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HERON QUADRILATERALS VIA ELLIPTIC CURVES

FARZALI IZADI, FOAD KHOSHNAM AND DUSTIN MOODY

ABSTRACT. A Heron quadrilateral is a cyclic quadri-
lateral whose area and side lengths are rational. In this
work, we establish a correspondence between Heron quadri-
laterals and a family of elliptic curves of the form y2 =
x3 + αx2 − n2x. This correspondence generalizes the no-
tions of Goins and Maddox who established a similar connec-
tion between Heron triangles and elliptic curves. We further
study this family of elliptic curves, looking at their torsion
groups and ranks. We also explore their connection with the
α = 0 case of congruent numbers. Congruent numbers are
positive integers equal to the area of a right triangle with
rational side lengths.

1. Introduction. A positive integer n is a congruent number if it is
equal to the area of a right triangle with rational sides. Equivalently, n
is congruent if the elliptic curve En : y2 = x3 − n2x has positive rank.
Congruent numbers have been intensively studied, see for example
[10, 11, 30]. The curves En are closely connected with the problem
of classifying areas of right rational triangles. Indeed, Koblitz [31]
used the areas of rational triangles as a motivation for studying elliptic
curves and modular forms. In [23], Goins and Maddox generalized
some of Koblitz’s notions, [31, Section 2, Chapter 1, Example 3], by
exploring the correspondence between positive integers n associated
with arbitrary triangles (with rational side lengths) which have area n
and the family of elliptic curves y2 = x(x− nτ)(x+ nτ−1) for nonzero
rational τ . Congruent number curves are, of course, the τ = 1 case.

In this work, we extend these ideas to show a correspondence
between cyclic quadrilaterals with rational side lengths and area n
(Heron quadrilaterals) and a family of elliptic curves of the form y2 =
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x3+αx2−n2x. We give explicit formulas which show how to construct
the elliptic curve and some non-trivial points on the curve, given the
side lengths and area of the quadrilateral. If we set one of the side
lengths to zero, then the formulas collapse to exactly those of Maddox
and Goins. We also show the other direction of the correspondence,
that is, how to find a cyclic quadrilateral which corresponds to a
given elliptic curve in our family. We call the pair (α, n) a generalized
congruent number pair if the elliptic curve y2 = x3 + αx2 − n2x has
a point of infinite order. We similarly call the curve a generalized
congruent number elliptic curve. The generalized congruent number
curves with α = 0 are precisely the congruent number curves. Stated
in this way, our results relate generalized congruent number pairs with
cyclic quadrilaterals with area n.

We also study the family of curves defined by the generalized con-
gruent number pairs, looking at their torsion groups and ranks. The
torsion groups are usually T = Z/2Z, although in some cases it is
Z/2Z × Z/2Z, Z/2Z × Z/4Z or Z/6Z. Studying families of elliptic
curves with torsion group Z/2Z with high rank has been of much in-
terest [2, 9, 32, 33, 38]. The highest known rank for a curve with
T = Z/2Z is 19, due to Elkies [16]. Fermigier found infinite families
with rank at least 8 [19, 20, 21].

Any elliptic curve with a 2-torsion point may be written in the
form Eα,β : y2 = x3 + αx2 + βx. Special cases of the family of the
curves E0,β : y2 = x3 + βx and their ranks have been studied by many
authors, including Bremner and Cassels [7], Kudo and Motose [34],
Maenishi [35], Ono and Ono [40], Izadi, Khoshnam and Nabardi [28],
Aguirre and Peral [3], Spearman [46, 47] and Hollier, Spearman and
Yang [25]. The general case was studied by Aguirre, Castaneda, and
Peral [1], and they found curves of rank 12 and 13. See [16, 17] for
tables with the highest known ranks for other fixed torsion groups,
including references to the papers where each curve may be found.

The curves studied in this work are of the form Eα,−n2 . We believe
this is the first time in the literature that curves of this form have been
examined. We find many such curves with rank (at least) 10. We also
construct an infinite family of Eα,−n2 with rank at least 5. All of these
curves arise from cyclic quadrilaterals. Furthermore, in the special case
with α = 0, we find infinite families of congruent number curves with
ranks 2 and 3, matching the results of [30, 43, 51].
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This work is organized as follows. In Section 2, we review basic
facts about cyclic quadrilaterals. Section 3 details the correspondence
between cyclic quadrilaterals and the elliptic curves and includes our
main result. We examine the torsion groups of the family of elliptic
curves studied in Section 4. In Sections 5 and 6, we find examples of
congruent number curves with high rank, as well as high rank curves
from the family Eα,−n2 . We conclude with some examples and data in
Section 7.

2. Cyclic quadrilaterals. A cyclic polygon is one with vertices
upon which a circle can be circumscribed. Specifically, we will focus
on cyclic quadrilaterals. Mathematicians have long been interested in
cyclic quadrilaterals. For example, consider Kummer’s complex con-
struction to generate Heron quadrilaterals outlined in [15]. The exis-
tence and parametrization of quadrilaterals with rational side lengths
(and additional conditions) has a long history [4, 14, 15, 24, 26].
Buchholz and Macdougall [8] have shown that no nontrivial Heron
quadrilaterals exist having the property that the rational side lengths
form an arithmetic or geometric progression. In [27], (cyclic) Brah-
magupta quadrilaterals were used to construct infinite families of ellip-
tic curves with torsion group Z/2Z× Z/2Z having ranks 4, 5 and 6.

A convex quadrilateral is cyclic if and only if its opposite angles are
supplementary. An example of a quadrilateral which is not cyclic is a
non-square rhombus. Another characterization of cyclic quadrilaterals
may be given by Ptolemy’s theorem: if the diagonals have lengths p, q,
then a convex quadrilateral is cyclic if and only if pq = ac+ bd. Given
four side lengths such that the sum of any three sides is greater than
the remaining side, there exists a cyclic quadrilateral with these side
lengths [12, 49]. The area of a cyclic quadrilateral with side lengths
a, b, c, d may be found using Brahmagupta’s formula√

(s− a)(s− b)(s− c)(s− d),

where s = (a + b + c + d)/2. Letting d = 0, the formula collapses to
Heron’s formula for the area of a triangle. It is well known that a cyclic
quadrilateral has maximal area among all quadrilaterals with the same
side lengths.

Assume that we have a cyclic quadrilateral whose consecutive sides
have lengths a, b, c and d, with rational area n. Let θ be the angle
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between the sides with lengths a and b. Then, using the Law of cosines
and the area formula, we have

(2.1) cos θ =
a2 + b2 − c2 − d2

2(ab+ cd)
and sin θ =

2n

ab+ cd
.

3. Cyclic quadrilaterals and elliptic curves. In this section, we
establish correspondence between cyclic quadrilaterals whose area and
side lengths are rational and elliptic curves. In [23], the authors created
a similar correspondence between triangles with rational area and
elliptic curves, which in some sense were generalizations of congruent
number curves. We follow the same initial approach.

We use the notation from the previous section. From equation (2.1),
we see that both cos θ and sin θ are rational. Set τ to be

τ = tan
θ

2
=

sin θ

1 + cos θ
=

4n

(a+ b)2 − (c− d)2
.

