inves-
tigated the existence and uniqueness (up to translations) of traveling
wave solutions when equation (1.1) is monostable. Huang et al. [12]
further proved that the planar traveling wave fronts with ¢ > ¢* of
(1.1) in RY are globally asymptotically stable. The existence of trav-
eling wave solutions with speed ¢ > ¢* of (1.1) is also obtained in [31]
by introducing two auxiliary monotone nondecreasing birth functions
when equation (1.1) is crossing-monostable. In [34], the authors further
obtained the existence of traveling wave solutions with speed ¢ = c¢*
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and showed that the slowest wave speed c¢* coincides with the spread-
ing speed of (1.1). At the same time, they proved that the traveling
wave solution with a large speed is exponentially stable by the weighted
energy method. In a recent paper, the authors [32] established the exis-
tence of non-monotone traveling wave solutions and proved the unique-
ness of traveling wave solutions, including those which are monotone
and non-monotone. When equation (1.1) is bistable, the author [35]
showed that there exists a unique constant ¢ € R such that (1.1) ad-
mits a traveling wavefront with speed ¢ connecting equilibria u = 0 and
u = 1. Furthermore, they proved that the traveling wavefronts of (1.1)
are unique and globally exponentially stable with phase shift.

In addition to traveling wave solutions, another important issue in
population dynamics is the interaction between traveling wavefronts.
Mathematically, this phenomenon may be described by the so called
front-like entire solutions that are defined for all (z,t) € R2 In
particular, traveling wavefronts are special examples of the entire
solutions and consist of two 1-dimensional manifolds, namely,

u(z,t;0) :=U(x+ct+0) and wu(z,t;0):=U(—x+ ct+0),

where 6 varies in R (note that the wave speed c¢ is unique in the bistable
case). From the dynamical point of view, the study of entire solutions
can help us fully understand the transient dynamics and structures of
the global attractor [17]. From the viewpoint of biology, such entire
solutions provide some new invasion methods of the species. In recent
years, much work has been devoted to the entire solutions for various
evolution equations for both bistable and monostable nonlinearities,
see e.g., [10, 11, 17, 28, 30] for reaction-diffusion equations with
and without delays, [8, 24, 25] for lattice differential equations with
local and global interaction and [14, 22, 29, 32] for nonlocal dispersal
equations. We also refer the reader to [9, 18, 23, 27] for the reaction-
diffusion system and [15] for the nonlocal dispersal system.

For equation (1.1) with monostable and crossing-monostable non-
linearities, the author [32] studied the existence of its entire solutions.
Combining a spatially independent solution and traveling wavefronts
with different speeds, some new entire solutions have been constructed.
However, to the best of our knowledge, for the bistable case, there are
no results for the entire solutions other than traveling wave solutions.
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In the current paper, we try to establish some results on this subject
for (1.1). More precisely, we prove the existence of entire solutions
which behave like two traveling wavefronts propagating from both sides
of the z-axis and then annihilating in a finite time. As t goes forward,
these solutions converge to one of the positive equilibria. The basic
idea for the construction of front-like entire solutions is to use traveling
fronts to build super- and sub-solutions of (1.1) and then deduce the
existence of the entire solutions trapped between these super and sub-
solutions.

There are two important points to make.

(i) The key step for constructing entire solutions is having precise
information on the asymptotic behavior of traveling wave solutions
of (1.1) at infinity. For the monostable case, the authors of the current
paper [32] obtained asymptotic behavior by the method developed by
Carr and Chmaj [2], see also Coville, et al., [5]. In this paper, we
shall still apply this method. Since our equation (1.1) is bistable, the
technique details are different from the monostable case.

(ii) In order to establish the existence of entire solutions, we study
the solutions u, (z,t) of the following initial value problem:

(1.4)
oun,
ﬁ:J*un—un—dun—&—fRK(y)un(a:—y,t—r) dy zeR, t>-n,

Un (T, =1+ 8) = uno(z, 3)
=max{U(z—c(n—s)+h),U~z—c(n—s)+h')} xR, se[-7,0].

By constructing appropriate sub- and super-solutions, some new entire
solutions are obtained by passing to the limit n — +o00. Note that, for
the nonlocal dispersal equation (1.4), the sequence functions wu, (z,t)
are not smooth enough with respect to z, and hence, its convergence is
not ensured. In order to obtain a convergent subsequence of {uy(z,t)}
we must make {u,(z,t)} possess a property which is similar to a global
Lipschitz condition with respect to x, see Lemma 4.9.

The rest of this paper is organized as follows. In Section 2, we state
the main results for the entire solutions of (1.1). In Section 3, the
asymptotic behavior of traveling wavefronts is obtained. In Section 4,
we first establish the existence of entire solutions and then study their
qualitative properties.
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2. Main results. In this section, we shall present the main results
for the entire solutions of (1.1). Before stating the main results, we
provide the next definition.

Definition 2.1.

(i) A function ®(x,t), (z,t) € R? is called an entire solution of (1.1)
if, for any € R, ®(z,t) is differential for all ¢ € R and ®(z,t)
satisfies (1.1) for all (z,t) € R%.

(ii)) Let m € N and p,pp € R™. We say that a sequence of
function WP(x,t) converges to a function WP0(z,t) in the sense of
the topology T if, for every compact set S C R?, functions WP (x,t)
and (0/0t)WP(x,t) converge uniformly in (x,t) € S to W?0(z,¢) and
(0/0t)WPo(z,t), respectively, as p — po.

In a recent paper [35], we have shown the existence, uniqueness and
stability of traveling wavefronts for (1.1) by applying a continuation
method and squeezing technique. We recall the main result of [35] as
follows.

Theorem 2.2. Assume that (H) and (B) hold. Then (1.1) admits a
non-decreasing traveling wavefront U (&) with speed ¢ = ¢y # 0, which
satisfies

(2.1)

U'(§) = (J+U)(E) = U(§) —dU(&) + [ KW)b(U(§ —y — 7)) dy,
U(—o00) =0, U(+o0)=1,

where £ = x + ¢t and ' = d/d¢. Moreover, the solution U of (2.1) is
strictly monotone increasing, unique up to a translation and globally
asymptotically stable.

Theorem 2.3. Assume that (H) and (B) hold. Let (U, co) be a solution
of (2.1) with speed co > 0. Then, for any constants w; € R and
wy € R, there exists an entire solution @, ., (x,t) of (1.1) defined
for all (z,t) € R? such that

lim { sup | @y, ., (2, 1) — Uz + cot + w1)]

t——o0 z>0

+8up | Py o (2, 8) — U(—x + cot + wg)\} =0.
<0
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Furthermore, the following statements hold:
(1) 0 < Py o (,8) <1 and (9/0t) P, w, (x,t) > 0 for (x,t) € R2.
(ii) Myt o0 SUPLep |Puwy we(2,) — 1] = 0 and lim; o SUP |4 <,
Dy o (z,t) =0 for any My € RT.
(iil) Hmg| 400 SUP> 4, [Puwy w, (2,1) — 1| =0 for any t; € R.

(iv) @y, wy (2, 1) converges to

U(—x + cot + wa)  as w; — —oo in the sense of topology T
U(z + cot +w1) as wy — —00 in the sense of topology T .
(v) For any (z,t) € R?, @y, o, (x,t) is increasing with respect to
(w1,ws) € R2.
(vi) The entire solution @y, «, (z,t) depends continuously on (w1, ws)
€ R? in the sense of the topology T.

(vil) The entire solution ®, ., (x,t) is Lyapunov stable in the follow-
ing sense. For any given ¢ > 0, there exists a § > 0 such that, for any
(,0(1‘, ) € C([—T, 0]7 [07 1}) and SUPgzer |(p(.%‘, ')_(I)wl,wz ($+x07 t0+')| <9,
there is

|u(x, t; 90) - (I)vn,wz (33 + xo, T+ tO)‘ <e€

for any x € R and t > 0, where x9 € R and ty € R are two real
constants.

Theorem 2.4. Assume that (H) and (B) hold. Let (U, cq) be a solution
of (2.1) with speed cog < 0. Then, for any constants wy € R and wy € R,
there exists an entire solution @, ., (z,t) of (1.1) defined for allt € R
such that

lim { sup | Dy, w, (x,t) — U(—x + cot + w1)|
t——o0 >0

+ sup | P, w, (2, t) — Uz + cot —l—wz)\} =0.
<0

Moreover, (v)—(vii) in Theorem 2.3 still hold. Furthermore, the follow-
ing hold:

(1) 0 < Py, o (2,8) <1 and (9/0t) P, w, (z,t) <O for (x,t) € R?.
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(ii) limg s 4 oo SUPLeg Puoywy (7,1) = 0 and limg s o inf)pj<pr, [Puy ws
(x,t) — 1] =0 for any My € RT.

(iif) lirnlac|a+oo SUP¢>¢, [Py s (2, 2)] = 0 for any t2 € R.

(iv) @y s, (2, ) converges to

Uz + cot + wa) as w1 — +00 in the sense of topology T;
U(—x + cot +w1)  as wa — +00 in the sense of topology T.

