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CENTERS FOR GENERALIZED QUINTIC
POLYNOMIAL DIFFERENTIAL SYSTEMS

JAUME GINÉ, JAUME LLIBRE AND CLAUDIA VALLS

ABSTRACT. We classify the centers of polynomial dif-
ferential systems in R2 of odd degree d ≥ 5, in complex
notation, as ·z = iz + (zz)(d−5)/2(Az5 + Bz4z + Cz3z2 +
Dz2z3 + Ezz4 + Fz5), where A,B,C,D,E, F ∈ C and ei-
ther A = Re(D) = 0, A = Im(D) = 0, Re(A) = D = 0 or
Im(A) = D = 0.

1. Introduction and statement of the main results. In the
qualitative theory of real planar polynomial differential systems one
of the main problems is the center-focus problem, i.e., the problem of
distinguishing between a center and a focus. For singular points whose
linear part has a pair of pure imaginary eigenvalues, this problem is
equivalent to the existence of an analytic first integral defined in a
neighborhood of the singular point, see, for more details, [2, 12, 13,
24, 25].

A singular point is a center if there exists a neighborhood of it
such that all of the orbits in this neighborhood are periodic except the
singular point, and a singular point is a focus if there is a neighborhood
of it such that all of the orbits in this neighborhood spiral either in
forward or in backward time to the singular point.

We study the center-focus problem for a class of polynomial differen-
tial systems which generalize the class of linear polynomial differential
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systems with homogeneous polynomial nonlinearities of degree 5. The
characterization of the centers of polynomial differential systems began
with the classes of all quadratic polynomial differential systems and
linear polynomial systems with homogeneous polynomial nonlineari-
ties of degree 3, see for instance, [1, 28, 29, 30, 31]. Unfortunately,
at present, we are very far from obtaining the classification of all of
the centers of cubic polynomial differential systems. However, some
subclasses of cubic polynomial differential systems with centers have
been studied, see for instance, the papers [32, 33] and the references
cited therein. The centers of linear polynomial differential systems
with homogeneous polynomial nonlinearities of degree k > 3 are not
classified, but there are many partial results for k = 4, 5, 6, 7, 9, see
[3, 4, 11, 20, 21, 22, 23]. In general, the huge number of com-
putations necessary for obtaining complete classification becomes the
center problem which is computationally intractable, see for instance,
[16] and the references cited therein.

In this paper, we work with the real planar polynomial differential
systems which have a singular point at the origin with eigenvalues ±i
and which may be written in complex form as

(1.1) ż = iz+(zz)(d−5)/2(Az5+Bz4z+Cz3z2+Dz2z3+Ezz4+Fz5),

where z = x+iy, d ≥ 5 is an arbitrary odd integer and A,B,C,D,E, F
∈ C satisfy one of the four conditions:

(c.1) A = Re(D) = 0,
(c.2) A = Im(D) = 0,
(c.3) Re(A) = D = 0,
(c.4) Im(A) = D = 0.

These systems contain as a particular case the results of paper [21],
where the authors characterize the centers of system (1.1) with A =
D = 0.

The polynomial differential systems (1.1) when d = 5 coincide with
the class of quintic polynomial differential systems of the form of a
linear center plus homogeneous polynomial nonlinearities of degree 5.
Therefore, the polynomial differential systems (1.1) of odd degree
d > 5 generalize the class of linear polynomial differential systems with
quintic homogeneous polynomial nonlinearities.
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The main result of this paper is the characterization of centers for the
polynomial differential systems (1.1) under the assumptions (c.1)–(c.4).
We present the classification of these centers in a different theorem for
each of the four classes.

Theorem 1.1. The polynomial differential systems (1.1) satisfying
condition (c.1) have a center at the origin if one of the following
conditions hold.

(a) Re(C) = Im(D) = Re(BEF ) = Re(B2E) = Im(BE2F ) =

Im(B2EF ) = Im(B3F ) = Re(E3F
2
) = 0,

(b) Re(B) = Re(C) = F = 3B +D = 0,
(c) Re(B) = Re(C) = Re(E) = Re(F ) = 0,
(d) Re(C) = E = 2B +D = 0.

The proof of Theorem 1.1 is given in Section 3.

Theorem 1.2. The polynomial differential systems (1.1) satisfying
condition (c.2) have a center at the origin if one of the following
conditions hold.