Note that

τ + τ−1 =
ab+ cd

n

and

τ − τ−1 = −a
2 + b2 − c2 − d2

2n
.

From (2.1), consider that

a2 − 2ab cos θ + b2 = c2 + 2cd cos θ + d2;

thus,
(a− b cos θ)2 + (b2 − d2) sin2 θ = (c+ d cos θ)2.

Therefore, if we set u = a− b cos θ, v = b sin θ and w = c+d cos θ, then

u2 + (1− d2/b2)v2 = w2.

Hence, we know that there exists a t such that

u = (1 + d/b)t2 − (1− d/b),

v = 2t,

w = (1 + d/b)t2 + (1− d/b),
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in terms of

t =
b

b+ d

u+ w

v

=
b

b+ d

a+ c− (b− d) cos θ

b sin θ

=
(a+ c)2 − (b− d)2

4n
.

Set

x1 = nt =
(a+ c)2 − (b− d)2

4
,

y1 = ax1 = a
(a+ c)2 − (b− d)2

4
,

The point P1 = (x1, y1) is on the curve y2 = x3 + αx2 + βx, where

α =
2n

tan θ
+ d2 =

a2 + b2 − c2 + d2

2
and β = −n2.

We denote this defined cubic equation by Eα,−n2 . The discriminant of
the curve is

∆(Eα,−n2) = n4(a2b2 + a2d2 + b2d2 + 2abcd)

and is nonzero because a, b, c and d are positive. Hence, the cubic does
indeed define a nonsingular curve. A point P = (x, y) has order 2 if
and only if y = 0; hence, as n ̸= 0, then

y1 = (a/4)(a+ b+ c− d)(a− b+ c+ d) ̸= 0,

and thus, P1 does not have order 2. This construction generalizes
Goins’s and Maddox’s technique since, setting d = 0, the formulas
obtained for τ , t, α, β, sin θ, cos θ and (x1, y1) are exactly those
in [23].

We can easily find other points on the elliptic curve Eα,−n2 , namely,
let

P2 = (x2, y2) =

(
− (a+ d)2 − (b− c)2

4
, b

(a+ d)2 − (b− c)2

4

)
,

P3 = (x3, y3) =

(
− (a+ b)2 − (c− d)2

4
, d

(a+ b)2 − (c− d)2

4

)
.
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Note that a = y1/x1, b = −y2/x2, d = −y3/x3. It can be checked
that (x1, y1) + (x2, y2) + (x3, y3) = ∞. Furthermore, using the height
pairing matrix, it can be checked that any two of the sets of points
(x1, y1), (x2, y2), (x3, y3) are linearly independent. Therefore, the rank
of E is generically at least 2.

Using the addition law, we also have

(3.1) (x, y) + (0, 0) =

(
−n2

x
,
n2y

x2

)
,

[2](x, y)=

(
(x2+n2)2

4y2
,
(x2+n2)(x4+2αx3−6n2x2−2αn2x+n4)

8y3

)
,

(3.2)

in particular,

x2P1 =
(ac+ bd)2

4a2
,

x2P2 =
(ad+ bc)2

4b2
,

x2P3 =
(ab+ cd)2

4d2
,

from which we can derive:

x21 + n2

x1
= ac+ bd,(3.3)

x22 + n2

x2
= −(ad+ bc),(3.4)

x23 + n2

x3
= −(ab+ cd).

Obviously, using the above quantities, we could solve for c, cos θ, sin θ,
τ , etc., in particular,

sinA =
2n

ab+ cd
= − 2nx3

x23 + n2
,

sinB =
2n

ad+ bc
= − 2nx2

x22 + n2
,
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and

cosA =
a2 + b2 − c2 − d2

2(ab+ cd)
=
x3(d

2 − α)

x23 + n2
=
x23 − n2

x23 + n2
,

cosB =
−a2 + b2 + c2 − d2

2(ad+ bc)
=
x2(α− b2)

x22 + n2
=
n2 − x22
x22 + n2

.

The above-illustrated correspondence is the main result of this work.
We note that, for every rational value n, there are many cyclic quadri-
laterals with area n, for example, any rectangle with side lengths k and
n/k. However, we find the above correspondence very interesting.

Theorem 3.1. For every cyclic quadrilateral with rational side lengths
and area n, there is an elliptic curve

Eα,−n2 : y2 = x3 + αx2 − n2x

with 2 rational points, neither of which has order 2. Conversely,
given an elliptic curve Eα,−n2 with positive rank, there is a cyclic
quadrilateral with area n whose side lengths are rational, under the
correspondence given above.

Proof. Given a cyclic quadrilateral, the above construction shows
how to construct Eα,−n2 , with points P1 and P2. The points Pi are of
order 2 if and only if yPi = 0, which implies xPi = 0 as well since, for
example, y1 = ax1. However, the x-coordinates are all non-zero since,
in any quadrilateral (cyclic or not), the largest side length is less than
the sum of the other three sides. This shows one direction.

For the converse, we fix a point P1 = (x1, y1) of infinite order, which
exists since Eα,−n2 has positive rank. We may replace P1 by −P1 or
P1 + (0, 0), see (3.1), so that we can take x1, y1 > 0. Set a = y1/x1.
Then, consider the three equations:

(3.5)
a2 + b2 − c2 + d2

2
= α,

(3.6)
1

16
(a−b−c−d)(a−b+c+d)(a+b−c+d)(a+b+c−d) = −n2,

(3.7) ac+ bd =
x21 + n2

x1
.
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We set ζ = (x21 + n2)/x1, which can easily be shown to equal a2 − α+
2n2/x1. Let

h(x) := (b2 − a2)x2 − 2ζbx+ (2αa2 + ζ2 − a4 − a2b2),

and let r be a root of h(x) = 0. It may easily be checked that a
solution to (3.5), (3.6) and (3.7) is given by c = (−br+ ζ)/a and d = r.
In order for d = r to be rational, the discriminant of h must be a
square, equivalently

C(b, z) : b4 − 2αb2 + (ζ2 − a4 + 2a2α) = z2.

We can then express

c =
aζ ± bz

a2 − b2
,

d = −bζ ± az

a2 − b2
.

This quartic curve C(b, z) is actually birationally equivalent to y2 =
x3 + αx2 − n2x.

Lemma 3.2. The curve C(b, z) is birationally isomorphic to the curve
Eα,−n2 : y2 = x3 + αx2 − n2x.

Proof. Note that the curve C(b, z) has rational point (−a, ζ). Under
the transformation f1(b, z) → (b+ a, z), we map to the curve

C1(b, z) : b
4 − 4ab3 + (6a2 − 2α)b2 + 4a(α− a2)b+ ζ2,

with rational point (0, ζ). We now map to a Weierstrass curve by

f2(b, z) = (x, y) =

(
− 2

3b2
((3a2 − α)b2 + 6a(α− a2)b3ζ(z + ζ)),

4

b3
(−aζb3 + ζ(3a2 − α)b2

+ a(z + 3ζ)(α− a2)b+ ζ2(z + ζ)

)
,

C2(x, y) : y
2 = x3 + (−4/3α2 − 8αa2 + 4a4 − 4ζ2)x

− 16/27α(α2 − 18αa2 + 9a4 − 9ζ2).
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We now perform a simple linear change of variables f3(x, y) = (((x −
4α/3)/4), y/8), sending the curve to

C3(x, y) : y
2 = x3 + αx2 +

1

4
(α2 − 2a2α+ a4 − ζ2)x.