Remark 2.5. Theorem 2.4 is a consequence of Theorem 2.3. Indeed,
when ¢y < 0, we set ¢ = —co > 0, and U(x+¢ot) =1 —U(—x+cot) =
1 —U(—(x +¢ot)). Then, by (2.1), we can see that

(2.2)
{'c;oﬁ'@) = (J*U)(€) = U(€) = dU(€) + [ K(n)g(U(§ —y — o)) dy,

U(—o00) =0, U(+o0)=1,

where g(u) = d — b(1 — u). Hence, for any § € R, U(z + ¢y + 6) is a
traveling wave solution of

@:J*u—u—du+/K(y)g(u(a:—y,t—r))dy.
R

ot
Note that ¢'(u) = b'(1—wu) for u € [0,1]. It is easy to see that g satisfies
assumption (B) by replacing a with 1 — o. Applying Theorem 2.3
to (2.2), we obtain an entire solution D, ., (x,t) of (2.2) which satisfies
Theorem 2.3 (i)—(iv) and

lim { SUp [ Do, oy (7,1) — U(x + Sot + w1

t——o0 L >0

50D B, (2,1) = U~ + ot + wa)| | = 0.
z<0

3. Asymptotic behavior of traveling waves. In order to con-
struct two-front entire solutions, it is crucial to have precise information
on the asymptotic behavior of wave tails. In this section, we shall study
the asymptotic behavior of traveling wave fronts of (1.1) at infinity with
the help of Tkehara’s theorem.
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We first define two complex functions Py(A) and P;(A) by
R R
R R

where A € C. Then, the next result holds.
Lemma 3.1. Assume that (H) and (B) hold. The equation P;(\) =0
has two real roots ;1 < 0 and \;o > 0 such that

>0 for0< A<\,
Pz(A) <0 fO’I‘ Al <A< )\1'2,
>0 fO’f')\>>\Z'2,

where 1 =0, 1.

Proof. Since, for A € R,
Po(0) = —d + b'(0) < 0, P1(0) =—-d+b'(1) <0,
and

82
N2

82
N2

Po(N) :/yZJ(y)e’Ayderb’(O)e’m/(y+07)2K(y)6’Aydy >0,
R R

Pi() :/y2J(y)e’Aydy+b’(1)e’A”/(y+67)2K(y)6’*ydy > 0,
R R

it is easy to see that the conclusion holds. O

In order to give precise exponential decay, we need the following
form of Tkehara’s theorem [2]. The proof of Tkehara’s theorem may be
found, e.g., in [26].

Lemma 3.2. For a positive non-decreasing function u(§), we define

0
F(N) = / e () de.

— 00
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If F has the representation F(X\) = H(N)/(9 — N)FFL, where k > —1,
¥ >0, and H(N) is analytic in the strip 0 < Re\ < U, then
u(§) H(D)

I =
et Ehe¥ T T(0 4 1)

where T is the Gamma function.

Lemma 3.3. Assume that U(§) is an increasing solution of (2.1) with
speed ¢ # 0. Then, there exists a constant vy > 0 such that

sup U(£)e ¢ < oo.
£ER

Proof. Let ¢, = d—V(0) > 0, e = d+b(0) > 0 and M =
(1/2) maxo<u<i |V (w)]. In view of € > 0 and limg, o U(§) = 0,
there exists a £y < 0 large enough such that, for any £ < &,

(31
{ /K U¢ - y—c¢)dy}>M/K YU%(€ —y — c7) dy.

Thus, by Taylor’s expansion, we have

/K U —y—cr))dy
/K [ )+ (0)U (§—y—CT)+1b”(W)U2(§—y—CT) dy
<¥(0 /K U - y—cr)dy+M/K (y)U?(& —y — cT) dy,

where w@ is a some function between 0 and U(§ —y — 7).

We first show that, for & < &, U(§) and [, K(y)U(§ —y — e1)dy
are integrable on (—o0,£]. It can be seen from (2.1) and (3.1) that, for
any § < EOa

(3.2) —cU'(§) + (J+U)(E) - U(E)
/K U —y—cr))dy

> dU (&) — b'(0) /K U —y—cr)dy
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—M/RK(y)UQ(ﬁ—y—CT)dy

> S0 - 2| [ KU -y en)dy - U(©)
+ RK(y)U(f—y—CT)dy

9 [ kU= y-enan+ v
fM/K YU2(€ —y —cr)dy

>

Zl [/K U(E—y—cr)dy - U(f)]

/K U —y — cr) dy.

By Lebesgue’s dominated convergence theorem and Fubini’s theorem,
we obtain, as n = —oo,

(3.3)

£ 13
/ (]« U)(s) — U(s)] ds = / / J@)(U(s — y) — U(s)) dy ds
¢ 1
:—/ /J(y)/ yU' (s — Oy) dO dy ds
n R 0
_ / Ty / (€ — by) — U — 0y)) b dy
R 0

—>—/RJ(y)y/o U(& — Oy) df dy,

and

(3.4) /[/K (s—y—cr)dy—Uls )}ds
//K (s—y—cr)—U(s))dyds

:_/n /R(y—&—CT)K(y)/Ol U'(s — 8y + cr)) d dy ds
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1 p€
Z—/R(y—I—cr)K(y)/o /n U'(s = 0(y + c7))ds df dy
. / (v + ) K(y)
R
: /0 (€ — 0y + 7)) — Uln — By + c7))] dB dy
1
—>—/R(ZI+CT)K(:Z/)/O U —0(y+cr))dfdy.

Integrating (3.2) from —oo to &, by (3.3) and (3.4) we have that, for
any § < EOa

(35) - - /R Iy /0 U(& — 0y) do dy

-2 [w+enk) | Ul =0+ en)aody

3
Z%[WU(z)dz
€1 £
+Z/ /K(y)U(z—y—CT)dydz.
—oo JR

It is clear that [J(y)yU(¢ + Oy)| < |J(y)y| € LY(R x [0,1]) and
|K (y)yU (£ +0y| < |K(y)y| € L' (R x [0, 1]) are due to the assumptions
on J and K. Hence, (3.5) implies that U(£) and [, K (y)U(§—y—cT)dy
are integrable on (—oo,¢] for £ < &.

Now, we are ready to prove the conclusion of Lemma 3.3. Since U (§)
is increasing, for any y € R, we have

I U (E —y) < yJ(y) /0 U — 0y) do,
(y+er)K(y)U(E — (y+cr)) < (y +cm)K(y) /O U —0(y+cr))do.

Since J and K are compactly supported, for simplicity, we assume that
there exists an Xy, € R such that J(z) = 0 and K(z) = 0 for any
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x € R with |z] > X,. Thus, by (3.5), we obtain

0
U(2)dz < |e|U(€) - U(€ + Xo) / y T (y) dy

— 0 —0o0

€1
4

—CT

~ZUEH Xotleln) [+ oK) dy,

— 00

Furthermore, we have

€1

§
(36) [ U(2) d

< [|c -/ iy R dy} U(E+ Xo +[elr)).

oo 2 J o
It is easy to see that, for any r > 0 and £ < &,
(3.7)

/£ U(z)dz_/0 U(8+§)ds>/0 Uls +&)ds 2 rU(§ — 7).

— 00 — 00 —-r

Combining (3.6) and (3.7) yields
%TU(E —r)
0 —cT
<= [ wtdy=3 [ ek as] Ut Xo i),

—0o0

Thus, there exists an ro > 0 sufficiently large and some 6 € (0, 1) such
that

U(€ —ro) < OU(E + Xo + |c|T)
for any £ < &, which may be written as

U(§ = Xo = [c|T —ro) < OU(E)
for any £ < & + Xo + |¢|7. Let

1 1
(&) = —708 h =—————1In->0.
(€)= U©e ™, where 39 = g In g >

Then, we obtain

A (E—Xo—|e|t—r9) =U(€ — Xo— |e|T — ro)e_"m(g_x‘)_‘ch_m)
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= %U(g — Xo — |c|T —ro)e” 108 < U(€)e 08
= (&)

This, together with limg_, o U(€)e™ 7% = 0, implies that

sup U(€)e™ 7% < +o0.
£eR

The proof is complete. O

Theorem 3.4. Assume that U(&) is an increasing solution of (2.1)
with speed ¢ # 0. Then,

lim e 2280 (¢) = ay, lim e 22807 (€) = agAoz,

§——o0 §——o0

where ag s a positive constant.

Proof. For X\ with 0 < Re\ < 7, we can define the two-sided Laplace
transform

() = [ e .

) = [ vt ae

It is easy to see that (2.1) can be rewritten as

(3.8)

(7 < U)(E) = U(E) = U'(©) V() +¥(0) | K)U(§ —y = cr)dy
/K UE—y—cr)dy— /K U —y—cr))dy.

Note that

+oo +oo +o00
/ e MN(TxU(E))dE = / J(y)e—/\y/ U(& —y)e M9 de dy

—0o0 —00

:amAJ@fM@,
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and
/ 7>‘£/K U —y—cr)dydé
+oo
= / K)e ) [0 -y = enje v deay
)\)/K(y)e_’\(y+CT)dy.
R
Taking the Laplace transform to (3.8) yields
—+oo
(3.9) Po(MI(N) = / e {b’ / K@)U(E —y — er)dy
/K U - y—CT))dy} d¢.

