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A CHARACTERIZATION OF
NON-NOETHERIAN BFDS AND FFDS

RICHARD ERWIN HASENAUER

ABSTRACT. Characterizations of bounded and finite fac-
torization domains are given using topological notions. Us-
ing our characterizations, the almost Dedekind domain and
Prüfer domain constructed by Grams [3] are shown to be
a BFD and an FFD, respectively. For a class of almost
Dedekind (not Dedekind) domains it is shown that satisfy-
ing the ascending chain condition for principal ideals implies
BFD.

1. Motivation. The study of factorization in integral domains has
a rich history. In particular, the literature on factorization in Dedekind
domains is quite extensive. This paper is motivated in two re-
gards. First, while the literature contains numerous examples of non-
Noetherian domains satisfying or failing to satisfy various factorization
properties, there has been no attempt to classify the subset of non-
Noetherian domains that possesses finite factorization, bounded factor-
ization and the ascending chain condition for principal ideals (ACCP).
This paper presents characterization of both finite factorization do-
mains (FFDs) and bounded factorization domains (BFDs).

In an integral domain, it is known that

FFD =⇒ BFD =⇒ ACCP =⇒ atomic,

and none of these arrows may be reversed, see [1]. All Dedekind
domains are FFDs; hence, all of the arrows may be reversed in the class
of Dedekind domains. A question of interest is when some (or possibly
all) of these arrows can be reversed. Using our characterizations, we
show that there exists a class of almost Dedekind (not Dedekind)
domains in which ACCP implies BFD.
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The study of almost Dedekind and Prüfer domains has been the topic
of much research. A small sample of such research includes [5, 6, 7].
From a factorization point of view, the constructions in [3] are of great
interest. Grams’ construction was the first non-Noetherian example
of a domain satisfying ACCP. This construction is almost Dedekind.
Moreover, she constructed a non-Noetherian atomic Prüfer domain. We
show that Grams’ almost Dedekind domain is a BFD, and her Prüfer
domain is an FFD.

2. ACCP, BFD and FFD in integral domains. Let D be an
integral domain, and let U(D) be the set of units of D. Let D∗ denote
D \ {0}. We say that an integral domain D is an FFD if, for all
b ∈ D∗ \ U(D), the set Z(b) = {d ∈ D \ U(D) : d | b} is finite, that
is, in an FFD, every nonzero element has finitely many divisors up-
to-associates. We establish that D is a BFD if D is atomic and if,
for all b ∈ D∗ \ U(D), there exists a π(b) ∈ N, such that, whenever
b = a1a2 · · · ak is a factorization of b into a product of irreducibles
(atoms), then k ≤ π(b). Also, D is said to satisfy the ascending
chain condition on principal ideals (ACCP), if every chain of strictly
increasing principal ideals terminates.

Let D be a domain, and let Max(D) denote the set of maximal ideals
of D. We say that D is almost Dedekind if, for all M ∈ Max(D), the
localization DM is a Noetherian valuation domain. A domain is said to
be Prüfer if DM is a valuation domain for all M ∈ Max(D). For b ∈ D,
we will denote the set of maximal ideals that contain b by max(b).

Definition 2.1. Let D be an integral domain, and let b ∈ D∗. We
say Z(b) is disconnected if there exists an {ai}∞i=1 ⊆ Z(b) such that
max(ai)∩max(aj) = ∅ whenever i ̸= j. We say that Z(b) is connected
if it is not disconnected.

We extend this definition to a domain, then present a lemma that
will show the usefulness of connectedness.

Definition 2.2. An integral domain D is connected if, for all b ∈ D,
Z(b) is connected. We will say that D is disconnected if there exists a
b ∈ D such that Z(b) is disconnected.
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Lemma 2.3. Let D be an integral domain, and let d ∈ D∗ with
a, b ∈ Z(d). If max(a) ∩max(b) = ∅, then ab ∈ Z(d).

Proof. We will use the fact that D = ∩M∈Max(D)DM . We first
observe that both d/a, d/b ∈ DM for all M ∈ Max(D). Now, since
b /∈ M for all M ̸∈ max(b), it is the case that d/ab ∈ DM for all
M ̸∈ max(b). Then, since d/b ∈ DM for all M and a ̸∈ M ∈ max(b),
we have that d/ab ∈ DM for all M ∈ max(b). Thus, d/ab ∈ DM for
all M . We conclude that ab ∈ Z(d). �

We now show that connectedness is a necessary condition for a
domain to be ACCP.

Theorem 2.4. If D satisfies ACCP, then D is connected.

