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THE C∗-ALGEBRA GENERATED BY IRREDUCIBLE
TOEPLITZ AND COMPOSITION OPERATORS

MASSOUD SALEHI SARVESTANI AND MASSOUD AMINI

ABSTRACT. We describe the C∗-algebra generated by
an irreducible Toeplitz operator Tψ , with continuous sym-
bol ψ on the unit circle T, and finitely many composition
operators on the Hardy space H2 induced by certain lin-
ear fractional self-maps of the unit disc, modulo the ideal
of compact operators K(H2). For specific automorphism-
induced composition operators and certain types of irre-
ducible Toeplitz operators, we show that the above C∗-al-
gebra is not isomorphic to that generated by the shift and
composition operators.

1. Introduction. The Hardy space H2 = H2(D) is the collection of
all analytical functions f on the open unit disk D satisfying the norm
condition

∥f∥2 := lim
r→1−

1

2π

∫ 2π

0

|f(reiθ)|2dθ <∞.

For any analytic self-map φ of the open unit disk D, a bounded
composition operator on H2 is defined by

Cφ : H2 → H2, Cφ(f) = f ◦ φ.

If f ∈ H2, then the radial limit f(eiθ) := limr→1− f(re
iθ) exists

almost everywhere on the unit circle T. Hence, we can consider H2 as a
subspace of L2(T). Let ϕ be a bounded measurable function on T and
PH2 the orthogonal projection of L2(T) (associated with normalized
arc-length measure on T ) onto H2. The Toeplitz operator Tϕ is defined
on H2 by Tϕf = PH2(ϕf) for all f ∈ H2. Coburn [4, 5] showed that
the unital C∗-algebra C∗(Tz) generated by the unilateral shift operator
Tz contains compact operators on H2 as an ideal, and every element
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a ∈ C∗(Tz) has a unique representation a = Tϕ + k for some ϕ ∈ C(T)
and k ∈ K := K(H2). He showed that C∗(Tz)/K is ∗-isomorphic to
C(T) and determines the essential spectrum of Toeplitz operators with
continuous symbol.

Recently, the unital C∗-algebra generated by the shift operator Tz
and the composition operator Cφ for a linear fractional self-map φ of D
have been studied. For a linear fractional self-map φ of D, if ∥φ∥∞ < 1,
then Cφ is a compact operator on H2 [16]. Therefore, those linear
fractional self-maps φ which satisfy ∥φ∥∞ = 1 should be considered.
If, moreover, φ is an automorphism of D, then C∗(Tz, Cφ)/K is ∗-
isomorphic to the crossed products C(T) oφ Z or C(T) oφ Zn [7, 8].
When φ is not an automorphism, there are three different cases:

(i) φ has only one fixed point γ which is on the unit circle T, i.e., φ
is a parabolic map [15]. In this case, C∗(Tz, Cφ)/K is a commu-
tative C∗-algebra and ∗-isomorphic to the minimal unitization of
Cγ(T) ⊕ C0([0, 1]), where Cγ(T) is the set of functions in C(T)
vanishing at γ ∈ T and C0([0, 1]) is the set of all f ∈ C([0, 1])
vanishing at zero.

(ii) φ has a fixed point γ ∈ T and fixes another point in C ∪ {∞},
equivalently, φ has a fixed point γ ∈ T and φ′(γ) ̸= 1 [15]. In this
case, C∗(Tz, Cφ)/K is ∗-isomorphic to the minimal unitization of
Cγ(T)⊕ (C0([0, 1])o Z).

(iii) φ fixes no point of T, but there exist distinct points γ, η ∈ T with
φ(γ) = η [9]. In this case, C∗(Tz, Cφ)/K is the C∗-subalgebra D
of C(T)⊕M2(C([0, 1])) defined by

D =

{
(f, V ) ∈ C(T)⊕M2(C([0, 1])) :V (0)=

[
f(γ) 0
0 f(η)

]}
.

The study of C∗-algebras generated by Toeplitz and composition oper-
ators may be employed to calculate essential spectrum of certain com-
binations of composition operators and their adjoints with Toeplitz
operators [9, 10]. In addition, these algebras are interesting on their
own, as they provide examples of nuclear C∗-algebras (this follows from
the above observations).