By lim¢_,_ U(€) = 0 and Taylor’s expansion, we have

b (0 /K U(E—y—cr)dy — /K U(¢ — y—CT))dy’

< " 20¢ o0
s [8'()| | KU€—y—cr)dy

< U+ Xo + [eir) max, V()] [ KG)U(E -~y - cr)dy
0<u<l1 R
Hence, the right-hand side of equality (3.9) is defined for A such that
0 < ReX < 2. Now, we use a property of Laplace transforms [26,
page 58]. Since U(&) > 0, there exists a constant ¥ such that ¢()) is

analytic for 0 < ReA < 9 and £(\) has a singularity at A\ = . Thus,
£()) is defined for 0 < ReX < Aga.

We rewrite (3.9) as follows:
0 +o0
| e = - / U de

/K Ul —y—cr))dy| dE.
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Clearly, f0+°o U(&)e?4d¢ is analytic for Red > 0, and the equation
Po(A) = 0 does not have any zeros with ReA = g2 other than A = Aga.
In fact, let A = A\pg +i8. Then, Py(A) = 0 implies that

(3.10) /RJ(y)e*)“”y cos(By)dy — 1 — choz — d + b'(0)

. /]RK(y)e_’\O?(y“T) [cos By cos Ber — sin By sin Ber] dy =0
and

/]R J(y)e=202¥ sin(By) dy + B + b’ (0)
. /]R K (y)e~02W+em) [sin By cos Ber + cos By sin fer] dy = 0.
Since Py(Ag2) = 0, (3.10) can be rewritten as
-2 /R J(y)e ?02Y sin? (?) dy
=#(0) [ K(ge e

. |:2811’12 (/B;T) + 2sin? (%)

— 4sin? (%) sin <ﬁy> + sin Sy smﬁCT]

By computation, we obtain

2sin? <ﬂ2”> +25sin? () —45sin? (5;7—) (63}) +sin By sin Ber
= 2sin? (ﬁ;—) cos? ( )—1—2 cos [3207') sin ( )—l—sm,@y sin Ber

!
(5o () () (3) i

= | sin By sin Ber| + sin By sin fer >

> 4|s

which implies that g = 0.
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Since U(€) is increasing,
. _ H(\p2)
1 Ao2€ 7 —
m e ) 0w + 1)
by Lemma 3.2. We then let lime_,_ o e~ 228U (€) = ay.

We now prove that

lim e_>‘°25U/(f) = agAo2.

£——o00

By Lebesgue’s dominated convergence theorem, we have

+oo
lim e 28] % U(¢) = lim e Ao2¢ / JYU(E —y) dy
E——o0 £——o0 —o0
—+oo
_ J(y)e—kozy{ lim e—>\025 y (5 y)}

o §——o0

+oo
— a0 / T(y)e vy

— 00

and
Egrglooe /\02€/K Ul—y—cr)dy

= K( Je _)‘02(?""”)[ lim e ro2(E=y=enpy (¢ — y—CT)} dy

o E——o0

+o0o

—00

Since, as £ — —o0,
/K U —-y—cr)) /K Ul —-—y—cr))dy
1) [ K@U~y en)dy,
R
then

lim = Aoaé /R K)b(U(E —y — cr)) dy

£——o0

“+ o0
= agt/(0) / J(y)e e dy,

— 00
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Therefore, we have

lim e~ 202807 (¢)
§——o0

+o0 +oo
= %0 {/ J(y)e 2¥dy — 1 — d +'(0) / J(y)ef)‘”(y“ﬂdy
= a0>\02.
The proof is complete. O

Corollary 3.5. Assume that U(§) is described as in Theorem 3.4.
Then, there exists a p1 = 01(U) such that

U +o1)
(311 S

:17

(3.12) Jim l[f]’((g — Ao2.

Proof. Equation (3.11) follows from Theorem 3.4. By (2.1), we have
U'(§) U —y)

EEIPOO Uue) 5215100 /]R W) U(s)
. bU(E —y —cT))
o lim K ) U(©)
U -y)

dy—1—d

dy

= Jdim RJ(y) U(e)

+00) tim [ KT

= / J(y)e 02¥dy — 1 —d
R

dy—1—d

dy

+H(0) [ Kyl o) dy
R
= cAoz,

which implies that (3.12) holds. The proof is complete. O

Similarly, we can obtain the asymptotic behavior of traveling wave-
fronts at positive infinity.
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Theorem 3.6. Assume that U(&) is an increasing solution of (2.1)
with speed ¢ # 0. Then,

lim e ?8(1 - U(€)) = a1, lim e U (&) = —ay M1,

§—+o0 §—+o0

where ay 1S a positive constant.

Corollary 3.7. Assume that U(&) is as described in Theorem 3.6.
Then there exists a 02 = 02(U) such that

I 1-U(€+ 02)
im ——>——=
£rFoo0 erié

B U
=L Jdm T T

According to Theorems 3.4 and 3.6, there exist positive constants
Koy, k,n,~v and ¢ such that

(3.13) ko2 < U(€) < Koeo2t, for all £ <0,
(3.14) ke*o2s < (K« U)(€) < Koeo28, for all £ <0,
(3.15)  nket2t <qU(&) < U'(€), for all £ <0,
(3.16)  mke =t < (K = U)(€) < U'(§), for all £ <0,
(3.17) M <1 —U(€) < s, for all £ >0,
(3.18) yeMit <1 — (K U)(€) < 6e*1é, for all £ > 0,
(3.19)  myet <p(1-U(E)) <U'(), for all ¢ > 0
(3:20) et <l — (K +U)(€)) < U'(€), for all £ >0,

where (K «U)(§) = fR Ky)U( —y—cr)dy.
4. Entire solutions.

4.1. Initial value problem. In this subsection, we consider the
initial value problem

(4.1)
% = Jxu—u—du+ [ K(y)b(u(z—y,t—7))dy, z€R, t>0,
u(x,s) = p(x, s), z€R, se[-7,0]

We shall give some existence and comparison theorems for solutions,
super- and sub-solutions of (4.1) which will be used in the sequel.
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We make the following extension for the function b. Defineb: R — R
by

R B b(u), u e (—OO, ”7
(4.2) b(u) = {b(l) FV (D) (u—1), ue (1,+00).

In the remainder of paper, we replace the function b(:) by 3() and
continue to denote b(-) by b(-). We note that this replacement does not
affect the main results of this paper since the definition of b(-) on [0, 1]
does not change. Obviously, b € C2[0, 2], and

(4.3) [b'(u1) — V' (u2)| = max [0 (w)||ur —ual, w1,us €10,2].
wel0,1]

Let X be the Banach space defined by
X ={p(x)]p(x) : R = R is uniformly continuous and bounded}
with the usual supremum norm | - |x. Let
Xt ={p(r) e X :p(z) >0, z€R}.

It is easily seen that X is a closed cone of X, and its induced partial
ordering makes X into a Banach lattice. For simplicity, we denote
X ={peX:0<p(x) <k, xR}

/R J(& — y)uly) — u(@)dy : X — X

is a bounded linear operator with respect to the norm | -|x. Then, for
t>0,

wy D it~ a0y,

u(z,0) = p(z) € X,

generates a strongly continuous semigroup T'(¢) on X and T'(t) X+ C
X, that is, T(t)u(z) > 0 if u(x) > 0 has nonempty support and ¢ > 0.
Moreover, the mild solution of (4.4) can be given by u(z,t) = T'(t)p(z).
For more details, we refer to Pan et al. [20]. The theory of the operator
semigroup may be seen in Pazy [21]. Ignat and Rossi [13] introduced
a linear semigroup and gave the fundamental solution of (4.4), that is,
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S(x,t) = e o(x) + K(x,t), where §o(x) is the delta measure and
K(x,t) = /(et(j(g)_l) — e el e,
R
J represents the Fourier transform to J. In addition, the solution of

(4.4) can be written as T'(t)p(x) = (S * p)(x,t).

Let C = C([—7,0], X) be the Banach space of all continuous func-
tions from [—7,0] into X. For any ¢ € Cjp9) = {p € C : p(z,s) €
[0,2], z € R, s € [—T,0]}, define

F(o)(x) = —dp(x,0) + / K(z— y)bp(y,—7))dy, = €R.

Since b € C*(RT,R™), we can verify that F(¢) € X and F : Cpgg) = X
are globally Lipschitz continuous.

Lemma 4.1. Assume that o(-,s) € X9, s € [-7,0]. Then, (4.1) has
a unique mild solution u(x,t) defined for all (z,t) € R x (0,400) which
can also be formulated by the following integral equation:

u(z,t) = T(t)p(z,0) + /0 T(t — s)F(us)(x)ds.

Moreover, u(-,t) € X{g,9) for allt >0, and u(-,t) is a classical solution
of (4.1) for (z,t) € R x [0, +00).