We compute

α2 − 2a2α+ a4 − ζ2 = α2 − 2a2α+ a4 −
(
a2 − α+ 2

n2

x1

)2

= 4n2
−a2x1 + αx1 − n2

x21

= 4n2
−y21 + αx21 − n2x1

x31

= −4n2.

Thus, C3(x, y) is merely only y2 = x3+αx2−n2x. Composing the maps
f1, f2, and f3, we see that the curves are birationally equivalent. �

Here, we continue the proof of Theorem 3.1. Since Eα,−n2 has
positive rank, then so does C(b, z), in other words, there are infinitely
many rational points (b, z) on C(b, z). Given any rational values for
(b, z), we can then compute c and d. It remains to check that c and d
are positive.

We have an infinite number of choices for b. We will pick a “small” b
so that the quantity a2− b2 will be positive. We then want aζ− bz > 0
and −bζ + az > 0, which will guarantee c, d > 0. Note that, when
b = a, both the line z = (ζ/a)b and the hyperbola z = (aζ)/b
intersect the curve C(b, z) at the same point (a, ζ). Looking at the
first quadrant, i.e., where b, z > 0, the line and hyperbola possibly
can intersect C(b, z) additional times. The line will intersect C(b, z)
if b2 = (ζ2 + 2a2α − a4)/a2. The hyperbola will intersect C(b, z) if
b4 + (a2 − 2α)b2 + ζ2 = 0. Let r∗ be the minimum positive b-value
of any intersections of C(b, z) with either the line or hyperbola. Also
observe that, for positive b near b = 0, the value of the hyperbola
z = (aζ)/b goes to infinity.

We claim that the quartic curve C(b, z) intersects the z-axis. We

must check that (0,
√
ζ2 − a4 + 2a2α) is a real point on C(b, z), i.e.,

that ζ2 − a4 + 2a2α > 0. Equivalently, this is α2x21 + 4n2(n2 + a2x1
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− αx1)) > 0. Now, since a2x21 = x31 + αx21 − n2x1, then x
2
1 = −αx1 +

n2 + a2x1. Substituting this into the previous equation, we have α2x21
+ 4n2x21, and thus, ζ2 − a4 + 2a2α > 0.

The above analysis is now utilized to show how to choose a “small” b.
Since the curve C(b, z) has positive rank, it has an infinite number of
rational points. The curve is obviously symmetric about the b-axis,
and it is easy to check that it does not intersect the b-axis. Thus,
the number of connected components (over R) is 1. In particular,
we can conclude that there are an infinite number of rational points
with z > 0. By the density of rational points on positive rank curves,
see [45, Chapter 11, Theorem 5], we can choose a rational b0 with

0 < b0 < ϵ < a (for any ϵ < min{a,
√
ζ2 + 2a2α− a4/a, r∗}) yielding

a rational point on C(b0, z0). As seen in the above analysis, the point

(0,
√
ζ2 − a4 + 2a2α) lies beneath the hyperbola z = (aζ)/b and above

the line z = (ζ/a)b; hence, the same is true for (b0, z0). Thus, with
this choice of (b0, z0), for small enough ϵ, we see that both c and d are
positive.

In fact, this argument shows that we have an infinite number of
possibilities for positive b, c and d. The cyclic quadrilateral with side
lengths (a, b, c, d) will then correspond to Eα,−n2 since equations (3.5)
and (3.6) are satisfied. This completes the proof. �

We remark that, while the proof showing the existence of a cyclic
quadrilateral is not completely constructive (since we require c, d > 0),
in practice, it is not difficult to produce the cyclic quadrilaterals. Begin
with two points P1 and P2, which are not of order 2 (and whose sum is
P1 + P2 is also not of order 2). Write Pi = (xi, yi), and set a = y1/x1,
b = −y2/x2. Then, set P3 = −P1 −P2 = (x3, y3), and d = −y3/x3. By
assumption, P3 is not 2-torsion, and hence, y3 ̸= 0. Thus, d ̸= 0. By
replacing Pi by Pi + (0, 0) or −Pi, we can assume that x1 > 0, y1 > 0,
x2 < 0, y2 > 0 and x3 < 0, y3 > 0 so that a, b and d are positive. Then,
compute c = (x1 + n2/x1 − bd)/a. If we assume the rank of Eα,−n2

is positive, then we will have an infinite number of choices for P1 and
P2. From numerical experiments, we have observed that c, as derived
above, is usually positive. However, in the case where c is negative, we
can simply replace P1 and/or P2 until c > 0.

If neither of the points P1, P2 has infinite order, then the cyclic
quadrilateral must be of a special form.
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Theorem 3.3. If the curve Eα,−n2 arising from a cyclic quadrilateral
has rank 0, then the associated quadrilateral is either a square, or
an isosceles trapezoid with three equal sides, a = b = d, such that
(a+ c)(3a− c) is a square. The torsion group is Z/6Z for this rank 0
case.

Proof. We will show in the next section that the torsion group is

Z/2Z, Z/2Z× Z/2Z, Z/2Z× Z/4Z or Z/6Z.

We already showed that P1 does not have order 2; hence, the torsion
group must be either Z/6Z or Z/2Z× Z/4Z. We first handle the case
of T = Z/2Z×Z/4Z, showing that, when the rank is 0, it cannot have
come from a cyclic quadrilateral.

Let the three points of order 2 be denoted (0, 0), T1 and T2. The
point P1 = (x1, y1) is not a point of order 2, and hence, must be a point
of order 4. By Lemma 4.1, 2P1 ̸= (0, 0) and, without loss of generality,
we may take 2P1 = T1. Then, the four points which are not of order 2
are {P1,−P1, P1+(0, 0),−P1+(0, 0)}, and it must be that P2 = (x2, y2)
is one of these points. If P2 = P1, then a = y1/x1 = y2/x2 = −b,
a contradiction as a, b > 0. Similarly, if P2 = −P1 + (0, 0), then
we again end up with a = −b, a contradiction. If P2 = P1 + (0, 0),
then P3 = −(P1 + P2) = −2P1 + (0, 0) = T1 + (0, 0) = T2; however,
P3 = (x3, y3) is not a point of order 2 since y3 ̸= 0. We can therefore
conclude that P2 = −P1, but this is likewise a contradiction since then
P3 = −P1−P2 = ∞. Thus, the torsion group for a rank 0 curve Eα,−n2

arising from a cyclic quadrilateral cannot be Z/2Z× Z/4Z.
Therefore, we can assume the torsion group is Z/6Z. If P1 has

order 6, then the set of all rational points of E is {P1, 2P1, 3P1 =
(0, 0), 4P1 = P1 + (0, 0), 5P1 = −P1,∞}. Then,

P1 + (0, 0) =

(
(a− b− c− d)(a+ b− c+ d)

4
,

− a(a− b− c− d)(a+ b− c+ d)

)
.

Since 2P1 = −4P1, then

2P1 =

(
(a− b− c− d)(a+ b− c+ d)

4
,
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a(a− b− c− d)(a+ b− c+ d)

)
.