Proof. Suppose that D is disconnected. Then, there exists a d ∈ D
such that Z(d) is disconnected. We find {ai}∞i=1 ⊂ Z(d) such that
max(ai) ∩ max(aj) = ∅ for all i ̸= j. Now, using Lemma 2.3, we see
that

(d) (
(

d

a1

)
(

(
d

a1a2

)
(

(
d

a1a2a3

)
· · ·

is an infinite strictly increasing chain of principal ideals. Hence, D does
not satisfy ACCP. �

Further, since ACCP is a consequence of FFD and BFD, we see
that FFDs and BFDs need to be connected. One might ask whether
connectedness is sufficient for any of these conditions. The answer is
no; in fact, a domain can be connected and not even be atomic.

Example 2.5. The domain D = Z(2) + xQ[[x]] is connected but not
atomic. In order to see this, observe that D is quasi-local, and x can
never be factored as a finite product of atoms.

We define another useful topological notion regarding Z(b).

Definition 2.6. Let D be an integral domain, and let b ∈ D∗. We
say that S = {M1,M2, . . . ,Mk} ⊂ max(b) is a finite covering of Z(b)
if, for all d ∈ Z(b), there exists an i ∈ {1, . . . , k} such that d ∈ Mi. We
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further state that D is finitely coverable if, for all b ∈ D∗, Z(b) has a
finite covering.

Example 2.5 shows that an integral domain can be finitely coverable
and yet fail to be atomic. However, if D is almost Dedekind and finitely
coverable, then D is a BFD. Let D be almost Dedekind, and denote the
local valuation map from DM into N0 by νM . Recall that, if b ∈ M ,
then νM (b) > 0 and

νM

(
b

d

)
= νM (b)− νM (d).

For more on factoring in almost Dedekind domains, see [4].

Theorem 2.7. Let D be an almost Dedekind domain. If D is finitely
coverable, then D is a BFD.

Proof. Let b ∈ D∗. Now, find S = {M1,M2, . . . ,Mk} that covers
Z(b). Next, since every divisor d of b is contained in some Mi, the
value of b/d is decreased by at least one in Mi. Thus,

π(b) =
k∑

i=1

νMi(b)

is a bound on the length of factorizations of b. �

In [6], Lucas and Loper introduced the notion of dull and sharp
maximal ideals. For a one-dimensional Prüfer domain a maximal ideal
is said to be sharp if it is a radical of a finitely generated ideal. Maximal
ideals that are not sharp are said to be dull. We wish to extend these
notions to a general integral domain.

Let D be an integral domain, and let F = {b ∈ D : |max(b)| < ∞}.
Now, clearly, if two elements b and c are in only finitely many maximal
ideals, their product bc is in only finitely many maximal ideals. Further,
if b ∈ F and c divides b, we must have b = cl for some l. It is clear
from the equation that c can only be in finitely many maximal ideals.
Thus, F is a multiplicatively closed saturated set. Therefore, in a one-
dimensional integral domain, F must be the set complement of the
union of maximal ideals.
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Thus,

F =

( ∪
M∈M∞

M

)c

,

for some M∞ ⊂ Max(D). Therefore, we see that

Fc =
∪

M∈M∞

M,

that is, if b ∈ M for some M ∈ M∞, then |max(b)| = ∞.

We partition the divisors of b ∈ D along the same lines. More
precisely, let

Z∞(b) = {d ∈ Z(b) : |max(d)| = ∞}

and

ZF (b) = {d ∈ Z(b) : |max(d)| < ∞}.

Theorem 2.8. Let D be a connected domain. Then, ZF (b) is finitely
covered for all b ∈ D∗.

Proof. Let H = {a1, . . . al} ⊂ ZF (b) be a set that is maximal with
respect to max(a1),max(a2), . . . ,max(al) being mutually disjoint. We
know that this set must be finite, else D would be disconnected. Now,
set S = ∪l

i=1 max(ai), and note that S is finite since each of the max(ai)
are finite. Further, if d | b, we must have that d ∈ M for some
M ∈ S, else H would not be maximal with respect to the max(ai)s
being mutually disjoint. �

An almost Dedekind domain is one-dimensional, giving us the next
theorem.

Theorem 2.9. Let D be an almost Dedekind domain with M∞ =
{M1,M2, . . . ,Ml}. The following are equivalent :

(i) D is connected ;
(ii) D satisfies ACCP;
(iii) D is a BFD.
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Proof. Suppose that D is connected. Then, for all b ∈ D, ZF (b) can
be finitely covered by some set S. Now, S ∪M∞ is a finite covering of
Z(b). Thus, D is a BFD. It is well known that BFD implies ACCP in
any integral domain. We have already established that ACCP implies
connected. �

The almost Dedekind domain constructed in [3] satisfies ACCP and
has only one maximal ideal in M∞. Thus, we obtain the following
corollary.

Corollary 2.10. The almost Dedekind domain constructed in [3] is a
BFD.

Now, in order to achieve a characterization of BFDs and FFDs we
need to introduce more definitions. We let ZM (b) = {d ∈ M : d | b}.
Clearly, for a finite factorization domain, the cardinality of this set
needs to be finite.