Definition 4.2. A continuous function v : R x [—-7,1) — [0, u*] with
[ > 0 is called a super-solution (sub-solution) of (1.1) if

(4.5) v(z,t) > ()T (t — s)v(x,s) + / T(t —r)F(v.)(x)dr

for all 0 < s <t < l. If v is both a super- and a sub-solution on [0, 1),
then it is said to be a mild solution of (1.1).

Remark 4.3. Assume that v: R x [—7,1) — [0,u*] with [ > 0, vis C
inz €R, Ctint€0,1), and satisfies the inequality:

%2(S)J*v—v—dv—i—/K(y)b(v(m—y,t—T))dy, z€R, t>0.
R
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Then, by the positivity of T'(¢) : XT — X T, it follows that (4.5) holds,
and hence, v is a super-solution (sub-solution) of (1.1) on [0,1).

We now establish the comparison theorem.

Lemma 4.4. For any pair of super- and sub-solutions u*(z,t) and
u” (z,t), respectively, of (1.1) on [0,+00) with 0 < u™ (z,t),u™ (z,t)
<2 fort€[-1,+), v € R, and ut(z,s) > u (x,s) for s € [-7,0],
x € R, we have u™ (z,t) > u (z,t) for allz € R, t > 0.

4.2. Existence of entire solutions. We now study the following
ordinary differential equation:

d
(4.6) Pt =c+ Nerozp®) ¢ <0,

where A\go is defined in Lemma 3.1; N satisfies

N > max |b”(w)|max{

2Ky 2K, KZe*o:(Xo—cr)
we(0,1] ’ }7

ny nk
in which Xy is given in the proof of Lemma 3.3. Let

(4.7) p:p(O), wplln{1+Ne>\02p}.
Ao2 c

Set

1 N
X:—ln<1—|—> < 0.
)\02 C

It is easy to see that the function w = w(p) is strictly increasing on
(—00,0] with w(0) = x. Hence, w = w(p) is invertible. Thus, for
any w € (—oo, x|, there exists a unique p = p(w) € (—o0, 0] such that
p = p(w) is increasing and (4.7) holds.

Now, let p(0) = p(w) < 0. Then, solving equation (4.6) explicitly,
we obtain

1 N
p(t;w) = p(w) + ct — —1In {1 + —e’\”’)(“)(l — ec’\o"‘t)}.
)\02 C
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For any (w,w) € (—o0, x]?, let
02

1 N
5(("}7&) =w+ )\7 In {1 + 6)\020(00)}
C

and

~ o o~ . 1 N
p(t;w,w) = p(w, @) + ct — S In {1 + —e’\”p(“)(l — ec’\”t)}.
02 c

It is easy to see that p(t;w) and p(t; w, @) are increasing on ¢ € (—oo, 0].
In addition, when ¢t € (—00,0], p(t;w) and p(t;w,®) are increasing on
w € (—00, x| and @ € (—o0, x]. Also, we can see that

_ _ _ 1 C)\ozt
p(t;w)—ct—wzp(t;ww)—ct—w:—ln{l—ﬁe },
Aoz

where x = (N/c)e*02P(“). Then, we obtain
(4.8) 0<p(tiw) —ct —w =p(t;w, D) — ct — @ < Roe02t, <0,

for some positive constant Ry, independent of w € (—o0,x] and @
€ (—o0,x]. Clearly, if & < w, then p(w,w) < p(w), and hence,
p(tw,w) < p(t;w).

Now, we give wy,ws € (—00,X). If w1 < wq, then we let po(t;wy,
we) = p(t;w) and p(t;wi,we) = p(t;w,w) with w = we and @ = wy.
If we < wy, then let py(t;wr,ws) = p(t;w) and po(t; w1, ws) = p(t;w,
w) with w = wy and @ = wy. For the sake of convenience, we denote
pi(t; w1, ws) by p;(t) in the following, where ¢ = 1, 2.

Lemma 4.5. Suppose that u(x,t) and u(x,t) are a sub-solution and
a super-solution of (1.1) on (z,t) € R x (—oo,—=T] for some T € R,
respectively, and satisfy u(z,t) < u(z,t) on (x,t) € R x (—o0,=T].
Then, there exists an entire solution u(x,t) of (1.1) such that

w(z,t) < u(z,t) <u(x,t) for (z,t) € R x (—oo0, —T].
Remark 4.6. From Lemma 4.5, we can see that the construction

of entire solutions is reduced to finding a suitable pair of sub—super
solutions.
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Lemma 4.7. There exists a T < 0, independent of wi and ws, such
that u(x,t), defined by

u(z,t) == U(z +p1(t)) + U(—z + pa2(t)),

is a super-solution of (1.1) on (—oo0,T).

Proof. Without loss of generality, assume that w; < wy < x, and
hence, p1(t) < p2(t) for all ¢ < 0. For convenience, set

Llu](z,t) = %—J*u—i—u—l—du—/RK(y)b(u(x—y,t—T))dy.

With computation, we obtain
Ll 1] = p (O (& + pr (1) + PO (=2 + pa(1)
= [ I =+ 0100 + U=ty + male)]dy
+ (L4 AU+ pi(8) +U(=2 + pa(t))
- [ KMUE—y+m(e-7)
+U(—z4+y+p2(t—71)))dy.
By (2.1), we further obtain

Lu(z, )] = (pi () — U’ (@ + pa(t)) + (Pa(t) — U’ (= + pa(t))
—G(x,t) = [U'(z +p1(t)) + U' (=2 + pa(t))]

: {Ne’\‘)”’?(t) - R(as,t)},
where
G(r.0)i= | K@U =y +1(t =) + Ul +y+ palt = 7)) dy
- [ K@U =y +pi(t) = er)ay

- /R K@)b(U(~x +y + pa(t) — 7)) dy

and

G(z,t)
Uz +p1(t) + U (—x +p2(t))

R(z,t) ==
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For 7 > 0 and ¢ = 1, 2, we have

02

pi(t—7)=p0)+c(t—7)— )\L In {1 + Ee’\”p(o) (1 - eC/\OQ(t_T)> }
c

(t) —cr + 1
= Pp; — CT B —
P Ao2

| 1+ (Nje)ero2p(0) (1 — grozt)
-In i (N/C)eAOQp(O) (1 _ 60)\02t) + (N C)e)\ggp(o)ec)\ogt (1 _ecAOQ‘r)
< pi(t) —cr.

This gives

Gla,t) < / K@Uz —y+pi(t) — er)

+U(—z+y+pat) —cr))dy

- / KUz —y+pi(t) — 7)) dy
/K (—z+y+pat) —cr))dy

/K dy/ V(U(z —y+pi(t) — c7)

+O0U(—z +y +pa(t) — 7))
x U(—x+y+p2(t) —cT)db

/K dy/ V(0U(—z +y + pa(t) — c7))

(=2 +y+pa(t) —cr)dd

< max [b"(w |/K Ulx—y+pi(t) —cr)
wEOl]

x U(—=x +y+pat) —cr)dy
< max |6 (w)|U(z + p1(t))

wel0,1]
+oo

X Ky)U(—z +y + p2(t) —cr)dy
0

+ max |b(w)|U(—z + p2(t))
wel(0,1]
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0
X [ Ky)U(x —y+pi(t) —cr)dy

< e ¥ (w) [U@c () (K < U)(—z + pa(t))

+ U=z +p2(t)) (K U)(z +pi(t) |,

where
(K «U)( /K (x —y — c7) dy.

Note that p;(t) < 0 for all ¢ < 0. For convenience, let By =
maxye[o,1] [0 (w)].

Now we estimate R(z,t). The discussion is divided into two cases:
Aoz 2> —A11 and Ag2 < —Aq;.

Case I. \p3 > —A11. R is divided into three parts.
(i) p2(t) < < —p1(t). When 0 < z < —p;(t), from
Ulw+pi(t) + U'(=z + pa(t)) = U'(z + pi(t))
and (3.13)—(3.16), we obtain
(4.9)
R(z,t)

=y Ul pi () S (o () +U (a4 pa() (5D -1 ()
=0 U'(z+p1(t)+U' (—a+pa(t))
U + pr(1))(K * U)(— + pa(t))
. 30{ Uz + (1))
U(—x+p2<t>><mU><m+p1<t>>}
U(e £ 1(0)
Ul +m®) s
_BO{W(HM))M U)(— + pa(t)
(K +U)e 41 (0),,
U(z + p1(0))

(K + U)(=z + pa(t)) + U(=z + p2(t))]

+

U-a+ m(0)

By
Si
n
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< %e)\w(—x-ﬁ-pz(t)) < %ex\ozpz(t).
n n

When po(t) < z <0, from
U'(w+pi(t) + U' (=2 + p2(t)) = U'(—z + p2(t))
and (3.13)—(3.16), we obtain
(4.10)

R(z,t)
Ulz+pi(8) (BExU) (=2 +pa(t)) +U 2 +pa () (KxU) (z+p1 (1))

< Bo U'(z+p1(0)+U" (—z+pa(t)

Ula + p1 (0) (K  U)(— + palt))
: 30{ V(2 + pa(0))
Ul + pa(t)) (K » U><x+p1<t>>}
U2+ pa(t))
(K« U)(—x + p2(t))
= B°{ T Ee—
U(—x + p2(t))
U'(—x + pa(t))
0

< %[U@: () + (K U) (& + pa (1))

+

Uz +p1(t))

<K*U><m+p1<t>>}

< 2B0K0 poa @it < 2B0Ko oapa),
n

(if) & < pa(t). Following (3.20), (3.14) and —x + pa(t) > 0, we have

(4.11)
Bo(U(x +pi(t) + K + Uz +pi(t)) _ 2BoKoe=+1(1)

R(x,t)

IN

U'(—x + pa(t)) T et
< 2By Ky gro2p2(t) 2B Ko ero2p2(t)
Y e(rz—ATeinp(t) = gy '

(iii) x > —p1(t). By a similar argument as in (4.11), we obtain

2By Ko eroz2p2(t)

(4.12) R(x,t) < =
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Combining (4.9), (4.10), (4.11) and (4.12), we obtain

Llaw, )] = [U"(@ + p(t) + U' (=2 + pO)] { N — R(z, 1)} > 0.