Now note that the ratio of yk/xk for kP1 = (xk, yk), with k = 1, 2, 4, 5,
is either a or −a. However, we have P2 = (x,−bx), which must be one
of the points P1, 2P1, 4P1, 5P1, and hence, we must have a = b, since
a, b > 0. Use of the doubling formula gives that the x-coordinate of
2P1 is (b2(c+ d)2)/4b2, as a = b, which must equal the x-coordinate
of P1 + (0, 0) which is (−1/4)(c + d)(2b − c + d). Equating these two
x-coordinates requires (c + d)(b + d)/2 = 0, a contradiction. Thus, if
the rank is 0, then P1 cannot have order 6.

The only other possibility is that P1 has order 3. Then, necessarily,
Q = P1 + (0, 0) has order 6. The set of all rational points must be
{Q = P1 + (0, 0), 2Q = −P1, (0, 0), 4Q = P1, 5Q = −P1 + (0, 0),∞}.
Similarly as above, the ratio y/x of the points not equal to (0, 0) or ∞
is equal to ±a. Considering P2, we must have b = a. This means that
Q = ((−1/4)(c+ d)(2b− c+ d), (b/4)(c+ d)(2b− c+ d)). Using the
doubling formula for 2Q, the x-coordinate is (c + d)2/4, which must
equal the x-coordinate of −P1 = (1/4)(2b + c − d)(c + d). Equating
these two yields (c + d)(b − d) = 0. Thus, a = b = d. Checking the
area, we see that it is rational if and only if (a+ c)(3a− c) is a square.

We observe that, since any cyclic quadrilateral with two non-
consecutive equal sides is a trapezoid, we have an isosceles trapezoid
(which is not a square) with three equal sides if a ̸= c. If a = c, then
we have a square, as a cyclic rhombus must be square. �

Thus, we see that, when the rank is 0, the cyclic quadrilateral must
have at least three equal sides.

We now examine the converse, which is distinguished by whether or
not the quadrilateral is a square.

Theorem 3.4. If the quadrilateral is a square, then the rank is 0, with
torsion group Z/6Z.

Proof. If the quadrilateral is a square, i.e., a = b = c = d. Then, the
curve Eα,−n2 is y2 = x3 + a2x2 − a4x. For any a ̸= 0, we may perform
a change of variables x = a2X, y = a3Y , which shows that this curve is
isomorphic to E : Y 2 = X3+X2−X, a curve of rank 0, with six torsion
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points. Thus, also the curve Eα,−n2 has only six rational points. These
points are {O, (0, 0), (a2,±a3), (−a2,±a3)}. The point P = (−a2, a3)
has exact order 6. The rank of Eα,−n2 is 0. �

The rank need not be 0 for isosceles trapezoids with three equal sides.
Take, for example the quadrilateral with side lengths (13, 13, 23, 13),
which yields the curve E−11,−2162 . This curve has rank 1, with gener-
ating point (−196, 1092) and torsion group Z/6Z. We also remark that
we can have rank 0 curves Eα,−n2 with torsion group Z/2Z × Z/4Z.
Take, for example, α = 7, n = 12. The previous results prove that
such curves do not correspond with a cyclic quadrilateral. If we allow
quadrilaterals with d = 0, then it can be shown that these curves come
from quadrilaterals with d = 0, i.e., triangles with rational area.

Theorem 3.5. If the quadrilateral is a three-sides-equal trapezoid
(a, a, c, a), then the torsion group is Z/6Z.

Proof. If the the quadrilateral is of the form (a, a, c, a), then we
have the point (((a + c)2/4), (a2(a + c)4/16)), which has order 3. By
Corollary 4.5, we immediately have that the torsion group is Z/6Z. �

Scaling the sides of a rational cyclic quadrilateral, we can always
assume that the area is an integer N (since only quadrilaterals with
rational area are considered). Using the definition of the generalized
congruent number elliptic curve and taking into account Theorems 3.3,
3.4, and 3.5, we can restate Theorem 3.1 in the following way.

Theorem 3.6. Every non-square and non-three-sides equal trapezoidal
rational cyclic quadrilateral with area N ∈ N gives rise to a generalized
congruent number elliptic curve Eα,−N2 with positive rank. Conversely,
for any integer N and generalized congruent curve Eα,−N2 with positive
rank, there are infinitely many non-rectangular cyclic quadrilaterals.

Proof. Given a non-square and non-three-sides equal trapezoidal
cyclic quadrilateral with side lengths (a, b, c, d) and area n = p/q,
consider the quadrilateral with side lengths (qa, qb, qc, qd) which has
area pq ∈ Z. By our correspondence in Theorem 3.1, we can construct
the curve Eα,−(pq)2 , where α = q2(a2 + b2 − c2 + d2)/2. If the curve
were to have rank 0, then by Theorem 3.3, the quadrilateral would
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necessarily have three equal sides, which it does not. Hence, Eα,−(pq)2

has positive rank.

For the converse, given any integer N and α such that Eα,−N2 has
positive rank, then again by Theorem 3.1, we are able to construct a
cyclic quadrilateral with area N . As the rank is positive, we have an
infinite number of choices for P1, P2 in the correspondence, yielding an
infinite number of cyclic quadrilaterals. If the quadrilateral were to be
a rectangle, then b = d. Recall d = yP3

/xP3
, where P3 = −(P1 + P2).

However, there are only five points P = (x, y) on E such that y/x = d;
thus, we can choose P1, P2 so as to avoid these five points. �

We conclude this section by noting that there are an infinite number
of non-rectangular cyclic quadrilaterals with area n, for any rational n.
Specifically, consider the isosceles trapezoid (which is necessarily cyclic)
with side lengths (j2 + k2, ℓ, j2 + k2, ℓ+ 2j2 − 2k2), where j > k. The
height of this trapezoid is 2jk, yielding an area of 2jk(ℓ + j2 − k2).
Hence, by choosing ℓ = (n/2jk) + k2 − j2, the trapezoid will have
area n.

4. Torsion points. In this section, we examine the possible torsion
groups T for the curve Eα,−n2 , corresponding to a cyclic quadrilateral.
By a theorem of Mazur [44], the only possible torsion groups over Q,
E(Q)tors are Z/nZ for n = 1, 2, . . . , 10, 12, or Z/2Z × Z/2nZ for
1 ≤ n ≤ 4. The point P2 = (0, 0) has order 2; hence, we know that the
order of the torsion group must be even. We will show that the torsion
group must be Z/2Z, Z/6Z, Z/2Z× Z/2Z or Z/2Z× Z/4Z. We begin
by showing T ̸= Z/4Z, Z/8Z or Z/12Z.

Lemma 4.1. There is no point P on the curve Eα,−n2 such that
2P = (0, 0). Consequently, the torsion group T ̸= Z/4Z, Z/8Z or
Z/12Z.

Proof. Let P = (x, y) be a point on Eα,−n2 such that 2P = (0, 0).
By using the formula for doubling a point, see (3.2), we must have

(x2 + n2)2

4y2
= 0.
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However, this is clearly impossible, since x2 + n2 > 0. Thus, no such
point P exists.