This paper generalizes some of the above results. The generalization
is two fold. We replace the shift operator by an irreducible Toeplitz
operator with continuous symbols on the unit circle and a single
composition operator with finitely many composition operators on the
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Hardy space H2 induced by certain linear fractional self-maps of the
unit disk.

The paper is organized as follows. In Section 2, we review basic facts
and known results which are used later in the paper. In Section 3, we
find the C∗-algebras C∗(Tψ, Cφ1 , . . . , Cφn)/K and C∗(Tψ, Cφ)/K and
obtain more general results in the above cases, where φ1, . . . , φn are
as in case (ii), Tψ is an irreducible Toeplitz operator with continuous
symbols on T and φ is as in cases (i) or (iii). When φ is an automor-
phism, the composition operator Cφ often generates the unilateral shift
operator Tz. In Section 4, we investigate the C∗-algebra generated by a
composition operator induced by a rotation and an irreducible Toeplitz
operator with a symbol whose range is invariant under this rotation.

2. Preliminaries. In this section, we review some of the known
results which are used in the next sections. Here, we use C0([0, 1])
to denote the set of functions in C([0, 1]) vanishing at zero and [T ]
to denote the coset of operator T ∈ B(H2) in the Calkin algebra
B(H2)/K(H2).

A linear fractional self-map ρ of D with fixed point γ ∈ T is parabolic
if and only if ρ′(γ) = 1. In this case, ρ is conjugate to translation on
the right half plane Ω := {z ∈ C : Re z > 0} via the conformal map
α : z 7→ (γ + z)/(γ − z) of D onto Ω. Therefore, α ◦ ρ ◦ α−1 is the
translation map z 7→ z+ a for some a ∈ C with non-negative real part.
We denote the map ρ by ργ,a. This is an automorphism of D if and only
if Re a = 0. For γ ∈ T, the set Pγ := {Cργ,a : Re a > 0} consists of all
composition operators induced by non automorphic parabolic self-maps
of D fixing γ. If φ is a non automorphic parabolic self-map of D, then Cφ
is irreducible [12], and C∗

φCφ − CφC
∗
φ is a non-zero compact operator

(Cφ is essentially normal) [1]. Therefore, the unital C∗-algebra C∗(Pγ)
is irreducible and C∗(Pγ) ∩ K ̸= {0}. By [13, Theorem 2.4.9], C∗(Pγ)
contains all compact operators on H2. Since the elements of Pγ satisfy
ργ,a ◦ ργ,b = ργ,a+b, C

∗(Pγ)/K is a unital commutative C∗-algebra.

The next theorem completely describes this C∗-algebra.

Theorem 2.1. [11, Theorem 3, Corollary 2]. There is a unique ∗-
isomorphism Σ : C([0, 1]) → C∗(Pγ)/K such that Σ(xa) = [Cργ,a ] for
Re a > 0. Moreover if ρ is a parabolic non automorphic self-map of D
fixing γ, then C∗(Cρ) = C∗(Pγ).
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For a linear fractional self-map φ of D,

Uφ = Cφ(C
∗
φCφ)

−1/2

is the partial isometry in the polar decomposition of Cφ. Since both
Cφ and C∗

φ are injective, Uφ is a unitary operator.

The following results are useful in finding the C∗-algebra generated
by Toeplitz operators and composition operators induced by linear
fractional self-maps of D.

Theorem 2.2. [9, Section 4]. Suppose that φ is a linear fractional
non automorphic self-map of D sending γ ∈ T to η ∈ T. For every
f ∈ C(T), there exist compact operators k and k′ such that

TfCφ = f(γ)Cφ + k, CφTf = f(η)Cφ + k′.

Theorem 2.3. [7]. Let φ1 and φ2 be automorphisms of D and f ∈
C(T). If Uφ1 and Uφ2 are unitary parts of the polar decomposition of
Cφ1 and Cφ2 , respectively, then the operators Uφ1Uφ2 − Uφ2oφ1 and
Uφ1TfU

∗
φ1

− Tfoφ1 are compact.

For γ ∈ T and a positive real number t, following [15], we consider
the automorphism Ψγ,t of D defined by

Ψγ,t(z) =
(1 + t)z + (1− t)γ

(1− t)γz + (1 + t)
,

which fixes γ and satisfies Ψ′
γ,t(γ) = t. The set {Ψγ,t : t > 0} is an

abelian group as Ψγ,t1 ◦Ψγ,t2 = Ψγ,t1t2 for all t1, t2 > 0.