Case II. 0 < Ap2 < —A11. In this case, we have /(0) > b'(1).
Indeed, let

“+o0
J(s) = / J(y)edy = / J(y)(e™ +e7*) dy.
R 0
Then, we have
+o00o
J'(s) = / J(y)y(e? —e ™) dy >0
0
for all s > 0. Hence, J(—A11) > J(Ao2), that is,
/ J(y)e *1¥dy > / J(y)e=rdy = / J(y)e  2vdy.
R R R
Similarly, we can prove
67)\1107/ K(y)e M1¥dy > e~ Ao2eT / K(y)e 02 dy.
R R

Note that g2 and A\ satisfy
/ J(y)e 02Ydy — 1 — chgp — d + b/ (0)eA02eT / K(y)e ?2¥dy = 0,
R R

/ J(y)e ™ Wdy — 1 — chyy —d + b/ (1)e 11em / K(y)e 1Ydy = 0.
R R

Thus, we obtain
b/(o)e—koch/ K(y)e—/\ozydy > b/(l)e—)\uc‘r/ K(y)e_’\“ydy,
R R

which implies &' (0) > ¥/(1) > 0.
Since b’ (u) is continuous on [0, 2], there exists a d; € (0,1) such that
0<b(u) <b'(0) foruell—20a,1+ 8],
We translate U (&) along the £-axis so that
1-01<U() <1 for&>—-Xy—cr,
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where Xy may be seen as in the proof of Lemma 3.3. Take 77 < 0,
which is independent of ps(t), so that U(2p2(t) + Xo — ¢7) < 61 and
pa(t) + Xo —cr < 0 for t < Ty. Thus, for t < Ty, z > —p1(¢) and
lyl < Xo, we have

0< V(U@ —y+pit) —cr) + 0U (=2 +y + pa(t) — c1)) < V(0),
where 0 € [0,1]. Hence, for any ¢t < Tj and x > —p(t), we get
(4.13)

G(x

/K / Uz —y + pi(t) — er) + 00 (2 +y + pal(t) — e))
(—x+y+pa2(t) —cr)didy

/K /b’ OU(—z +y + pa(t) —c7))
(—x+y+pa(t) —cr)didy

/K W (0)U (=2 +y + pa(t) — cr) df dy
- / K()U(~z +y + palt) — c7)
1
X /0 V(OU(—x +y + pa(t) — 7)) df dy
< By / K@)U2(— +y + pa(t) — er) dy
< BoU(~a + Xo + pa(t) — c7) / K()U(—2 +y + palt) — er) dy.

Similarly, for any ¢t < T7 and x < py(t), we obtain

(4.14) G(x,t) < BoU(x + Xo +pi1(t) —c7)

/K U(x —y +pi(t) —cr)dy.

As in the proof of Case I, we divide R into three intervals [pa(t),
—p1(t)], (—oo,p2(t)] and [—p1(t),+00). In the interval [pa(t), —p1(t)],
since we do not need the fact that A\go < —A11, we can obtain the same
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estimate as (4.9) for U(x,t). For x > —p;(t) > 0, by (4.13), we get
BoU(—z + Xo + pa(t) — c7)
U'(=z +pa(t))
X / K(y)U(=z +y +pa(t) — c7) dy
R
B0K3€2>\02(7I+Xo+p2(t)7CT)
nkeroz(—z+p2(t))
< BOngonz(Xo—cT)
< ok
For x < pa(t) <0, by (4.14), we have

R(z,t) <

6>\02P2 (t).

B K2 2X02(Xo—cT)
R(z,t) <2020¢

Ao2p2(t)
< o e .

Thus, for any t < T,
Lla(z, )] =[U' (@ + p1(£)+U' (=z + pa(t)) {Ne 272" — R(z, 1)} > 0,

Now, let T'= 0 when Aoz > —A11 and T = T7 when A\g3 < —Aq1;. For
any t < T, we always have L[u(z,t)] > 0. By Remark 4.3, we show that,
for every TV < T, v(x,t) = u(z,t +T"), where (z,t) € R x [-7,T —T")
is a super-solution of (1.1) on R x [0,7 — T”). This completes the
proof. O
Lemma 4.8. u(z,t), defined by

u(x,t) := max{U(z + ct + w1),U(—x + ct + wa)},

is a sub-solution of (1.1) on (—o0,0).

Proof. When z > (wy — w1)/2, that is, © + w; > —x + wo, then

w(x,t) == U(z + ct + wq); otherwise, u(x,t) := U(—z + ct + wq). It is
easy to see that, for > (wa — w1)/2,

Clu(, 1) = (@ + et +wn) — / Tyl —y,1) dy

+14+dDU(x+ct+wr) — /RK(y)b(y(x —y,t—1t7))dy
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- / JW)U(x —y +ct +wn) dy — / J@ule - y,t) dy

+ /]R K()b(U(z —y + et — ) +wr)) dy

- / K(y)b(ulz —y.t — 7)) dy
<0.

Similarly, it can be proved that, for x < (wo — w1)/2, L[u(z,t)] < 0.
Obviously, for every T%<0, w(x, t), defined by w(z,t) = u(x, t+1%),
is a subsolution of (1.1) on R x [—7, —=T*). The proof is complete. [

Now, we consider the following initial value problem:

(4.15)
%un(m,t) = J*xu, — u, — du,
+ Jo K()b(un(x —y,t — 7)) dy, x €R, t > —n,
Un(z,—n+s) = upo(z,s) :=u(z,—n+s), zeR, se[-1,0].

From [35, Lemma 4.1], we can see that |U’| < (1+ b(1))/c. There-
fore, the initial functions u, (z, —n + s) are globally Lipschitz in z, and
there exists a constant Ly independent of n and s such that

[un(z1, =1+ 8) — un(z2, —n + )| < Lo|z1 — 22
for any n € N, s € [-7,0] and z1,22 € R.
Lemma 4.9. Assume that (H) and (B) hold. Then, there exists a

constant C' > 0, which is independent of x, t, n such that, for any
neN, t>—-n+1 and xz € R, the solutions u,(z,t) of (4.15) satisfy

|(un)t(mat)| <C, |(Un)tt(zyt)| <C.

In addition, there exist positive constants My and My, which are inde-
pendent of n and t, such that

(4.16) (2 + hyt) — un(z,t)| < Mih

and
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Oou, oun,
. - <
(4.17) i@ hyt) = ()| < Moh

foranyx € R, t > —n and h > 0.

Proof. By the comparison principle and 0 < u,(z,—n + s) < 1 for
¢ €Rand s € [-7,0], we have 0 < u,(z,t) < 1. By (4.15), we have,
forx e R, t > —n,

[(un)e| < | un| + (1 + d)fun| + max, b(u)

=2+ d+ max b(u)
u€[0,1]

= Cl.

Using the estimate for (u, ); and applying a similar argument, we obtain
(tn)eel = |7 % (e = (wn)e = dun)s
+ / Kb (un(x —y,t — 7)) (un)i(z —y, t — 7)dy
R

< ! =: (.
< (2 +d+ urg[%ﬁ] b (u)) Cr=:Cs

Take C = max{C4,C3}. Then, the first statement of Lemma 4.9 fol-
lows.

Now, we prove (4.16) and (4.17). For any h > 0, let
Stn(2,t) = up (2 + hyt) — up (2, ).
Then, by (4.15), duy,(x,t) satisfies

(Oun)e = fp(J(@ =y +h) = J(z = y))un(y,t) dy — (1 +d) duy,
+ o(K(@—y+h) = Kz —y))b(un(y,t — 7)) dy,
(0up)(z,—n + 8) = dupo(z,s), x€R, se€[-7,0].