Definition 2.11. Let D be an integral domain and b ∈ D∗. We say
that Z(b) behaves finitely if |ZM (b)| < ∞ for all M ∈ max(b). We also
say that an integral domain is finitely behaved if, for all b ∈ D∗, Z(b)
behaves finitely.

Definition 2.12. Let D be an integral domain, and let b ∈ D∗. We
say that Z(b) is l-bounded at M ∈ max(b) if there exists an lM ∈ N
such that, given any d1, d2, . . . , dMl

∈ ZM (b), the product d1d2 · · · dlM
does not divide b. Moreover, we say that Z(b) is l∞-bounded if there
exists an l∞ ∈ N0 such that, given any d1, d2, . . . , dl∞ ∈ Z∞(b), the
product d1d2 · · · dl∞ does not divide b.

Definition 2.13. An integral domainD is l-bounded, if, for all b ∈ D∗,
Z(b) is both l- and l∞-bounded.

We now present characterizations for both BFDs and FFDs. Fol-
lowing the theorems, we give an example to demonstrate why the con-
ditions cannot be relaxed.
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Theorem 2.14. Let D be an integral domain. D is an FFD if and
only if D is finitely coverable and finitely behaved.

Proof. Suppose that D is an FFD. It should be clear that D is
finitely behaved. Let b ∈ D∗. Now, b has only finitely many divisors,
say, d1, d2, . . . , dk. Choosing M1 ∈ max(d1),M2 ∈ max(d2), . . . ,Mk ∈
max(dk), we see that S = {M1,M2, . . . ,Mk} is a finite cover of Z(b)

Now, suppose that Z(b) has a finite cover and is finitely behaved.
Let S = {M1,M2, . . . ,Mk} be a finite cover of Z(b). Further,

|Z(b)| ≤
k∑

i=1

|ZMi(b)|,

showing that Z(b) is finite. We conclude that D is an FFD. �

Theorem 2.15. Let D be an integral domain. D is a BFD if and only
if D is connected and l-bounded.

Proof. It should be clear that, if D is neither connected nor l-
bounded, then D is not a BFD. Suppose D is connected and l-bounded,
and let b ∈ D∗. Since D is connected, we have from Theorem 2.8 that
ZF (b) is finitely covered, say, by {M1,M2, . . . ,Mk}. Now, the length of

the factorization of b ≤ π(b) = l∞ +
∑k

i=1 lMi
. Thus, D is a BFD. �

An almost Dedekind domain D is said to be a sequence domain if
(D) = {M1,M2, . . .} ∪ M∗ such that each Mi is principal and M∗ is
a dull maximal ideal. Moreover, D has a nonzero Jacobson radical J .
Now, given b ∈ J , νMi(b) and νM∗(b) are bounds showing that Z(b) is
l-connected. However, D fails to be finitely coverable, finitely behaved
or connected. All sequence domains fail to be atomic, see [4]. This
shows that l-bounded is not enough to force bounded factorization. A
brief discussion on sequence domains may be found in [5].

In [3], a Prüfer domain was constructed by taking a union of
Dedekind domains. The constructed domain is of finite character,
that is, a domain such that max(b) is finite for all nonzero b ∈ D.
Furthermore, this one-dimensional domain contains one idempotent
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maximal ideal M∗ such that

M∗ ⊆
∪

M∈Max(D)\M∗

M.

We now show that this domain is an FFD.

Corollary 2.16. The Prüfer domain constructed in [3] is an FFD.

Proof. Since D is of finite character, D is finitely coverable for all
b ∈ D∗. Now, the value group of DM is Z for all M ̸= M∗ ∈ Max(D).
Further, b ∈ D if and only if νM (b) ≥ 0 for all M ̸= M∗ ∈ Max(D).
Suppose that b ̸∈ M∗. Denote max(b) = {M1,M2, . . .Mk}.

Now, the number of divisors of b is bounded by

k∏
i=1

(νMi(b) + 1),

which is finite.

Now, suppose that b ∈ M∗. Let max(b) = {M1,M2, . . . ,Mk,M
∗}.

Suppose that D is not an FFD. Since

M∗ ⊆
∪

M∈Max(D)\M∗

M,

it must be the case that there exist d1, d2 ∈ Z(b) such that νMi(d1) =

νMi(d2) for all i = 1, 2, . . . , k. (There are only
∏k

i=1(νMi(b) + 1) < ∞
choices for the values of any divisor on the set {M1,M2, . . . ,Mk}.) Now,
without loss of generality, assume that νM∗(d1) > νM∗(d2). However,
then νM (d1/d2) = 0 for all M ̸= M∗ ∈ Max(D) and νM∗(d1/d2) > 0,
which is a contradiction since max(d1/d2) = {M∗}. We conclude
that D is an FFD. �
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