If φ,φ1, . . . , φn are linear fractional non automorphic self-maps of D
fixing γ ∈ T, by [15, equation (4.6)]

(2.1) C∗(Cφ1 , . . . , Cφ1 ,K)

= C∗({Cργ,aUΨγ,φ′
1(γ)m1 ···φ′

n(γ)mn
:

Re a > 0, (m1, . . . ,mn) ∈ Zn}).

In particular,

(2.2) C∗(Cφ,K) = C∗({Cργ,a
UΨγ,φ′(γ)n

: Re a > 0, n ∈ Z}).
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Theorem 2.4. [15, Theorem 4.4]. Let G be a collection of automor-
phisms of D that fix γ ∈ T. If G is an abelian group and η′(γ) ̸= 1
for all η ∈ G \ {id}, then C∗({[Cργ,aUη] : Re a > 0, η ∈ G}) is ∗-
isomorphic to the minimal unitization of C0([0, 1])oα G where the ac-

tion α : G → Aut(C0([0, 1])) is defined by αη(f)(x) = f(xη
′(γ)) for

η ∈ G, f ∈ C0([0, 1]) and x ∈ [0, 1].

By (2.1), (2.2) and Theorem 2.4, the C∗-algebras C∗(Cφ1 , . . . ,
Cφn ,K)/K and C∗(Cφ,K)/K are determined as follows.

Corollary 2.5. [15, Theorems 4.6, 4.7]. Let φ,φ1, . . . , φn be linear
fractional non automorphic self-maps of D that fix γ ∈ T, φ′(γ) ̸= 1
and lnφ′

1(γ), . . . , lnφ
′
n(γ) linearly independent over Z. Define the

actions α : Z → Aut(C0([0, 1])) and α′ : Zn → Aut(C0([0, 1])) by

αn(f)(x) = f(xφ
′(γ)n) and α′

(m1,...,mn)
(f)(x) = f(xφ

′
1(γ)

m1 ...φ′
n(γ)

mn
),

respectively, for f ∈ C0([0, 1]), n ∈ Z, (m1, . . . ,mn) ∈ Zn and x ∈
[0, 1]. Then C∗(Cφ,K)/K and C∗(Cφ1 , . . . , Cφn ,K)/K are ∗-isomorphic
to the minimal unitizations of C0([0, 1]) oα Z and C0([0, 1]) oα′ Zn,
respectively.

3. Irreducible Toeplitz operators. Let X be a compact Haus-
dorff space and A a C∗-subalgebra of C(X) containing the constants.
For x, y ∈ X, set x ∼ y if and only if f(x) = f(y) for all f in A.
Then ∼ is an equivalence relation on X. Let [x] denote the equivalence
class of x, let [X] be the quotient space and equip [X] with the weak
topology induced by A. Let X/ ∼ be the quotient space equipped with
the quotient topology. Then A is ∗-isomorphic to C([X]) and a C∗-

subalgebra of C(X/ ∼) via f 7→ f̃ where f̃([x]) := f(x) for x ∈ X.
Note that [X] is always Hausdorff, and it is homeomorphic to X/ ∼ if
and only if the latter is Hausdorff [5].

If D is an irreducible C∗-subalgebra of C∗(Tz), then it contains
a nonzero compact operator [5]. Hence, D contains all of compact
operators on H2 [13, Theorem 2.4.9]. We set

D0 = {f ∈ C(T) : Tf ∈ D}.

Theorem 3.1. [5, Theorems 2, 5]. If D is an irreducible C∗-sub-
algebra of C∗(Tz), then D0 is a C∗-subalgebra of C(T) and D/K is
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∗-isomorphic to C([T]), where [T] is the quotient with respect to the
equivalence relation induced by D0.

Let Tψ be an irreducible Toeplitz operator, i.e., the only closed vector
subspaces of H2 are 0 and H2 which reduce for Tψ, with continuous
symbol ψ, see [2, 4, 5, 14]. Then, D = C∗(Tψ) is irreducible, and
by [5, Theorem 6], D0 is the C∗-subalgebra of C(T) generated by ψ.
Hence, by Theorem 3.1, D/K is ∗-isomorphic to C([T]) where [T] is the
quotient with respect to the equivalence relation induced by ψ, that is,
x ∼ y if and only if ψ(x) = ψ(y).