Note that
(4.18) St (1) = Gy o(,0)e” LFD?

t
. / e~ D=9 \f (4, (2, 5)) ds,
0
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where

N (u(z,1)) = / (T —y+ k) — J(& - 9))un(y. £) dy

R

+ / (K (x —y + ) — K (@ — 1))b(un(y.t — 7)) dy.
R

Since J’ € L' by (H), there exists an L; > 0 such that

1
/ J'(x + 0h)db| dz
0

/}R|J(:L'Jrh)fg](m)|d:c:h/]R

1
< h/ / |J'(z + 6h)| df dx < L1k
R JO
for any A > 0. Similarly, for Lo > 0, the following holds:
/ K (2 + h) — K ()| dz < Lah.
R
Then, from (4.18), we get

t
|0 (2, 1)] < |6tn o(z,0)] + / e~ WD)\ Nf (u,, (2, 5))| ds
0

t —~
< L0h+/ e~ HDE=) ([ h 4 M Loh) ds
0

t
< Loh + (Lih + MLyh) / e~ (IFD(E=5) g
0

S Loh + (Llh + MLQ}L) =: Mlh,

14+d

where M = max,eo,2] b(u). Hence, (4.16) holds.
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Finally, we show that (4.17) holds. For any h > 0, z € R and ¢ > 0,
[(6u)(

‘ / 24 h =) — J(@ — y))un(y, ) dy — (1 + d) Su(a,
+ / (K (x4 h— ) — K (@ — 1))b(un (3.t — 7)) dy
s/Ru<x+h—y>—J(x—y>||un<y,t>|dy+<1+d>|au<x,t>|

+ [ 1K G+ =) = Ko = ) oua (.t = ) dy
< Lih 4 (1 + d)Myh + M Lyh =: Msh.
The proof is complete. ]

Combining the above lemmas, we obtain the following result.

Theorem 4.10. Assume that (H) and (B) hold. Then, there exists an
entire solution ®(x,t) := ®(z,t;w1,ws) of (1.1) such that
(4.19) u(z,t) < O(x,t) <u(z,t), (z,t) €R X (—o0,0],

where U(z,t) and u(x,t) are given as in Lemmas 4.7 and 4.8. Moreover,
positive constants C1 and Cy exist such that

®(x + h,t) — B(x,t)| < Cih

and

9% 9%
@t ht) = 5ol

for any (x,t) € R? and h > 0.

l’,t) < CQh

Proof. Recall that w,(x,t) is the unique solution of the initial
value problem (4.15). By the a priori estimate (Lemma 4.9) and
the Arzela-Ascoli theorem, there exists a subsequence {un, (2,t)}ren
of w,(x,t) such that wu,, (z,t) converges to a function ®(z,t) in the
sense of the topology 7, that is, for any compact set S C R2?,
Un, (z,t) and (0/0t)un, (z,t) converge uniformly to functions ®(z,t)
and (0/0t)®(x,t) as n — 400, respectively. Since up,, (z,t) satisfies
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equation (4.15), the limit function ®(z,t) is an entire solution of (1.1)
such that

u(x,t) < O(x,t) <u(x,t) for (x,t) € R x (—o0,0].

Set C1 = 2 + M;, where M; is defined as in Lemma 4.9. Fix
(z,t) € R? and h > 0. Let S C R? with (z,t) € S and (z + h,t) € S
be a compact subset. Then, there exists an Ny € N such that, for any
k> Ny,

|®(z,t) — un, (z,¢)| <h for any (z,t) € S.
Thus, we have
|q)(:17 + h’ﬂt) - (I)(:Zf,t)‘ < |(I)($ + h7t> = Uny, (‘T + h’ﬂt)|
+ [ty (2 + Dy t) =, (2, 1)]
+ |U’nk (.’L‘,t) - (b(x’t)l
< Cih.
Similarly, we can prove

0P 0P
- _ <
5 (x + h,t) 5 (z,t)] < Coh

for any (x,t) € R? and h > 0. The proof is complete. |
4.3. Qualitative properties of entire solutions. In this subsec-

tion, we continue to investigate the qualitative properties of the entire
solutions of (1.1).

Theorem 4.11. Let ®(x,t) be the entire solution of (1.1) as stated in
Theorem 4.10. Then the following properties hold:

(i)
(4.20)  lim { sup |B(z, ) — U(z + cot + wi)]
t——o0 z>0

+ sup |®(x,t) — U(—x + cot —|—w2)\} =0.
<0

(i) 0 < ®(x,t) < 1 and (8/0t)®(x,t) > 0 for (x,t) € R2.
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(iif) limg— 0o SUPgep [P (2, 1) — 1] = 0 and limy—, o0 SUP |4 < pr, P(2,1)
=0 for any M; € RT.

(iv) limz| o0 SUPy>¢, |P(2,8) — 1| =0 for any t; € R.

(v) For any (x,t) € R?, ®(z,t;w1,ws) is increasing with respect to
(wl,w2) € R2,

(vi) @(z,t;wr,wa) converges to

U(—x 4 cot + wa) aswy — —oo in the sense of topology T;
Uz + cot + wq) as wy — —o0 in the sense of topology T .

Proof. The proofs of parts (iii)—(iv) are trivial and omitted.

(i) Without loss of generality, assume that w; < ws. When 2 > 0,
by estimates (4.8) and (4.19), we obtain

0 < ®(x,t) — Uz + cot +w1) <u(z,t) — U(x 4 cot +wy)
=U(x+pi1(t) —U(z+ cot +w1) + U(—x + p2(t))
< sup [U'(2)|(p1(t) — cot — wy) + Kgetoz(=o+p2(t)
z€R

< Noe/\ozcot + K06A02p2(t),
where Nj is some positive constant. This implies that

lim sup|®(z,t) — U(x + cot +w1)| = 0.
>0

t——00 4
Similarly, when =z < 0, we have
0 < ®(z,t) — U(—2 4 cot + wa) < Ngerozeot 4 [erozp2(t)

Thus, (4.20) follows.

(ii) We denote a solution of (1.1) with initial data ¢ € Cjoq) by
u(zx,t; ¢). Define

Un(]},t) :U(Iatﬂﬁn)’ (pn(ﬂj,S) :M(‘x’T—n—i_S)?
(I,S)ERX[fT,O], ne€N.

Since 0 < wy,(x,t) < 1, by the comparison principle we obtain that
0 < ®(z,t) <1 for (z,t) € R2.

Now, we show (9/0t)®(x,t) > 0 on R2. We first prove that u,,(z,t) is
increasing in t € [—n, +00) for any « € R. Since u(z,t) is a subsolution
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of (1.1), then

Un(x,t) = u(z, t;0n) > u(r,t+T—n) for all (z,t) € Rx[—1, =T +n].

For any € > 0, u(z,- +¢) > u(x,-) on R, it follows that w,(x,T —
n+s+e) =u(z,s+€¢n) > @nlx,s) for all (z,s) € R x [-7,0]. By
comparison and the uniqueness of solutions, we have
un (4 €) = u(@, tu(- e+ 0n)) 2 un(,1)
for any (x,t) € R x (0, 400).

Due to the arbitrariness of €, we see that w,(x,t) is increasing on t.
Therefore, ®;(x,t) > 0 for (z,t) € R2. Since ®;(z,t) satisfies

(421) q)tt((E,t) =Jx (I)t — ‘Pt — d@t
+ / T (B(z — y.t —7)By(z — y.t —7) dy,
R

we have

(4.22) By (z,t) = By (2, s)e”1TDE=s)

t
+ / e_(1+d)(t_T)g(<I>) (z,7)dr

S

> ®, (SC, S)ef(ler)(tfs)

for any s < t, where

g(q))(l‘,t) =Jx (I)t + / J(y)b/((b(l' - Y, t— T))q)t('r - yvt - T) dy Z 0.
R
If (xo,t0) € R? exists such that ®;(zg,ty) = 0, then, by (4.22), we
have ®;(xp,t) = 0 for all ¢t < tg. In view of ®(x,t) > 0, for any
(x,t) € R?, we obtain ®4(zg,t) = 0 for any ¢t < to. Then, by (4.21),
we obtain

(J * q)t)(x(h t) + / J(y)b’(@(azo - Y, [ T))(I)t(l'o - Y [ T) dy =0
R

for any t < t;. Since b/'(u) > 0 for u € [0,1] and P4(x,t) > 0 for any

(7,t) € R?, we have

(J % @) (x0,t) =0 for all t < tp.



1392 GUO-BAO ZHANG AND RUYUN MA

In view of J € C' and [; J(x)dx = 1, by induction, we further have
®y(x,t) =0 for any « € R and ¢ < ¢1, which contradicts (4.19).

(v) From the proof of Theorem 4.10, we see that u, (x,t) < ®(z,t) <
Uy, (z,t) for any (x,t) € R x (—o0,T). Then, by the comparison princi-
ple, we further obtain

O(z,t) > max{U(z +ct +wy),U(—x +ct +wq)}, (x,1) € R%

Since

max{U(x + ¢t + @1),U(—z + ct + &2)}
> max{U(x + ct + w1),U(—z + ct + w2)},

for any (w1,ws) € (—00,9)? and (@1,w2) € (—o0,¥)? with @, > w; and
Wa > wa, it is not difficult to show that property (v) holds.