(a) Re(C) = Im(D) = Re(BEF ) = Re(B2E) = Im(BE2F ) =

Im(B2EF ) = Im(B3F ) = Re(E3F
2
) = 0,

(b) Re(B) = Re(C) = F = 3B +D = 0,
(c) Im(B) = Re(C) = Re(E) = Im(F ) = 0,
(d) Re(C) = E = 2B +D = 0.

We note that the change of variables (2.7) with ξ=((a8/a7)e
−iπ/4)1/4

transforms condition (c.2) into condition (c.1). Therefore, Theorem 1.2
will not be proved.

Theorem 1.3. The polynomial differential systems (1.1) satisfying
condition (c.3) have a center at the origin if one of the following
conditions hold.

(a) Re(C) = Im(D) = Re(BEF ) = Re(B2E) = Im(BE2F ) =

Im(B2EF ) = Im(B3F ) = Re(E3F
2
) = 0,

(b) Re(C) = B = 5A+ E = 0,
(c) Re(C) = A− 3E = F = 0,
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(d) C = F = Re(E) = Re(B) − Im(B) = 7A + E = 49 Im(B)2 −
8 Im(E)2 = 0 and d = 5,

(e) C = F = Re(E) = Re(B) + Im(B) = 7A + E = 49 Im(B)2 −
8 Im(E)2 = 0 and d = 5,

(f) C = F = Re(E) = 3A+ E = 9|B|2 − 16|E|2 = 0 and d = 5,
(g) B = C = 3A − 5E = 16|E|2 − 9|F |2 = 0, F = |F |eiψ with

ψ = π/4 + kπ, k ∈ Z and d = 5,
(h) Re(B) = Re(C) = Re(E) = Re(F ) = 0,
(i) Re(C) = A− C = E = B + F = |C|2 − |F |2 = 0 and d = 5,
(j) Re(C) = A+ C = E = B − F = |C|2 − |F |2 = 0 and d = 5,
(k) Re(C) = Re(E), conditions (4.20) and d = 5,
(l) C = B + F = Re(E) = A+ E = 4|E|2 − |F |2 = 0 and d = 5,

(m) C = B − F = Re(E) = A+ E = 4|E|2 − |F |2 = 0 and d = 5,
(n) Im(B) = Re(C) = Im(E) = Im(F ) = 0.

The proof of Theorem 1.3 is given in Section 4. Note that Theorem
1.3 (a) coincides with Theorem 1.1 (a), and consequently, it will not be
proved.

Theorem 1.4. Polynomial differential systems (1.1) satisfying condi-
tion (c.4) have a center at the origin if one of the following conditions
hold.

(a) Re(C) = Im(D) = Re(BEF ) = Re(B2E) = Im(BE2F ) =

Im(B2EF ) = Im(B3F ) = Re(E3F
2
) = 0,

(b) Re(C) = B = 5A+ E = 0,
(c) Re(C) = A− 3E = F = 0,
(d) C = F = Im(B) = Im(E) = 7B+4E = 7A−E = 0 and d = 5,
(e) C = F = Im(B) = Im(E) = 7B−4E = 7A−E = 0 and d = 5,
(f) C = F = Im(E) = 3A+E = 9|B|2−16Re(E)2 = 0 and d = 5,
(g) B = C = 3A − 5E = 16|E|2 − 9|F |2 = 0 F = |F |eiψ with

ψ = kπ/2, k ∈ Z and d = 5,
(h) E = Re(C) = Re(A)− Im(C) = B + iF = |C|2 − |F |2 = 0 and

d = 5,
(i) E = Re(C) = Re(A) + Im(C) = |C|2 − |F |2 = B − iF = 0 and

d = 5,
(j) Re(C) = Im(E) = Im(C)2−|F |2 = |B|2−4Re(E)2 = a1+a9 =

a3a11 − a4a12 = 2a6a9 − a4a11 − a3a12 = a4a6 − 2a9a11 =
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a3a6 − 2a9a12 = a24a11 − 4a29a11 + a3a4a12 = 0 and d = 5,
(k) C = Im(E) = B + iF = A− E = 4|E|2 − |F |2 = 0 and d = 5,
(l) C = Im(E) = B − iF = A− E = 4|E|2 − |F |2 = 0 and d = 5,

(m) Re(C) = Im(E) = Re(F )− Im(F ) = Re(B)− Im(B) = 0,
(n) Re(C) = Im(E) = Re(F ) + Im(F ) = Re(B) + Im(B) = 0.