Note that Tz is irreducible and there are other irreducible Toeplitz
operators, for example, see [14, Examples 1, 2]. If D = C∗(Tψ) =
C∗(Tz) for some continuous function ψ, then D0 = C(T) is generated
by ψ. By the Stone-Weierstrass theorem, ψ must be one-to-one on
the unit circle. Therefore, we are interested in the case that ψ is not
one-to-one on T.

Quertermous [15] showed that, if φ is a linear fractional non auto-
morphic self-map of D fixing γ ∈ T, then C∗(Tz, Cφ)/K is ∗-isomorphic
to the minimal unitization of Cγ(T)⊕C0([0, 1]), where Cγ(T) is the set
of all f ∈ C(T) vanishing at γ. We extend this result to an arbitrary
irreducible Toeplitz operator with continuous symbol on the unit circle,
instead of the shift operator, and finitely many composition operators
induced by linear fractional non automorphic self-maps of D with a
common fixed point on the unit circle. Our approach is similar to that
of Quertermous [15]. As in the previous section, we use the notation
[T ] for the coset of T in the Calkin algebra. Let t1, . . . , tn be nonzero
positive real numbers, γ ∈ T and Σ the map defined in Theorem 2.1.
Consider

Nγ,t1,...,tn = {Σ(g)[UΨ
γ,t

m1
1 ···tmn

n
] : g ∈ C0([0, 1]), (m1, . . . ,mn) ∈ Zn},

and let Aγ,t1,...,tn the non-unital C∗-algebra generated by Nγ,t1,...,tn .
By Theorem 2.1 and the fact that Ψγ,1 is the identity map of D,
Aγ,1,...,1

∼= C0([0, 1]).

If φ1, . . . , φn are linear fractional non automorphic self-maps of D
fixing γ ∈ T, and Tψ is an irreducible Toeplitz operator with continuous
symbol ψ on T, then
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(3.1)
C∗(Tψ, Cφ1 , . . . , Cφn)/K = C∗({[Tϕ] : ϕ ∈ C∗(ψ)} ∪ Aγ,φ′

1(γ),...,φ
′
n(γ)

),

by (4.6) and [15, Proof of Theorem 4.4]. Moreover, if lnφ′
1(γ), . . . , ln

φ′
n(γ) are linearly independent over Z, then Corollary 2.5 implies

(3.2) Aγ,φ′
1(γ),...,φ

′
n(γ)

∼= C0([0, 1])oα′ Zn.

Let Tψ be an irreducible Toeplitz operator and [T] the quotient space
with respect to the equivalence relation induced by ψ. Set

C[γ]([T]) := {f ∈ C([T]) : f([γ]) = 0},

and let Bγ,t1,...,tn be the minimal unitization of C[γ]([T])⊕Aγ,t1,...,tn .

The next lemma is necessary for what follows.

Lemma 3.2. [15, Lemma 6.3]. If γ ∈ T, f ∈ C(T) and A ∈ Aγ,t1,...,tn ,
then

[Tf ]A = f(γ)A = A[Tf ].

Moreover, if [Tf ] +A = [0], then f ≡ 0 and A = 0.

Theorem 3.3. If Tψ is an irreducible Toeplitz operator on Hardy space
H2 with symbol ψ ∈ C(T) and φ1, . . . , φn are linear fractional non
automorphic self-maps of D fixing γ ∈ T, then C∗(Tψ, Cφ1 , . . . , Cφn)/K
is ∗-isomorphic to Bγ,φ′

1(γ),...,φ
′
n(γ)

.

Proof. For t1, . . . , tn > 0, set

Cγ,t1,...,tn,ψ := {[Tϕ] +A : ϕ ∈ C∗(ψ), A ∈ Aγ,t1,...,tn}.

By (3.1),

C∗(Tψ, Cφ1
, . . . , Cφn

)/K = C∗(Cγ,φ′
1(γ),...,φ

′
n(γ),ψ

).