(vi) In order to prove ®(z, t;wy,wa) = U(—z+cot+ws) as wy — —oo
in the sense of the topology of T, let {wk} satisfy wF™ < wh < wy for
any k € Nand w¥ — —co as k — oo. Then (1.1) admits entire solutions
®F (z,t; wF, wy) such that, for any t < T,

(4.23) U(—z 4 ct 4+ wy) < max{U(z + ct + wy), U(—z + ct + wy)}
< ‘I)k(x7t;wfaw2)
< Uz +p(t;wi,wa)) + U=z + p(t;wf, w2))

for x € R and £k € N. By Lemma 4.9 and by a diagonal extraction
process, CB(x,t) = 5(:1:,t;foo,w2) exists such that ®F(z,t;wl,ws)
converges to ®(z,t) as k — oo (up to extraction of some subsequence)
in the sense of the topology of 7. Thus, :IS(x,t, —00,wsq) is an entire
solution of (1.1). By the monotonicity of ®*(x,t;w, w,) with respect
to wh, ®*(z,t;wk, wy) converges to ®(z,t, —0o,ws) in the sense of the
topology of 7. Obviously, &D(x,t, —00,ws) is independent of k € N.
Thus, by (4.23), we obtain

U= 4 ct 4 wa) < ®(x,t; —00,ws) < U(—x + p(t;wh, w2))

for all z € R and ¢t < T. It follows from [32, Lemma 4.2] that three
positive numbers Sy (independent of U), oy and ¢ exist such that, for

any d € (0,0] and every & € R, the function w* defined by
wh(z,t) :=U(x +ct +& + 0'05(GBOT — eiﬁot)) + g Pot
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is a super-solution of (1.1) on [0, 4+00). Fix any t; < 0. Set

n = sug”é(m,tl + 5 —00,wp) = U(=x + ¢ty + ) + w2)||Le—r0]-
fAS

According to p(t) — ct —ws — 0 as t — —oo, for any 6 > 0, to < t; — 7
exists such that

U(—z+c(ta+s) +wa) < 5(m,t + to; —00, wa)
<U(xz+c(ta + 8) +wa

+ 0gd(ePom — e7Pos)) 4 ge~Pos
for z € R and s € [—7,0]. Take tg =t; —t3 > 0. Then, we have
U=z + c(ty + 8) +ws) < B(x,t + t1; —00, wy)

<U(x+c(ti +59)
Fuwy + Uod(eﬁoTiefﬁo(thS)))jL 56*50(t0+8)

for x € R and s € [—7,0]. Thus,

sup ||®(z, t1 + - —00,wa) — Uz + c(ts + ) + wa)|| oo —r0]
T€R

< 5(1 + gge Pom max U’(x)).

Since § is arbitrary, we get n = 0. Hence, we obtain that E)(x, t; —00,wa)
=U(—z+ ct + wq) for any t < T and = € R. We can similarly prove
the remainder results of (vi). The proof is complete. O

4.4. Uniqueness and stability of entire solutions.

Lemma 4.12. There exist constants g > 0, vy > 0 and oq > 0 such
that, for anyn € R, 6 € (0,60] and o > o9, the functions
WE(z,t) = ®(x,t +n £ 06[1 — e !]) £ fe~ 0!
are a pair of super- and sub-solutions of (1.1) on [0, +00).
Proof. We only need show that W™ (xz,t) is a super-solution. The

other case can be proved similarly. Since

lim [~v+d—29e""]=d—-V(0) >0
(v,9)—(0,6"(0))



1394 GUO-BAO ZHANG AND RUYUN MA

and

lim [v+d—9e""]=d-V(1) >0,
(¥,9)—=(0,0'(1))

we can fix g > 0 and dg > 0 such that
(4.24)  —vg+d—19e"7 >0 for any ¥ € [b'(0) — dg, b’ (0) + o)
and

(4.25)  —vop+d—9e”" >0 for any ¢ € [b/(1) — do,b' (1) + do]-

Let 41 € (0,0¢) satisfy

do
voT /! < =
(4.26) 5re [1+J£[af‘]|b( w) + max [b"(u )I} R
Since
/ / —
Jim sup / Kyt (®(z —y,t —7))dy —b (1)’ =0,

there exists a 77 > 0 such that, for any ¢ € (17, +00) and z € R,

(4.27) /RK(y)b’(q)(x—y,t—T))dye [b’(l) % )+ 520]

Since

lim U(§) =0, lim | K(y)bU(§—y—cr))dy=1'(0),

E——o0 §——c0 Jr

lim [ K(y)bU(§ —y —cr)) =b'(1),

£—4o0 R

there exists an X7 > 0 such that

(4.28) /K U(¢ —y)dy max [b"(u)| < % for £ < —Xjy,
z€[0,1] 8

(4.29)

[ KO-y enaye [FO - L, vo+ 2| fores-x
R
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and

(4.30)

[ Ry -enaye - F v+ | forezx,
R

Since p(t) — ¢t —w — 0 as t — —o0, there exists a To < T, where T
is defined as in Lemma 4.7 and such that, for ¢t < T5,

(4.31) 2(p(t) — et —w) max b"(u)| - maxU"(€) € (0‘?)

Let 1 = minge_x,,x,] U'(§) > 0. Then, there exists a large o1 > 0
such that

1
(4.32) —covpk1 — vy +d — max b (u)e”” > 0.
2 u€[0,2]

Let U(z,t) :=U(z+ct+w)+U(—z+ ct +w). It is easy to prove that

Aim[[@ = Uf[ex(—o0)) = 0.

By (1.1), we further obtain that lim;, o [|® — ¥[|rxc1(—00,yy = 0.
Thus, there exists a T3 < T3 such that, for any ¢ < T,

1
(4.33) sup||<I> Ul (- Oot]< —CK1,

Since

lim max
|z| =00 te[T5,T1]

/K W (B — g, t — 7)) — b(1 )’_0

there exists a large, positive number X5 such that, for any |z| > Xo
and t € [Tg,Tl],

(4.34) /K W(P(z —y, t ))dye{b’() % b(1) + 520]

Let
. 0P(x,t)
Ko = min
2 |z|<Xs ot
te([Ts,Th]

> 0.
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Take o9 > 0 such that

(4.35) oavgky — Vg +d — max b (w)e™" > 0.
ue|0,

Let £(t) = t+n+0d(1—e "0t). Then, W (x,t) = ®(z,&(t))+de 0!,
and we have

8W+

LIWT)(x,t) = —JxWH 4+ Wt aw™

/K@ bW (@ — .t — 7)) dy
= @ (z,£(1)) (1 + avge°t) — drge ot
— Jx®(x,£(t)) + (x,£(t)) + dP(x, £(t)) 4 dSe 0t

/ K(y)b(®(x —y, &t — 7)) + 5€—u0(t—7)) dy
= O} (z,£(t))odvge 0" — Srge 0! + de” 0!
/K(y O(z —y,&(t) — 7)) dy
B / K(y)b(®(x —y,&(t — 7)) + de ™) dy
R
> & (z, (1)) advge ™0 — Juge V0! + dfe 0!
- / K(y)b(®(z —y,&(t) — 7)) dy
R
- / K(y)b(®(z —y,&(t) — ) + 6™ dy
R
= e~ ot [(I)'Q(x, E(t))ovy — vy +d — €7
X / J(y)b’(@(x -y, &(t) —7) + gde—l/o(t—q—)) dy},
R

where 0 € [0,1] and ®4(x,t) = (0P(x,t))/0t. Let 09 = max{oy,02}.
Now we consider six cases.

Case (). = € R and &(¢t) > Ty. By (4.25) and (4.27), we have
LIWH](z,t) > 0.

Case (ii). &(t) < T3 and |z| 4+ ¢£(t) + w > X;. Since
O(z,(t) = Ul + c£(t) + w),
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<I>(‘r - y7§(t) - T) Z U({L‘ ) + Cé-(t) —CcT +W),
Pz —y,&(t) —7) < Uz —y+p(Et) — 7))
+U(—z+y+pE) —7)),

we have

V(@ -y, 8(t) — 7)) < V(U(x -y + c€(t) — 7 + w))

FU( 4y 4 c6(t) - o7+ ) mase |1
ue|0,

. . 1 . /
+ 2IpE(0) (1) ] ()| - U (€)

By (4.25), (4.26), (4.28), (4.30) and (4.31), for £(t) < T3, = > 0 with
x+ c€(t) +w > X1, we get LIWT](z,t) > 0. By symmetry, we also
obtain LW T](x,t) > 0 for £(t) < T3, x < 0 with —x + c£(t) + w > X3.

Case (iil). £(t) < Ty, |z| + c€(t) + w < —X;. By (4.24), (4.26),
(4.28), (4.29) and (4.31), we have L[WT](z,t) > 0.

Case (iv). £(t) < T3, = X1 < |z| + c€(t) + w < X;. From (4.32) and
(4.33), it follows that L[W*](z,t) > 0.

Case (v). Tz < &(t) < Th, |z| > X5. By (4.25), (4.26) and (4.34),
we obtain L[WT](z,t) > 0.