We note that the change of variables (2.7) with ξ = ((a2/a1)e
iπ/2)1/4

transforms condition (c.4) into condition (c.3). Hence, Theorem 1.4 will
not be proved.

2. Preliminary definitions and results. There are very few re-
sults about centers for classes of polynomial differential systems of ar-
bitrary degree. The resolution of this problem implies effective compu-
tation of the Poincaré-Liapunov constants. Indeed, setting

A = a1 + ia2, B = a3 + ia4, C = a5 + ia6,

D = a7 + ia8, E = a9 + ia10, F = a11 + ia12,

and writing (1.1) in polar coordinates, i.e., performing a change of
variables r2 = zz and θ = arctan(Im z/Re z), system (1.1) becomes

(2.1) ṙ = F (θ) rd, θ̇ = 1 +G(θ) rd−1,

where F (θ) and G(θ) are the homogeneous trigonometric polynomials

F (θ) = a5 + (a3 + a7) cos(2θ) + (a8 − a4) sin(2θ) + (a1 + a9) cos(4θ)

+ (a10 − a2) sin(4θ) + a11 cos(6θ) + a12 sin(6θ),

G(θ) = a6 + (a4 + a8) cos(2θ) + (a3 − a7) sin(2θ) + (a10 + a2) cos(4θ)

+ (a1 − a9) sin(4θ) + a12 cos(6θ)− a11 sin(6θ).

In order to determine the necessary conditions for a center, we propose
the Poincaré series

(2.2) H(r, θ) =

∞∑
n=2

Hn(θ)r
n,

where H2(θ) = 1/2 and Hn(θ) are homogeneous trigonometric polyno-
mials with respect to θ of degree n. Imposing this power series as a
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formal first integral of system (2.1), we obtain

Ḣ(r, θ) =
∞∑
k=2

V2kr
2k,

where V2k are the Poincaré-Lyapunov constants that depend upon the
parameters of system (1.1). Indeed, it is easy to see by the recursive
equations that generate the V2k that these V2k are polynomials in the
parameters of system (1.1), see [8]. As system (1.1) is polynomial, due
to the Hilbert basis theorem, the ideal J = ⟨V2, V4, . . .⟩ generated by
the Poincaré-Liapunov constants is finitely generated, i.e., there exist
W1,W2, . . . ,Wk in J such that J = ⟨W1,W2, . . . ,Wk⟩. Such a set
of generators is called a basis of J , and the conditions Wj = 0 for
j = 1, . . . , k provide a finite set of necessary conditions for a center.
The set of coefficients for which all the Poincaré-Liapunov constants
V2k vanish is called the center variety of the family of polynomial
differential systems, and it is also an algebraic set.

In practice, we determine a number of Poincaré-Liapunov constants
which we believe contains the set of generators of all of the Poincaré-
Liapunov constants. From this set, the much more difficult problem
is to decompose this algebraic set into its irreducible components. For
simple cases, this can be done by hand, see [3, 4, 15, 18, 19, 21].
However, for more difficult systems, the use of a computer algebra
system is essential. The computational tool which we use is the
routine minAssGTZ [9] of the computer algebra system Singular [17],
which is based on the Gianni-Trager-Zacharias algorithm [10]. Since
computations are very laborious, they cannot be completed in the field
of rational numbers. Therefore, we choose an approach based on the use
of modular computations [27]. We have chosen the prime p = 32003.
In order to perform the rational reconstruction, we use Mathematica

and the algorithm presented in [27]. The last step of this algorithm
has not been verified because computations cannot be overcome. This
step ensures that all of the points of the center variety have been
found, that is, we know that all of the encountered points belong to
the decomposition of the center variety, but we do not know whether
the given decomposition is complete. Nevertheless, it is believed that
the given list is complete, see also [27]. Therefore, in the following, we
provide sufficient conditions for a center, which are necessary from a
practical standpoint.
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From system (2.1), we obtain the associated equation

(2.3)
dr

dθ
=

F (θ) rd

1 +G(θ) rd−1
.