We show that Cγ,φ′
1(γ),...,φ

′
n(γ),ψ

is a C∗-algebra. It is clear that
Cγ,t1,...,tn,ψ is closed when taking the linear combination and adjoint.
On the other hand, by Lemma 3.2 and the fact that, for ϕ1, ϕ2 ∈ C∗(ψ),
[Tϕ1 ][Tϕ2 ] = [Tϕ1ϕ2 ] (since Tϕ1ϕ2 − Tϕ1Tϕ2 is a compact operator),
Cγ,t1,...,tn,ψ is also closed under multiplication. Hence, Cγ,φ′

1(γ),...,φ
′
n(γ),ψ

is a dense ∗-subalgebra of C∗(Tψ, Cφ1 , . . . , Cφn)/K. Similar to [15,
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Proof of Theorem 6.4], we define the map

F : Bγ,φ′
1(γ),...,φ

′
n(γ)

−→ Cγ,φ′
1(γ),...,φ

′
n(γ),ψ

by

F((ϕ̃− ϕ̃([γ]), A) + ϕ̃([γ])I) = [Tϕ] +A,

for ϕ ∈ C∗(ψ) and A ∈ Aγ,φ′
1(γ),...,φ

′
n(γ)

. By Lemma 3.2, F is an
injective ∗-homomorphism and its image is Cγ,φ′

1(γ),...,φ
′
n(γ),ψ

= C∗(Tψ,
Cφ1 , . . . , Cφn)/K. �

The following results are straightforward consequences of Theorems
2.1, 3.3, equation (3.2) and Corollary 2.5.

Corollary 3.4. If Tψ is irreducible with symbol ψ in C(T) and ρ
is a parabolic non automorphic self-map of D fixing γ ∈ T, then
C∗(Tψ, Cρ)/K is ∗-isomorphic to the minimal unitization of C[γ]([T])⊕
C0([0, 1]).

Corollary 3.5. If Tψ is irreducible with symbol ψ in C(T) and φ is
a linear fractional non automorphic self-map of D fixing γ ∈ T such
that φ′(γ) ̸= 1, then C∗(Tψ, Cφ)/K is ∗-isomorphic to the minimal
unitization of C[γ]([T])⊕(C0([0, 1])oαZ), where the action α is defined
as in Corollary 2.5.

Corollary 3.6. If Tψ is irreducible with symbol ψ in C(T) and
φ1, . . . , φn are linear fractional non automorphic self-maps of D fixing
γ ∈ T such that lnφ′

1(γ), . . . , lnφ
′
n(γ) are linearly independent over Z,

then C∗(Tψ, Cφ1 , . . . , Cφn)/K is ∗-isomorphic to the minimal unitiza-
tion of C[γ]([T])⊕ (C0([0, 1])oα′ Zn), where the action α′ is defined as
in Corollary 2.5.

Now consider the case where φ is a linear fractional non automorphic
self-map of D such that φ(γ) = η for some γ ̸= η ∈ T. Kriete, MacCluer
and Moorhouse investigated this case in [9]. We summarize their results
as follows.

Theorem 3.7. [9] Let φ be a linear fractional non automorphic self-
map of D with φ(γ) = η for some distinct points γ, η ∈ T. Then,
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for every a ∈ C∗(Tz, Cφ)/K, there is a unique ω ∈ C(T) and unique
functions f, g, h and k in C0([0, 1]) such that

a = [Tω] + f([C∗
φCφ]) + g([CφC

∗
φ]) + [Uφ]h([C

∗
φCφ]) + [U∗

φ]k([CφC
∗
φ]).

Moreover, the map Φ : C∗(Tz, Cφ)/K → C(T) ⊕ M2(C([0, 1])) defined
by

Φ(a) =

(
ω,

[
ω(γ) + g h

k ω(η) + f

])
is a ∗-isomorphism of C∗(Tz, Cφ)/K onto the following C∗-subalgebra
of C(T)⊕M2(C([0, 1])),

D =

{
(ω, V ) ∈ C(T)⊕M2(C([0, 1])) : V (0) =

[
ω(γ) 0
0 ω(η)

]}
.

The shift operator is replaced by an arbitrary irreducible Toeplitz oper-
ator Tψ with continuous symbol.