Note that, if the torsion group were Z/4Z, Z/8Z or Z/12Z, then
there would necessarily be a point P with 2P = (0, 0), since (0, 0)
would be the unique point of order 2. As this is not possible, then T
cannot be any of these three groups. �

Proposition 4.2. There are no points of order 5 on the curve Eα,−n2 .

Proof. By a classic proof, an elliptic curve with a rational point of
order 5 will have its j-invariant of the form (s2 + 10s+ 5)3/s for some
s ∈ Q [22]. Calculating the j-invariant of Eα,−n2 , we must therefore
have

256
(α2 + 3n2)3

n4(α2 + 4n2)
=

(s2 + 10s+ 5)3

s
.

Let w = α2 + 4n2, so that

256
(w − n2)3

n4w
=

(s2 + 10s+ 5)3

s
,

and write w−n2 = c(s2+10s+5). Simplifying, we obtain the (genus 0)
curve

256c3s− n6 − n4cs2 − 10n4cs− 5n4c = 0,

with rational point (c, s) = (−n2/32, 9/4). We can parameterize all
solutions by

c = − 1

32

n2(144n8m2 + 24n4m+ 1)

6n4m+ 1
,

and

s =
3

4

20n4m+ 3

432n12m3 + 180n8m2 + 24n4m+ 1
.

Since α2 = w − 4n2 = c(s2 + 10s + 5) − 3n2, we can solve for α2 in
terms of m (and n):

α2 = −n
2(720n8m2 + 216n4m+ 17)(144n8m2 + 96n4m+ 11)2

512(6n4m+ 1)5
.



1242 FARZALI IZADI, FOAD KHOSHNAM AND DUSTIN MOODY

This equation will have rational solutions if and only if the curve

C : z2 = −2(6n4m+ 1)(720n8m2 + 216n4m+ 17)

has rational points. The curve C is birationally equivalent to the curve

E : Y 2 = X3 + 76032X − 8183808,

using the maps

(X,Y ) =

(
− 8640n4m− 1344, 8640z

)
,

(m, z) =

(
− X + 1344

8640n4
,
Y

8640

)
.

With SAGE, we compute that this curve E has rank 0, with only one
torsion point (96,0) [48]. This corresponds to (m, z) = (−1/(6n4), 0),
which is thus the only rational point on C. However, this leads to no
rational points on the curve relating α2 and n,m. From this, we may
conclude that our initial assumption was not possible. Thus, there are
no elliptic curves resulting from cyclic quadrilaterals with rational area
which have a point of order 5. �

The previous two lemmas show that, if T is cyclic, then T must
either be Z/2Z or Z/6Z.

We now turn to the case where T is not cyclic, i.e., T has more than
one point of order 2. This will occur precisely when x2 + αx− n2 = 0
has a rational root, which happens if and only if the discriminant
α2 + 4n2 = a2b2 + a2d2 + b2d2 + 2abcd is a square.

Lemma 4.3. The torsion group T is not Z/2Z× Z/8Z.

Proof. Suppose we have a curve with torsion group Z/2Z × Z/8Z.
Then, necessarily, we have three 2-torsion points, so we can assume
x2 + αx − n2 = (x +M)(x + N) for some rational M,N ̸= 0. The
points (0, 0), (−M, 0) and (−N, 0) all have order 2 on Eα,−n2 . By a
theorem of Ono [39, Main theorem 1], the torsion group of Eα,−n2

contains Z/2Z× Z/4Z as a subgroup if:

(i) M and N are both squares, or if
(ii) −M and N −M are both squares, or if
(iii) −N and M −N are both squares.
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We show that only case (iii) is possible.

Without loss of generality, we may take α2 + 4n2 = r2, with r > 0,
and M = (α+ r)/2, N = (α− r)/2. For case (i), if M and N are both
squares, then so isMN . However, this is a contradiction asMN = −n2
and n > 0.

For case (ii), N −M = −r and thus cannot be a square, r > 0.

Therefore, we must be in case (iii), and we have both −N and
M−N = r squares. If we write −N = j2 for some j, thenMN = −n2,
and thus, M = −n2/N = n2/j2. Hence, M is square. By the second
part of Ono’s theorem, if T = Z/2Z × Z/8Z, then M = u4 − v4 and
N = −v4, with u2 + v2 = w2. Since M is square, u4 − v4 = z2 for
some rational z. This equation is well known to have no non-trivial
solutions, i.e., only when M = u4 − v4 = 0. However, this contradicts
our initial assumption, and thus, assuming T = Z/2Z × Z/8Z must
have been incorrect. �

Lemma 4.4. The torsion group T is not Z/2Z× Z/6Z.

Proof. It is well known that a curve has a point of order 3 if and
only if the 3-torsion polynomial ψ3 has a root. For Eα,−n2 , this is

ψ3(x) = 3x4 + 4αx3 − 6n2x2 − n4 = 0,

or equivalently,

(4.1) 3x4 + 4wx3 − 6x2 − 1 = 0,

where w = α/n. In order to have more than one 2-torsion point, we also
must have that α2+4n2 is a square, or equivalently, w2+4 is a square.
We may parameterize to find that w can be written w = (4− j2)/2j
for some rational j. Substituting this back into (4.1) yields

C : 3jx4 + 8x3 − 2j2x3 − 6jx2 − j = 0.

This is a genus 1 curve, birationally equivalent to the curve

E : Y 2 = X3 − 13/3X − 70/27

via the maps

(X,Y ) =

(
− 2x4 − 6jx3 − 13x2 − 3

3x2(x2 + 1)
, −x

4 + 2jx3 + 6x2 + 1

x3(x2 + 1)

)
,
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(x, j) =

(
− 9Y

9X2 − 15X − 14
, − 216Y

27X3 + 27X2 − 135X − 175

)
.

Using SAGE, we compute the curve E with rank 0 and only the three 2-
torsion points (7/3, 0), (−2/3, 0), (−5/3, 0) [48]. Tracing these points
back through the substitutions, we obtain no rational points on the
curve C other than (0, 0). Thus, this torsion group is not possible. �

Combining the above series of results, we immediately have the
following corollary.

Corollary 4.5. Given a cyclic quadrilateral with corresponding elliptic
curve Eα,−n2 , the torsion group must be Z/2Z, Z/6Z, Z/2Z×Z/2Z or
Z/2Z× Z/4Z.

Proof. By Mazur’s theorem, we have a finite list of possible torsion
groups. We know the torsion group must have order divisible by two,
as the point (0, 0) has order 2. Eliminating the various groups from the
previous four lemmas, we have the result. �

We note that all four torsion groups are possible. As previously
shown, any square will have torsion group Z/6Z. For any m > 2,
if we let a = m2 − 4 and b = 2m, then the rectangle with side
lengths a and b will have torsion group Z/2Z × Z/2Z. This follows
since the curve is y2 = x(x+m4 − 4m2)(x− 4m2 +16), and hence has
three points of order 2. For an example of curves with torsion group
Z/2Z × Z/4Z, let α = u4 − 6u2v2 + v4 and n = 2uv(u2 − v2). Then,
the curve Eα,−n2 will have torsion group Z/2Z× Z/4Z with the point
(2uv(u+ v)2, 2uv(u2 + v2)(u+ v)2) having order 4. The most common
case for a cyclic quadrilateral is Z/2Z.