It is clear that equation (2.3) is well defined in a sufficiently small
neighborhood of the origin. Hence, if system (2.1) has a center at the

origin, then equation (2.3), when θ̇ > 0, also has a center at the origin.
The transformation (r, θ) → (ρ, θ) introduced by Cherkas [5], defined
by

ρ =
rd−1

1 +G(θ)rd−1
,(2.4)

whose inverse is

r =
ρ1/(d−1)

(1− ρG(θ))1/(d−1)
,

is a diffeomorphism from the region θ̇ > 0 into its image. If we
transform equation (2.3) using transformation (2.4), we obtain the
following Abel equation:

(2.5)

dρ

dθ
= −(d− 1)G(θ)F (θ)ρ3 + [(d− 1)(F (θ)−G ′(θ)]ρ2

= A(θ)ρ3 +B(θ)ρ2 + Cρ.

The solution ρ(θ, ρ0) of (2.5) satisfies that ρ(0, ρ0) = ρ0 can be
expanded in a convergent series of ρ0 ≥ 0 sufficiently small of the
form

(2.6) ρ(θ, ρ0) = ρ1(θ)ρ0 + ρ2(θ)ρ
2
0 + ρ3(θ)ρ

3
0 + · · · ,

with ρ1(θ) = 1 and ρk(0) = 0 for k ≥ 2. Let P : [0, ρ̃0] → R be the
Poincaré return map defined by P (ρ̃0) = ρ(2π, ρ̃0) for a convenient ρ̃0.
System (1.1) has a center at the origin if and only if ρk(2π) = 0 for
every k ≥ 0. If we assume that ρ2(2π) = · · · = ρm−1(2π) = 0, we
say that vm = ρm(2π) is the mth Poincaré-Liapunov-Abel constant
of system (1.1). Of course, the set of coefficients for which all the
Poincaré-Liapunov-Abel constants vm vanish is the same as that set
for which all the Poincaré-Liapunov constants V2k vanish. This set, as
previously mentioned, is the center variety of system (1.1).
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We note that the space of systems (1.1) with a center at the origin is
invariant with respect to the action group C∗ of the change of variables
z → ξz:

A −→ ξ(d−7)/2ξ
(d−5)/2

ξ5A, B −→ ξ(d−7)/2ξ
(d−5)/2

ξ4ξB.

(2.7)

C −→ ξ(d−7)/2ξ
(d−5)/2

ξ3ξ
2
C, D −→ ξ(d−7)/2ξ

(d−5)/2
ξ2ξ

3
D.

E −→ ξ(d−7)/2ξ
(d−5)/2

ξξ
4
E, F −→ ξ(d−7)/2ξ

(d−5)/2
ξ
5
F ;

for a proof, see [18].

The next result will be used to check when system (1.1) is reversible
with respect to a straight line through the origin; it is proven in [8].
Indeed, system (1.1) is invariant with respect to a straight line through
the origin if it is invariant under the change of variables w = eiγz,
τ = −t, for some real γ.

Lemma 2.1. System (1.1) is reversible with respect to a straight line
if and only if

(2.8)
A = −Ae−4iγ , B = −Be−2iγ , C = −C,
D = −De2iγ , E = −Ee4iγ , F = −Fe6iγ ,

for some γ ∈ R. Furthermore, in this situation, the origin of sys-
tem (1.1) has a center at the origin.

Throughout the proof of Theorem 1.3 we will also consider equa-
tion (1.1) and its complex conjugated equation, given by

(2.9)
ż = −iz + (zz)(d−5)/2

· (Az5 +Bz4z + Cz3z2 +Dz2z3 + Ezz4 + Fz5).

In addition, we will also consider the complex system defined by both
equations that, after the complex change of time t→ −it, is given by

(2.10) ż = z + Pd(z, z), ż = −z +Qd(z, z),

where Pd and Qd are homogeneous polynomials of degree d. Since there
is no confusion, we will also write it as

(2.11) ẋ = x+ Pd(x, y), ẏ = −y +Qd(x, y).
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The next lemma, given in [14], will be needed later.

Lemma 2.2. If system (2.11) has a local inverse integrating factor

V = (xy)α
m∏
i=1

F βi

i ,

with Fi analytic in x and y, Fi(0, 0) ̸= 0 for i = 1, . . . ,m, α ̸= 0 and α
not an integer greater than 1, then it has an analytic first integral of
the form Ψ = xy + · · · .

In fact, this lemma is a specific case of [6, Theorem 4.13 (iii)].