Case (vi). T3 < &(t) < Th, |x| < Xs. Tt is easy to see that (4.35)
implies L[W*](z,t) > 0. The proof is complete. |

Theorem 4.13. Assume that ®(x,t) is the entire solution of (1.1)

given in Theorem 4.10. If Ci(x,t) is an entire solution of (1.1) satisfy-
ing (4.20), then, for some (xq,to) € R?,

O(x,t) = ®(z +x0,t +1o) for any (x,t) € R2.

Proof. Set II(x,t) = ®(x + x0,t + to) for any (z,t) € R?. Then, we
only need to prove that ®(z,t) = Il(z,t) holds for any (x,t) € R?. Fix
an arbitrary ¢t; < 0. Define

7 = sup 1@ (z, -+ t1) — (=, + t1)l| Lo (- 70
re

In order to prove ®(z,t) = I(x,t), it suffices to show that n = 0. For
any small § € (0,00], where &g is determined by Lemma 4.12, there
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exists a to < t; — 7 < —7 such that

sup [|®(z, - +t1 +t2) — H(x, - +t1 +t2)||poo (=r0)) <6,
rxeR

that is,
Oz, s+t +ta) —0 <I(x,s+t1 +t2) < P(x,s+1t1 +t2) + 0

for any x € R and s € [—7,0]. Due to the monotonicity of ® with
respect to ¢, we further have

O(z, s+t +ta+ 090(1 —€™7) — 0pd(1 — e770%)) — Je™ 0%
S H(I,S +t1 +t2)
< P(z, s+t +to —0pd(1 —€™7) 4+ 0pd(1 — e %)) + Je 0%,

where 0y and 1 are given in Lemma 4.12. By the comparison principle,
for all z € R and ¢t > 0, we obtain

(b(’l},t —+ tl + tz —+ 0'05(]. — GVOT) — 0'05(]. — eiyot)) — 5€7V0t
S H($7t+t1 +t2)
< ®(z,t+t; +tg — 0gb(1 — €°7) + go8(1 — e 70h)) 4 fe~ "ol

Set t € [—ty—T, —ta], T = t+t1 +to+00d(1— €”07) — 58 (1 — e 01),
and
0P(z,t)

M = sup 5

z€R

Le=(R)
Then, by the mean-value theorem, it follows that
(2, t + by + to) — (2, t + 11 + )]
< 25+ |@(z,7 + 2006(e”°T — e70h)) — ®(z,7)| < 2(1 + "o M),
which implies

suﬁ @ (2, +t1) — H(z, -+ t1)|| Lo (=m0 < 2(1 4 €79 M)0.
xre

This, in turn, implies that
0D (x,t)

<2 1 voT
n < <+e op sup ot

zeR

>5 for all § € (0, dg).

Lo

By the arbitrariness of 4, we have n = 0. Therefore, ED(w +x0,t+tg) =
®(x,t) for (x,t) € R2. The proof is complete. O
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Theorem 4.14. The entire solution ®(x,t) := Py, w,(2,t) of (1.1)
given in Theorem 4.10 is continuously dependent upon (wi,ws) €
(—00,0) in the sense of T.

Proof. Given (w?,w9), take two sequences {(wﬁ71,wf_72)}k€N and

{(WE,MWE,Q)}keN satisfying {(Wi,lvwi,Q)}keN C (—0079)27 limy 4o
(Wi 1, wh 5) = (wf,w}) and

(Wli,hwiﬂ) < (wﬁ,ﬁl’wﬁj&l) < <W?7w(2)) < (wijrll’wi,gl) < (wi,hw«kka)

for any k € N. By Theorem 4.10, (1.1) admits entire solutions

k k
®O(x,t) := (I)g?wg (x,1), D (2,t) := (I)ivwi,pwi,z (z,t).

It also follows that there exist ®(x,t) such that ®% converge to
®(x,t), respectively, in the sense of T as k — +oo. In particular,
O, (x,t) and ®_(x,t) are entire solutions of (1.1).

We now prove that ®(z,t) = ®%(x,t) for any (z,t) € R%. By
Theorem 4.11 (v), we obtain
OF (z,t) < M (z,t) < B _(x,1)
<%z, t) <D (z,1)
< B5H (a,1) < B (1, 1)
for all (z,t) € R? and k € N. For any t < T, we have

max{U(z + ct + w* ), U(-z + ct + " ,)}
< max{U(x + ct + wlfﬁl), U(—z+ct+ wf"gl)}

<max{U(z + ct + ), U(—x + ct +wd)}
< max{U(z + pr(t0}, w3)), U= + pa(t;wy, wh) }

(x
(z
< max{U(z + p1(t; w_’ﬁll, w_’ﬁ;)x U(—z + pa(t; w_’ﬁﬂwff’r;)}
< max{U(z + pl(t;wﬁ)l, wﬁz))’ U(—x + pa(t; wil,wﬁz)}
and
max{U(z + ct + w* ), U(—x + ct + w ,)} < & (x,1)
< max{U(xz + p; (t;wil, wig)), U(—z + pa(t; wiyl,wf‘;g)}
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for any k£ € N. Recall that T is independent of k. Following this, we
have

sup [ (x,1) — Ul + ct + wy))|

z>0
+sup @4 (z,1) — U=z + ct + wj)|
<0
<sup|U(x +p1(t;wf_71, w_lf_,g) —U(zx+ct+ w571)|
x>0

+sup|U(—z + pa(twh 1, wh o) —U(—z +ct + Wk )|
x<0

+supU(—z +pa(t;wf 1, 0f o)
x>0

+sup U(x + p1(¢; wi,l,wiyg)
<0

<sup|U(z —ﬁ—pl(t;wi’l,wﬁg) —U(z+ct +wi’1)|
x>0

Tsup [U(—a + pa(tieok 4w ) — Ul 4 et +wh )]
<0

+supU(—x + pa(t; w?l,wi@)
x>0

+ sup U(x + p1(¢; wi,l,wia)
x<0

+ sup |U (= +ct+wi’1) —U(x +ct+wf’1)\
x>0

+sup |U(—z + ct +w’j_’2) —U(—x+ct +w’i,2)|.
<0

By the arbitrariness of k£ € N, we obtain
sup | @ (z,t) — U(x + ct + )|
x>0

+sup | @y (2,t) — U(—z + ct + wI)|
<0

< 2Rgerozt max U'(z) +2U(ct) = 0, ast— +oo.
zE

By Theorem 4.13, we have ® (x,t) = ®°(x,t) for (z,t) € R?. Similarly,
we obtain ®_(z,t) = ®°(x,t) for (z,t) € R%. In view of the mono-
tonicity of ®% (z,t) and ®" (z,t) about k € N, ®* (z,t) and ®* (z,t)
converge to ®Y(z,t) in the sense of T as k — oo. Now, consider
(w1, wz) — (WY, wY). Tt is easy to prove that ®(x,t; w1, ws) converges to
®O(x,t;w?, wI) in the sense of T as k — co. The proof is complete. [
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Theorem 4.15. The entire solution ® of (1.1) given in Theorem 4.10
is Lyapunov stable in the following sense: for any given € > 0, there
exists a & > 0 such that, for any ¢ € C(R x [—7,0],[0,1]) and
llo(-+) = (- + @0, + to)||Loomx[=ro)) < O for some (x0,10) € R?,
we have |u(z,t) — ®(- + o, - + to)| < € for any x € R and t > 0.

Proof. Given any € > 0, choose §; = €/(2M). Then, for any |z| < 01,
we have

El
Lo (R)

ot

<M < £
2

0
(430 000 = Bt +Dmie) < sup | o)
S

For any ¢ € C([-,0],[0,1]) and || — ®(xg + -, to + *)|| Loe Rx[—7,0)) <
0 < dg, where zg € R and ¢y € R are arbitrary constants, the following
holds

O(z+ g, s+ t0) — 0 < p(x,8) < P(x+ g, s+ t9) + 6

for all x € R and s € [—7,0]. Since ®(z,t) is increasing in ¢ for all
x € R, we further have
O(z + 0,8+ to + 00d(1 — €”°7) — gpd(1 — e70%)) — fe~"0°
< p(x,s) < P(x+ 20,8+ to + 0pd(1 — e°7)
+ 0pd(1 — e770%)) + Je 708
for all z € R and s € [—7,0], where dp, 0 and v are as in Lemma 4.12.
Then, by the comparison principle and Lemma 4.12, we obtain
(4.37)  ®(x + w0, t + to + 00d(1 — €°7) — p6(1 — e *°)) — e ot
< u(z, t; )
S @(SL’ —+ xo,t —+ t() —+ 005(1 — GVOT)
+ 0pd(1 — 7o) + de 0t
for all z € R and ¢ > 0. Furthermore, let 0* = {€/2, (61777 /o), do}-
Then, for any é < 6%,
|00d(1 — €”°7) — ag6(1 — e "] < |opd(e”T — e~ 0|

S Uo(SeVOT S 51.



1402 GUO-BAO ZHANG AND RUYUN MA

It then follows from (4.36) and (4.37) that
lu(z, t;0) — ®(x 4+ 20,6+ t0)] < Mogd+6 <€

for all z € R and ¢ > 0. The proof is complete. O
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