Theorem 3.8. Let φ be a linear fractional non automorphic self-
map of D such that φ(γ) = η for distinct points γ, η ∈ T and Tψ
irreducible with continuous symbol ψ on T. Then, every element b in
C∗(Tψ, Cφ)/K has a unique representation of the form

b = [Tω] + f([C∗
φCφ]) + g([CφC

∗
φ]) + [Uφ]h([C

∗
φCφ]) + [U∗

φ]k([CφC
∗
φ]),

where ω ∈ C∗(ψ) and f, g, h and k are in C0([0, 1]). Moreover,
C∗(Tψ, Cφ)/K is ∗-isomorphic to the C∗-subalgebra D of C([T]) ⊕
M2(C([0, 1])), defined by

D =

{
(f, S) ∈ C([T])⊕M2(C([0, 1])) : S(0) =

[
f([γ]) 0

0 f([η])

]}
.

Proof. Since C∗(Tψ, Cφ)/K is a C∗-subalgebra of C∗(Tz, Cφ)/K, by
Theorem 3.7, for every element b ∈ C∗(Tψ, Cφ)/K there is a unique
ω ∈ C(T) and unique functions f, g, h and k in C0([0, 1]) such that

b = [Tω] + f([C∗
φCφ]) + g([CφC

∗
φ]) + [Uφ]h([C

∗
φCφ]) + [U∗

φ]k([CφC
∗
φ]).

We show that ω ∈ C∗(ψ). By Theorem 2.2, for each ε > 0, there
is an element bε ∈ C∗(Tψ, Cφ)/K such that ∥bε − b∥ < ε and bε =
p([Tψ], [T

∗
ψ]) + q([Cφ], [C

∗
φ]), for some polynomials p and q. It is
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straightforward to show that p([Tψ], [T
∗
ψ]) = [Tp(ψ,ψ)]. Hence, by The-

orem 3.7, there are unique functions fε, gε, hε and kε in C0([0, 1]) such
that

bε − b = [Tω−p(ψ,ψ)] + fε([C
∗
φCφ]) + gε([CφC

∗
φ]) + [Uφ]hε([C

∗
φCφ])

+ [U∗
φ]kε([CφC

∗
φ])

and∥∥∥∥(ω− p(ψ,ψ),

[
ω(γ)− p(ψ,ψ)(γ) + gε hε

kε ω(η)− p(ψ,ψ)(η) + fε

] ∥∥∥∥)
= ∥bε − b∥ < ε.

Thus, ∥ω − p(ψ,ψ)∥ < ε and ω ∈ C∗(ψ). By Theorem 3.7,
C∗(Tψ, Cφ)/K is ∗-isomorphic to the following C∗-subalgebra of C∗(ψ)
⊕M2(C([0, 1]))

C =

{
(ω, S) ∈ C∗(ψ)⊕M2(C([0, 1])) : S(0) =

[
ω(γ) 0
0 ω(η)

]}
.

Hence, by Theorem 3.1, C∗(Tψ, Cφ)/K is ∗-isomorphic to

D=

{
(f, S) ∈ C([T])⊕M2(C([0, 1])) : S(0) =

[
f([γ]) 0

0 f([η])

]}
. �

4. Composition operators with automorphic symbols. A self-
map φ of the unit disk D is an automorphism if φ is a one-to-one
holomorphic map of D onto D. We denote the class of automorphisms
of D by Aut(D). A well-known consequence of the Schwarz lemma
shows that every element φ ∈ Aut(D) has the form

(4.1) φ(z) = ω
s− z

1− sz
,

for some ω ∈ T, where s = φ−1(0) ∈ D.
A Fuchsian group Γ is a discrete group of automorphisms of D. Fix

a point z0 ∈ D. The limit set of Γ is the set of limit points of the orbit
{φ(z0) : φ ∈ Γ} in D. This is a closed subset of the unit circle and
does not depend on the choice of z0. The limit set of a Fuchsian group
has either 0, 1, 2, or infinitely many elements. When the limit set is
infinite, it is perfect and nowhere dense (and hence uncountable) on
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the entire unit circle. A Fuchsian group Γ is called non-elementary if
its limit set is infinite.

Jury [7] describes the C∗-algebra C∗({Cφ : φ ∈ Γ})/K when Γ is a
non-elementary Fuchsian group. A basic point in the proof is that
the non-elementary condition on Γ guarantees that the C∗-algebra
C∗({Cφ : φ ∈ Γ}) contains the unilateral shift Tz. The result may
be extended from the non-elementary case to an slightly more general
situation as follows.