3. Proof of Theorem 1.1.

Proof of (a). The conditions of this case expressed in real parame-
ters are a5 = a8 = 0, i.e., A = Re(C) = D = 0, and

p1 = a3a9a11 + a4a10a11 − a4a9a12 + a3a10a12 = 0,

p2 = a23a9 − a24a9 − 2a3a4a10 = 0,

p3 = a4a
2
9a11 − 3a4a

2
10a11 − a3a

2
9a12 + 4a4a9a10a12 − a3a

2
10a12 = 0,

p4 = a24a9a11 + 3a3a4a10a11 − a3a4a9a12 + a23a10a12 = 0,

p5 = 3a23a4a11 − a34a11 + a33a12 − 3a3a
2
4a12 = 0,

p6 = a39a
2
11 − 3a9a

2
10a

2
11 + 6a29a10a11a12

− 2a310a11a12 − a39a
2
12 + 3a9a

2
10a

2
12 = 0.

Each of the conditions pj , for j = 1, . . . , 6, is now rewritten in terms of
the complex parameters of system (1.1). We obtain that

p1 = Re(BEF ) = 0 and p2 = Re(B2E) = 0.

Using p1 = 0, we get p3 = Im(BE2F ) = 0, and using p1 = p2 = 0,
we get p4 = Im(B2EF ) = 0. Finally, we note that p5 = Im(B3F ) = 0

and p6 = Re(E3F
2
) = 0. In summary, we have the conditions of

statement (1).
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From these conditions of (1) we have A = D = 0, Re(C) = 0, that
is, C = −C, and

(3.1)

B

B
= −EF

EF
,
(B
B

)2

= −E
E
,
B

B

=
E

2
F

E2F
,
(B
B

)3

=
F

F
,
(E
E

)3

= −
(F
F

)2

.

Now, let θ1, θ2, θ3 be such that

eiθ1 = −B
B
, eiθ2 = −E

E
, eiθ3 = −F

F
.

From conditions (3.1), we have that

(3.2) θ2 = −2θ1(mod(2π)), θ3 = −3θ1(mod(2π)).

Now, taking γ = θ1/2 and using (3.2), we have

e2iγ = eiθ1 = −B
B
,

e−4iγ = e−2iθ1 = eiθ2 = −E
E
,

e−6iγ = e−3iθ1 = eiθ3 = −F
F
.

Hence, by Lemma 2.1, and under the conditions of statement (1),
system (1) is reversible and consequently has a center at the origin. �

Proof of (b). The conditions in the real parameters are a5 = a11 =
a12 = 3a4 − a8 = a3 = 0. System (1.1) may be written as:

(3.3)
ż = iz + (zz)(d−5)/2(Bz4z − 3Bz2z3 + Ezz4)

= iz + (zz)(d−3)/2(Bz3 − 3Bz2 + Ez3).

If we rescale system (3.3) by |z|d−3, we obtain

ż = iz|z|3−d +Bz3 − 3Bz2 + Ez3 = i
∂H

∂z
,

where, for d = 5,

H = log |z|2 − i(Bz3z −Bzz3)− i

4
(Ez4 − Ez4),
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and, for d ≥ 7 odd, we have

H =
2

5− d
|z|5−d − i(Bz3z −Bzz3)− i

4
(Ez4 − Ez4).

Note that the first integrals exp(H) for d = 5 and H for d ≥ 7 odd
are real functions well defined at the origin. Therefore, the origin is a
center. �

Proof of (c). The conditions in the real parameters are a3 = a5 =
a9 = a11 = 0. Note that, in this case, we are under the assumptions
of Lemma 2.1 with γ = 0. Hence, by Lemma 2.1, and under the
conditions of statement (3), system (1.1) is reversible and consequently
has a center at the origin. �

Proof of (d). The conditions in the real parameters are a5 = a9 =
a10 = 2a4 − a8 = a3 = 0. In this case, system (1.1) takes the form:

(3.4) ż = iz + (zz)(d−5)/2(Bz4z − 2Bz2z3 + Fz5).