It turns out that, if the cyclic quadrilateral is a non-square rectangle,
we can rule out two of the possible torsion groups.

Proposition 4.6. The elliptic curve arising from a rectangle has a
point of order 3 if and only if the rectangle is actually a square.

Proof. By Theorem 3.4, if we begin with a square, the torsion group
is Z/6Z. For the converse, suppose that we have a curve, arising
from a rectangle, which has a point of order 3. The curve equation
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is y2 = x3 + b2x2 − a2b2x. Under the isomorphism (x, y) → (b2x, b3y),
this is the curve y2 = x3+x2−Cx, where C = (a/b)2. The three-torsion
polynomial for this curve is

Ψ3 = 3x4 + 4x3 − 6Cx2 − C2,

and thus, under our assumption of having a point of order 3, there
exists a rational x satisfying Ψ3(x) = 0. Solving for C, in terms of x,
we find

C = x
(
− 3x± 2

√
3x2 + x

)
.

We can parameterize rational solutions of 3x2 + x a square by x =
(m− 2)2/(m2 − 3). This makes C either

C1 = − (7m− 12)(m− 2)3

(m2 − 3)2
,

or

C2 =
m(m− 2)3

(m2 − 3)2
.

Now, substituting these values into x3 + x2 −Cx, we obtain that both
(3m− 5)2(m− 2)4/(m2 − 3)3 and (m− 1)2(m− 2)4/(m2 − 3)3 must be
squares, or equivalently, m2−3 must be a square. We can parameterize
the rational solutions of m2 − 3 square by

m = 2
t2 − t+ 1

t2 − 1
.

We substitute this value of m in for C1, and C2, obtaining

C1 = 16
(t2 − 7t+ 13)(t− 2)3

(t2 − 4t+ 1)4
,

C2 = −16
(t− 2)3(t2 − t+ 1)

(t2 − 4t+ 1)4
.

Recall that C = (a/b)2 is a square, and hence, both C1 and C2 must
be as well, leading to the equations

z21 = (t− 2)(t2 − 7t+ 13),

z22 = −(t− 2)(t2 − t+ 1).
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These are both elliptic curves, for which it can be checked that each
has rank 0, and exactly 6 torsion points [48]. These are (t, z1) =
(2, 0), (3,±1), (5,±3) and (t, z2) = (2, 0), (1,±1), (−1,±3). Substitut-
ing these values of t and calculating C1 and C2, we find that they lead
to C1 = 1 or 0, and the same holds true for C2. Thus, C = 0 or 1,
which means that a/b = 0 or a/b = 1. Since ab ̸= 0, then a = b, and
we have a square. �

Corollary 4.7. Given a non-square rectangle with sides a and b, then
T = Z/2Z or T = Z/2Z × Z/2Z. We obtain the latter group if and
only if 4a2 + b2 is a square.

Proof. The only torsion group necessary for showing it is not possible
is T = Z/2Z × Z/4Z. Assume that Eα,−n2(Q)tors contains T . Since
there are three points of order 2, we must necessarily have that 4a2+b2

is equal to a square, say r2. Then, a theorem of Ono [39, Main
theorem 1], implies that

(i) b((−b+ r)/2) and b((−b− r)/2) are both squares, or
(ii) −b((−b+ r)/2) and −br are both squares, or
(iii) −b((−b− r)/2) and br are both squares.

For (i), (
−b+ r

2

)
b = r21,

(
−b− r

2

)
b = r22.

Therefore, we have −b2 = r21 + r22, which is contradiction.

For (ii), since b > 0 and we can take r > 0, then −br is not a square.

For (iii), if br = b
√
b2 + 4a2 = s2, then b4 + 4a2b2 = s4. We may

rewrite this as (2a/b)2 = (s/b)4 − 1 since b > 0. The only rational
points on the curve are (±1, 0), and since we can assume that s > 0,
then necessarily s/b = 1. However, if s = b, then we have 4a2b2 = 0, a
contradiction.

Corollary 4.7 now follows immediately from the previous results in
this section. �

5. Congruent numbers. Recall that a congruent number is an
integer n which is the area of a right triangle with rational sides.
It is well known that n is congruent if and only if the elliptic curve
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y2 = x3 − n2x has a rational point P , which is not of order 2. These
congruent curves are a subset of our curves Eα,−n2 , with α = 0. If the
point P has infinite order, then, by the main result of this paper, we can
construct a cyclic quadrilateral with area n and side lengths (a, b, c, d)
such that a2 + b2 + d2 = c2. Note that, by setting d = 0, we obtain
the above-mentioned correspondence between congruent numbers and
elliptic curves. In this sense, Theorem 3.1 provides a generalization of
this congruent number-elliptic curve connection. This gives us the next
corollary.

Corollary 5.1. An integer n is congruent if and only if there is a
cyclic quadrilateral with area n and rational side lengths (a, b, c, d) with
a2 + b2 + d2 = c2.

This characterization of congruent numbers may be added to the
list of the many other known characterizations of congruent numbers.
Several of these are given in Koblitz’s book [31]. Given an integer n,
it is a well-known open problem to determine whether or not n is
congruent. A partial answer is given by Tunnell’s theorem, which
gives an easily testable criterion for determining whether a number
is congruent. However, this result relies on the unproven Birch and
Swinnerton-Dyer conjecture for curves of the form y2 = x3 −n2x. The
criterion involves counting the number of integral solutions (x, y, z) to
a few Diophantine equations of the form ax2 + by2 + cz2 = n, see [50]
for more details.

In the remainder of this section, we give infinite families of congruent
number elliptic curves with (at least) rank 3. Searching for families of
congruent curves with high rank has previously been done [18, 29,
42, 43, 51]. Currently, the best known results are a few infinite
families with rank at least 3 [30, 43], and several individual curves
with rank 7 [51].

5.1. A family of congruent number elliptic curves with rank at
least 3. In order for n to be congruent, we need α=a2+b2−c2+d2=0.
It is known [5, page 79] that we can parameterize the solutions of
a2 + b2 − c2 + d2 = 0 by a = p2 + q2 − r2, b = 2pr, c = p2 + q2 + r2 and
d = 2qr. Through scaling, we can assume that r = 1. The condition
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that the quadrilateral have rational area is then that

(p+ q + 1)(p2 + q2 − p+ q)(p+ q − 1)(p2 + q2 + p− q)

is a square. In order to simplify somewhat, we require both

(p+ q − 1)(p+ q + 1) = (p+ q)2 − 1

(p2 + q2 − p+ q)(p2 + q2 + p− q) = (p2 + q2)2 − (p− q)2

to be squares. At the beginning of these equations, we can parameterize
the solutions by p + q = (1/2)[(z2 + 1)/z]. We note that the bottom
expression will be square if p = q; thus, we have p = q = (z2 + 1)/4z.
We can scale the resulting sides by 4(z2/z2 + 1) so that the area of the
resulting quadrilateral is n = z(z−1)(z+1). From our correspondence,
we have the following points on the curve y2 = x3 − n2x:

P1 =

(
1

4
(z2 + 1)2,

1

8
(z2 + 1)(z2 + 2z − 1)(z2 − 2z − 1)

)
,

P2 = (−z(z − 1)2, 2z2(z − 1)2).