Theorem 4.1. Let Γ be a Fuchsian group. If the limit set of Γ contains
at least two linearly independent points, then C∗({Cφ : φ ∈ Γ})
contains the unilateral shift operator, and there is an exact sequence

0 −→ K −→ C∗({Cφ : φ ∈ Γ}) −→ C(T)o Γ −→ 0.

Proof. If z1 and z2 are linearly independent points of the limit set,
then two elements of the orbit {φ(0) : φ ∈ Γ} may be chosen near z1, z2
that are linearly independent. By the proofs of [7, Proposition 3.4] and
[8, Theorem 2.6], C∗({Cφ : φ ∈ Γ}) contains the unilateral shift Tz.
On the other hand, since the action of a Fuchsian group is amenable and
topologically free, by a similar argument to that of [7, Theorem 3.1],
the exactness of the above sequence follows. �

For example, let φ be an automorphism of the form (4.1). If ω is
not real (ω ̸= ±1) and s ̸= 0, then Tz ∈ C∗(Cφ). Indeed, a simple
calculation shows that

φ(0) = ωs, φ2(0) = ωs
1− ω

1− |s|2ω

and, if ω = x+ iy (y ̸= 0),

1− ω

1− |s|2ω
=

(1 + |s|2)(1− x) + i(|s|2y − y)

|1− |s|2ω|2
.

Therefore, (1− ω)/(1− |s|2ω) is not real and φ(0) and φ2(0) are
linearly independent over R. Hence, Tz ∈ C∗(Cφ). If ω is real (1
or −1) or s = 0, then all φn(0)s are linearly dependent.

Jury [8] found the C∗-algebra C∗(Tz, Cφ)/K, for φ ∈ Aut(D) as a
crossed product C∗-algebra. We do the same when the shift operator
is replaced by a general irreducible Toeplitz operator Tψ. The above
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example shows that, if φ ∈ Aut(D) is of the form (4.1) for some non-
real ω ∈ T and non-zero s ∈ D, then the quotient C∗(Tz, Cφ)/K =
C∗(Cφ)/K does not change, if Tz is replaced with Tψ. Here, we check
the case s = 0.

Theorem 4.2. Let φ be a rotational automorphism φ(z) = ωz for
some ω ∈ T. If Tψ is irreducible with continuous symbol ψ on T and
φ(ψ(T)) = ψ(T), then there is an exact sequence of C∗-algebras

0 −→ K −→ C∗(Tψ, Cφ) −→ C(ψ(T)))oφ Z −→ 0,

if φ has infinite order. In the case that φ has finite order q, in the exact
sequence, Z is replaced by the finite cyclic group Zq = Z/qZ.

Proof. Let the rotation φ have infinite order. The image X = ψ(T)
of ψ is a compact Hausdorff space, and φn(X) = X, for all n ∈ Z.
Now, Z acts on X by

β : Z −→ Home(X); n 7−→ βn, βn(x) = φn(x),

for n ∈ Z and x ∈ X. This induces an action of Z on C(X) given by

α : Z −→ Aut(C(X)); αn(f)(x) = f(φ−n(x)).

Since every unitary composition operator on H2(D) is induced by a
rotation, the C∗-algebra C∗(Tψ, Cφ)/K is generated by C∗(Tψ)/K ∼=
C(X) and unitary [Cφn ], for all integers n. On the other hand, Theorem
2.3 shows that the unitary representation n → [Cφ−n ] satisfies the
covariance relation [Cφ−n ]f [C∗

φ−n ] = αn(f). Hence, there is a sur-

jective ∗-homomorphism from the full crossed product C(X) oφ Z to
C∗(Tψ, Cφ)/K. Since the action of the amenable group Z on compact
Hausdorff space X is amenable and topologically free, i.e., for each
n ∈ Z, if n ̸= 0, the set of points that is fixed by φn has empty interior,
similar to the proof of [8, Theorem 2.1], the above ∗-homomorphism is
also injective, and hence, an isometry. In the case that the order φ is
finite, the proof is similar, with Z replaced by a finite cyclic group. �

It may be conjectured whether, for a rotational automorphism
φ(z) = ωz, there is a function ψ which satisfies the hypothesis of
Theorem 4.2. As a concrete example, let us consider φ(z) = ze2πi/3.
A sufficient condition for irreducibility of Toeplitz operator Tψ is given
in [14, Theorem 1]: if the restriction of a function ψ ∈ H2 to a Borel
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subset S ⊆ T, with Lebesgue measure on the unit circle, is one-to-one
and the sets ψ(S) and ψ(T \ S) are disjoint, then Tψ is irreducible.
By the Riemann mapping theorem, for example, see [6], there exists a
biholomorphic (bijective and holomorphic) map ψ from the unit disk D
onto the simply connected set

D−
([

1

2
, 1

)
∪
{
re2πi/3 :

1

2
≤ r < 1

}
∪
{
re4πi/3 :

1

2
≤ r < 1

})
in the complex plane. A result of Carathéodory in [3] states that ψ
continuously extends to the closure of the unit disk. Moreover, one can
choose ψ, see Figure 1, such that

ψ(1) =
1

2
, ψ(e2πi/3) =

1

2
e2πi/3, ψ(e4πi/3) =

1

2
e4πi/3,

ψ(eπi/3) = eπi/3, ψ(−1) = −1, ψ(e5πi/3) = e5πi/3

and

ψ(e2πi/15) = ψ(e28πi/15) = 1, ψ(e8πi/15) = ψ(e4πi/3) = e2πi/3,

ψ(e6πi/5) = ψ(e22πi/15) = e4πi/3.

The restriction of ψ to T, also denoted ψ, is an element of H2, one-to-
one on

S =

{
eiθ : θ ∈

(
2π

15
,
8π

15

)
∪
(
4π

5
,
6π

5

)
∪
(
22π

15
,
28π

15

)}
,

ψ(S) and ψ(T\S) are disjoint and the image of ψ is invariant under φ,
that is, φ(ψ(T)) = ψ(T). Moreover, since ψ is not one-to-one on T,
C∗(Tψ) ̸= C∗(Tz).

More generally, if the automorphism φ is of the form

(4.2) φ(z) = ze2pi/qπ,

where p and q are relatively prime integers with q positive, then, by a
similar construction, there is a function ψ that satisfies the conditions
of the above corollary, is not one-to-one on the unit circle, and

ψ(T) = T ∪
q−1∪
n=0

φn
([

1

2
, 1

))
,
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FIGURE 1.

FIGURE 2.

see Figure 2. In order to illustrate that our construction may provide
new examples, using Theorem 4.2 and certain facts on crossed products
of C∗-algebras, we show that, for rational rotations (4.2) and the
constructed continuous functions ψ on T, C∗(Tψ, Cφ)/K is not equal or
even isomorphic to C∗(Tz, Cφ)/K. This is easy of course when p = 0,
that is, φ(z) = z on T and the action of Z on T and ψ(T) is trivial.
In this case, the C∗-algebras are isomorphic to C(ψ(T)) and C(T),
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respectively. The spectra of these C∗-algebras are ψ(T) = T
∪
[1/2, 1)

and T, which are not homeomorphic.

For a more general example, we need some preparation to show that
the crossed products are non isomorphic (the reader is referred to [17]
for more details). Let G be a topological group acting on a topological
space X from left. The orbit of x ∈ X is the set G · x = {s · x : s ∈ G}.
The stability group at x is Gx := {s ∈ G : s · x = x}. The action
is called free if Gx = {e} for all x ∈ G. The set of orbits is denoted
by G\X and is called the orbit space. It is equipped with the largest
topology, making the natural quotient map p : X → G\X continuous.

In the case where the automorphism φ is of the form (4.2) since
the action of finite group Zq is free on the compact spaces T and ψ(T),
using the same idea as in the proof of [17, Proposition 2.52], the spectra
of the C∗-algebras C(ψ(T)) oφ Zq and C(T) oφ Zq are Zq\ψ(T) and
Zq\T, respectively. It is easy to see that Zq\ψ(T) is homeomorphic to
T
∪
[1/2, 1) and Zq\T is homeomorphic to T. Therefore, the spectra of

these C∗-algebras are not homeomorphic, and thus, they could not be
isomorphic.
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