Rescaling by (zz)(d−5)/2 = |z|d−5, system (3.4) becomes

(3.5) ż = iz|z|5−d +Bz4z − 2Bz2z3 + Fz5 = i
∂H

∂z
,

where, for d ≥ 5 odd with d ̸= 7, we have

H =
2

7− d
|z|7−d − i

2
Bz4z2 +

i

2
Bz2z4 − i

6
Fz6 +

i

6
Fz6,

and, for d = 7, we have

H = log |z|2 − i

2
Bz4z2 +

i

2
Bz2z4 − i

6
Fz6 +

i

6
Fz6.

Note that the first integrals exp(H) for d = 7 and H for d ≥ 5 odd
with d ̸= 7 are real functions, well defined at the origin. Therefore, in
this case, the origin is a Hamiltonian center. �

4. Proof of Theorem 1.3.

Proof of (b). The conditions in the real parameters are a3 = a4 =
a5 = a9 = 5a2 − a10 = 0. System (1.1) can be written as:

(4.1) ż = iz + (zz)(d−5)/2(Az5 + i Im(C)z3z2 − 5Azz4 + Fz5).
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If we rescale system (4.1) by |z|d−5, we obtain

ż = iz|z|5−d +Az5 + i Im(C)z3z2 − 5Azz4 + Fz5 = i
∂H

∂z
,

where, for d ≥ 5 odd with d ̸= 7, we have

H =
2

7− d
|z|7−d − i(Az5z −Azz5) +

Im(C)

3
z3z3 − i

6
(Fz6 − Fz6),

and, for d = 7, we have

H = log |z|2 − i(Az5z −Azz5) +
Im(C)

3
z3z3 − i

6
(Fz6 − Fz6).

Note that the first integrals exp(H) for d = 7 and H for d ≥ 5 odd,
d ̸= 7, are real functions, well defined at the origin. Therefore, the
origin is a center. �

Proof of (c). The conditions in real parameters are a11 = a12 =
a9 = a5 = a2 + 3a10 = 0. In this case, the associated complex
differential system (2.11) is also the Lotka-Volterra case studied in [14].
In the real coordinates system (1.1), under the conditions of this case,
we have

ẋ = −y + (x2 + y2)(d−5)/2
(
a3x

5 + 18a10x
4y − 3a4x

4y − a6x
4y(4.2)

− 2a3x
3y2 − 28a10x

2y3 − 2a4x
2y3 − 2a6x

2y3

− 3a3xy
4 + 2a10y

5 + a4y
5 − a6y

5
)
,

ẏ = x− (x2 + y2)(d−5)/2
(
2a10x

5 − a4x
5 − a6x

5 − 3a3x
4y

− 28a10x
3y2 + 2a4x

3y2 − 2a6x
3y2 − 2a3x

2y3

+ 18a10xy
4 + 3a4xy

4 − a6xy
4 + a3y

5
)
.

System (4.2) has the invariant curve f = x2 + y2 and the inverse
integrating factor V = (x2 + y2)(d+3)/2 which, by integration, gives
an analytic first integral at the origin. �

Proof of (d). The conditions in real parameters are a11 = a12 =
a9 = a5 = a6 = a3 − a4 = 7a2 + a10 = 49a24 − 8a210 = 0. In this
case, the associated complex differential system (2.11) is also the Lotka-
Volterra case studied in [14]. We take a3 = a4 and a10 = −7a2 and

a4 = ±2
√
2a2. In this case, the complex differential system (2.11) is
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given by

(4.3)
ẋ = x+ a2x

5 ± (2− 2i)
√
2a2x

4y − 7a2xy
4,

ẏ = −y + 7a2x
4y ∓ (2 + 2i)

√
2a2xy

4 − a2y
5.

System (4.4) has the invariant curve of degree 8 given by

f(x, y) = 1 + 2a2x
4 + a22x

8 ∓ (2− 2i)
√
2a2x

3y

∓
(
10

3
− 10i

3

)√
2a22x

7y − 20ia22x
6y2 ∓ (2 + 2i)

√
2a2xy

3

± (18 + 18i)
√
2a22x

5y3 + 2a2y
4 − 130

3
a22x

4y4

± (18− 18i)
√
2a22x

3y5 + 20ia22x
2y6

∓
(
10

3
+

10i

3

)√
2a22xy

7 + a22y
8.