It can easily be checked that P1 = −2P2; hence, we have only a rank 1
family. A natural approach for finding more rational points on this
curve is to look for factors B of n(z) such that B − n(z)2/B is square.
Note that, if x3 = 2z2(z + 1), then x3 − n2/x3 = [(3z − 1)(z + 1)2]/2.
Thus, we can set z = (2t2 + 1)/3 to obtain a square. It may easily be
verified through specialization that our new point with x-coordinate
2z2(z+1) = 4[(t2 +2)(2t2 +1)]/27 is linearly independent from P1 (or
P2).

After scaling, we now repeat the process, with

n = 3(t− 1)(t+ 1)(t2 + 2)(2t2 + 1).

Since x4 = −3(t − 1)(t + 1)(t2 + 2)2, we then obtain another rational
point if t2 + 1 is a square. We again parameterize by setting t =
(w2 − 1)/2w. Checking the factors of n, we do not find any new inde-
pendent points on the curve.

The above results are summarized as follows. The cyclic quadrilat-
eral with side lengths

a =
1

2

(w8 − 12w6 − 34w4 − 12w2 + 1)(w8 + 12w6 − 34w4 + 12w2 + 1)

w(w8 + 38w4 + 1)
,
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b = d = 12w(w4 + 1),

c =
1

2

w16 + 364w12 + 2022w8 + 364w4 + 1

w(w8 + 38w4 + 1)
,

has area

n = 6(w2 + 2w − 1)(w2 − 2w − 1)(w4 + 1)(w4 + 6w2 + 1).

The resulting congruent curve y2 = x3 − n2x has three independent
points with the following x-coordinates

x1 = −6(w4 + 1)(w2 + 2w − 1)2(w2 − 2w − 1)2,

x2 =
3

16

(w4 + 1)2(w4 + 6w2 + 1)

w6
,

x3 = − 3

64

(w2 + 2w − 1)(w2 − 2w − 1)(w4 + 6w2 + 1)2

w6
.

The points which are independent can be checked by specialization;
for instance, when w = 2, the height pairing matrix has determinant
43.6831845338168 as computed by SAGE. This family was previously
discovered in [43]. We also note that, for w = 14/9, or w = 5/23,
23/5, 9/14 which all yield the same curve, we obtain a rank 6 curve.

5.2. Other families of rank 3 congruent number curves. Other
families with rank 3 may be found using the same technique illustrated
in subsection 5.1. For example, instead of selecting x4 specifically,
if we had instead chosen x4 = 6(t − 1)(t + 1)(2t2 + 1)2, x4 would
lead to a rational point if 10t4 − 2t2 − 8 is a square. The equation
C : s2 = 10t4 − 2t2 − 8 has the rational point (2, 12), and hence, is an
elliptic curve. There is a birational transformation from C to the curve
E : y2 = x3 + 58x2 + 1440x + 12960, given by t = −(x + 36)/x, s =
36y/x2. The curve E has rank 1, with generator P = (−12, 48). Since
we have an infinite number of points on E, we obtain an infinite number
of congruent number curves with three independent points. Specifically,
given (x, y) on C, let t = −(x + 36)/x, then x4 as defined above will
give a rational point on the congruent number curve.

If we begin with other parameterizations for (a, b, c, d), it is not
difficult to find other families of congruent number elliptic curves with
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rank (at least) 3 using the same techniques. As a final example, let

a = (t+ 1)(t− 1)(1 + 5t+ t2)(1− 5t+ t2),

b = −1

3
(−2 + t)(−1 + 2t)(1 + 2t)(2 + t)(t− 1)(t+ 1),

c = −13− 61t2 + 177t4 − 61t6 + 13t8

3(t− 1)(t+ 1)
,

d = − (1 + t+ t2)(1− t+ t2)(2 + t)(1 + 2t)(−1 + 2t)(−2 + t)

(t− 1)(t+ 1)
.

The area of the cyclic quadrilateral is then

n = 2t(2 + t)(1 + 2t)(−1 + 2t)(−2 + t)(t2 + 1)(t4 + 7t2 + 1).

The points arising from the x-coordinates

x1 = (1 + t2)2(t4 + 7t2 + 1)2

x2 = −(9(t+ 2))(1 + 2t)(1− 2t)(2− t)t2(1 + t2)2

are linearly independent. If we set

x3 = −2t(1− 2t)2(2− t)2(1 + t2)(t4 + 7t2 + 1),

then this will be a point provided that 5t4 + 35t2 + 5 is a square. This
is birationally equivalent to the elliptic curve E : y2 − 20xy − 1200y =
x3+55x2−4500x−247500, which has rank 1. Specifically, given a point
(x, y), let t = (30x+ 1650)/y − 2, yielding a third point. Specializing,
we see that we get an infinite family of rank 3 congruent number curves,
arising from the infinite number of points on E.

Both of the examples given in this subsection are new, meaning they
have not appeared in the literature before. It is quite easy to generate
a large number of rank 2 families, which will have a third independent
point arising from an associated elliptic curve with positive rank. We
did not find any unconditional rank 3 family other than that given in
the previous subsection, nor did we find a family with rank 4. These
families could be useful in a new search for congruent curves with high
rank. The search performed in [51] used a rank 2 family, and it is
possible that new families could lead to more congruent curves with
high rank.
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6. High rank curves with torsion group Z/2Z. In this section,
we search for infinite families of curves corresponding to cyclic quadri-
laterals with high rank, as well as specific curves in these families with
high rank. The family of curves Eα,−n2 is a subset of the more general
family of elliptic curves with a 2-torsion point. Studying families of el-
liptic curves with torsion group Z/2Z with high rank has been of much
interest, as described in the introduction. The highest known rank for
a curve with T = Z/2Z is 19, due to Elkies [16]. For infinite families,
Fermigier found some with rank at least 8. We use our correspondence
to find an infinite family with rank 5, and specific curves with ranks as
high as 10, see Section 7, Table 1.

6.1. An infinite family with rank at least 4. A quadrilateral
with side lengths (a, c + 2, c, a + 2) will have rational area if a(a +
2)c(c + 2) is square. We parameterize the solutions of a(a + 2)
square by a = −u2/(2u − 2) and similarly set c = v2/(2v + 2).
Using the same technique as described in subsection 5.1, we find that
x3 = u2v(u− 1)(v + 1)(v + 2) is the x-coordinate of a rational point if

v = −1

8

u4 − 4u3 + 20u2 − 32u+ 16− z2

(u− 1)2
.

We clear denominators and repeat the procedure to obtain the following
family of rank (at least) 4.

Set

α = u4w2 + 4w4 − 8w4u+ 4w4u2 + 8w2 − 16w2u

+ 12w2u2 + 4− 8u+ 4u2 − 4w2u3,

n2 = (w4 − 1)2u2(u− 2)2(u− 1)2.

Let the curve Eu,w be defined with this value of α and n2. Then

x1 = −(w − 1)2(w + 1)2u2(u− 1),

x2 = −u2w2(u− 2)2,

x3 = −4(w2 + 1)2(u− 1)2,

are all rational x-coordinates of points on Eu,w. Further, if we set
w = (m2+2(u−1)(u2−2u+4)m+8(u−1)2)/((u−1)m2−8(u−1)3),
then

x4 = (w4 − 1)u2(u− 1)
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will also be a rational x-coordinate of a point on the curve. A computer
search was performed to find elliptic curves in the family Eu,w with
high rank, and hundreds of curves with rank 9 and several curves with
rank 10, see Table 1, were discovered. We remark that other families
could similarly be constructed if different side lengths were used. Also
note that both curves Eu,−w and Eu,1/w are equivalent to the curve
Eu,w.

6.2. A family with rank at least 5. We conclude this section with
a subfamily with rank 5. We search for a fifth point P5, which will be
rational if a certain quartic equation in m is a square. Specifically, let
x5 = −x4 = −u2(u− 1)(w4 − 1). In order to yield a rational point, we
need that the quartic (in m)

(3u2 − 6u+ 4)2m4 + 4(u− 1)(u2 − 2u+ 4)

(u4 − 4u3 + 12u2 − 16u+ 8)m3

+ 4(u− 1)2(u8 − 8u7 + 40u6 − 128u5 + 268u4 − 368u3

+ 400u2 − 320u+ 128)m2

+ 32(u− 1)3(u2 − 2u+ 4)(u4 − 4u3 + 12u2 − 16u+ 8)m

+ 64(u− 1)4(3u2 − 6u+ 4)2,

is square. Since the coefficient of m4 is square, we may use a technique
attributed to Fermat [15, page 639] to solve for m in terms of u so that
the resulting equation is square. A short calculation finds

m=−4(u−1)(u8−8u7+34u6−92u5+178u4−248u3+232u2−128u+32)

(u2−2u+4)(3u2−6u+4)2
.

Thus, we have a parameterized family with five rational points. Spe-
cializing, at u = 3 for example, shows that the five points are linearly
independent, and hence, the rank of this family is at least 5.

We performed a computer search for high rank curves in the rank 5
family, but the search was not nearly as successful as for the Eu,w

family since the size of the coefficients was so large. Note that this
rank 5 family is still a subset of the Eu,w family.

7. Examples and data. Our starting point for examples of the
high rank curve is the family of elliptic curves with rank at least 4 from
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subsection 6.1. We use the sieve method based on Mestre-Nagao sums

S(N,E) =
∑
p≤N

p prime

(
1− p− 1

|E(Fp)|

)
log(p),

see [36, 37]. For curves with large values of S(N,E), we compute
the Selmer rank, which is a well-known upper bound for the rank.
Specifically, we search for curves E that satisfy bounds S(523, E) > 20
and S(1979, E) > 28. We combine this information with the conjectural
parity for the rank.

Finally, we try to compute the rank and find generators for the best
candidates for large rank. We have implemented this procedure in
SAGE [48] and PARI [41], using Cremona’s program mwrank [13], for
the computation of rank and Selmer rank.

In Table 1, we present examples of the curves found with rank 10.

Finally, in Table 2, we present examples of cyclic quadrilaterals with
rational area n and associated elliptic curves for positive integers n up
to 50. For given n, there were many cyclic quadrilaterals that could
have been used; however, we chose those which had relatively small
numerators and denominators. Note that the rank for all of these
curves is at least 2.

TABLE 1. High rank curves in the family Eu,w from subsection 6.1.

u w rank

−84/11 29/14 10
−63/22 97/5 10
−62/81 32/9 10
−60/77 22/3 10
−53/77 31/5 10
−47/27 45/7 10
−32/77 49/25 10
7/11 3161/4679 10
9/25 6091/19600 10
63/85 5/97 10
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TABLE 2. Transformation from Eα,−n2 to cyclic quadrilateral.

n α rank [a, b, c, d]

1 5/2 2 [5/6, 1, 5/6, 2]
2 1/9 2 [1/3, 4/3, 8/3, 7/3]
3 3 2 [3, 1/2, 4, 3/2]
4 10 2 [5/3, 2, 5/3, 4]
5 1/9 2 [1/3, 7/3, 13/3, 11/3]
6 9/40 3 [1, 12/5, 2813/680, 447/136]
7 −7/18 2 [4/3, 7/2, 9/2, 7/3]
8 1/4 2 [1/2, 7/2, 31/6, 23/6]
9 −5/4 2 [2, 5/2, 5, 7/2]
10 1 2 [1, 4, 16/3, 11/3]
11 1/4 2 [1/2, 13/6, 127/15, 41/5]
12 46 2 [1, 6, 3, 8]
13 829/4 2 [1/4, 16, 13/4, 13]
14 1/4 2 [1/2, 2, 34/3, 67/6]
15 15 2 [4, 3/2, 5, 15/2]
16 40 2 [10/3, 4, 10/3, 8]
17 4 2 [2, 106/39, 8017/1092, 199/28]
18 1 2 [1, 4, 8, 7]
19 1 2 [1, 17/2, 91/10, 17/5]
20 7 2 [4, 7, 22/3, 5/3]
21 1/4 2 [1/2, 15/2, 9, 5]
22 −149/3 2 [3, 20/3, 40/3, 5]
23 4 3 [2/5, 2, 383/20, 77/4]
24 9/10 3 [2, 24/5, 2813/340, 447/68]
25 4/9 2 [2/3, 58/3, 233/12, 23/12]
26 64 2 [8, 5, 7/3, 20/3]
27 8/5 2 [12/5, 176/35, 597/70, 67/10]
28 −14/9 2 [8/3, 7, 9, 14/3]
29 −1/5 2 [437/120, 569/56, 682639/62160, 1139/592]
30 4 2 [2, 6, 9, 7]
31 4/9 2 [2/3, 1069/24, 32427/728, 66/91]
32 1 2 [1, 7, 31/3, 23/3]
33 −7/4 2 [2, 41/10, 58/5, 21/2]
34 2 2 [19/6, 311/36, 352771/35460, 25291/5910]

(Continued on next page)



HERON QUADRILATERALS VIA ELLIPTIC CURVES 1255

TABLE 2. Transformation from Eα,−n2 to cyclic quadrilateral (continued).

n α rank [a, b, c, d]
35 385/9 2 [7/3, 35/3, 9, 5]
36 −5 2 [4, 5, 10, 7]
37 −4/3 2 [5/6, 9/2, 175/12, 55/4]
38 4/9 2 [2/3, 17/3, 197/15, 178/15]
39 333/2 2 [9/2, 15, 7/2, 10]
40 −3 2 [7/3, 6, 34/3, 9]
41 4/9 3 [2/3, 98/15, 1427/110, 247/22]
42 1 3 [1, 9, 12, 8]
43 −8/9 3 [104/15, 32/3, 5387/420, 79/84]
44 −2/3 3 [10/21, 5, 353/21, 16]
45 1 2 [1, 7, 13, 11]
46 1/4 2 [1/2, 65/2, 2867/88, 205/88]
47 4 2 [2/7, 2, 1727/42, 247/6]
48 184 2 [2, 16, 6, 12]
49 245/6 2 [35/6, 7, 35/6, 14]
50 25/9 2 [5/3, 20/3, 40/3, 35/3]
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