Moreover, system (4.4) has the first integral H(x, y) = xaybf(x, y)c,
where

a = (−1)1/4(3(−1)3/4 − (2− 2i)
√
2)/3,

b = i(3i+ (2 + 2i)(−1)1/4
√
2)/3,

c = −i(−3i+ (4 + 4i)(−1)1/4
√
2)/6. �

Proof of (e). The conditions in real parameters are a11 = a12 =
a9 = a5 = a6 = a3 + a4 = 7a2 + a10 = 49a24 − 8a210 = 0. In this
case, the associated complex differential system (2.11) is also the Lotka-
Volterra case studied in [14]. We take a3 = a4 and a10 = −7a2 and

a4 = ±2
√
2a2. In this case, the complex differential system (2.11) is

given by

(4.4)
ẋ = x+ a2x

5 ± (2 + 2i)
√
2a2x

4y − 7a2xy
4,

ẏ = −y + 7a2x
4y ∓ (2− 2i)

√
2a2xy

4 − a2y
5.

System (4.4) has the invariant curve of degree 8 given by

f(x, y) = 1 + 2a2x
4 + a22x

8 ∓ (2 + 2i)
√
2a2x

3y

∓
(
10

3
+

10i

3

)√
2a22x

7y − 20ia22x
6y2 ∓ (2− 2i)

√
2a2xy

3



1110 JAUME GINÉ, JAUME LLIBRE AND CLAUDIA VALLS

± (18− 18i)
√
2a22x

5y3 + 2a2y
4 − 130

3
a22x

4y4

± (18 + 18i)
√
2a22x

3y5 + 20ia22x
2y6

∓
(
10

3
− 10i

3

)√
2a22xy

7 + a22y
8.

Moreover, system (4.4) has the first integral H(x, y) = xaybf(x, y)c,
where

a = (−1)3/4(3(−1)1/4 + (2 + 2i)
√
2)/3,

b = (−3 + (2 + 2i)(−1)3/4
√
2)/3,

c = (−3− (4 + 4i)(−1)3/4
√
2)/6. �

Proof of (f). The conditions in real parameters are a11 = a12 =
a9 = a5 = a6 = a10 + 3a2 = 0 and 16a22 − a23 − a24 = 0. In this case,
the associated complex differential system (2.10) is the Lotka-Volterra
case studied in [14]. Performing the change ξ = (1/a2)

1/4, we can
take a2 = 1. Now, taking a3 = ±4 cosψ and a4 = ±4 sinψ in real
coordinates the system takes the form

ẋ = −y + 4x4y + 16x2y3 − 4y5 ± 4x5 cosψ ∓ 8x3y2 cosψ(4.5)

∓ 12xy4 cosψ ∓ 12x4y sinψ ∓ 8x2y3 sinψ ± 4y5 sinψ,

ẏ = x+ 4x5 − 16x3y2 − 4xy4 ± 12x4y cosψ ± 8x2y3 cosψ

∓ 4y5 cosψ ± 4x5 sinψ ∓ 8x3y2 sinψ ∓ 12xy4 sinψ.

In this case, the complex differential system (2.11) is given by

(4.6)
ẋ = x+ x5 + 3xy4 ∓ 4ix4y cosψ ± 4x4y sinψ,

ẏ = −y − 3x4y − y5 ∓ 4ixy4 cosψ ± 4xy4 sinψ.

System (4.6) is Lotka-Volterra; consequently, it has invariant curves
x = 0 and y = 0. Moreover, it has the invariant curve of degree 12
given by f = 0, where f is

f = 1 + 24x4y4(1 + 4x4 + 4y4)

+ 4xy
[
± i(x− y)(x+ y)(−3 + 4x2y2(3 + 2(x2 − y2)2)) cosψ
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− xy(9y4 + x4(9 + 16y4)) cos 2ψ − 9ixy(x4 − y4) sin 2ψ

± (x2 + y2)(3 + 4x2y2(3 + 2(x2 + y2)2)) sinψ
]
.

Moreover, an inverse integrating factor of system (4.6) is given by
V = x−1y−1f5/6. This inverse integrating factor is not well defined at
the origin. However, applying Lemma 2.2, system (4.6) has an analytic
first integral at the origin, and consequently, so does system (4.5). �

Proof of (g). The four conditions of statement (g) in real parame-
ters are a9 = a5 = a6 = a3 = a4 = 3a2+5a10 = 16a210−9(a211+a

2
12) = 0.

Performing the change of variables ξ = (1/a10)
1/4 where the last con-

dition is |F | = 4|a10|/3, we obtain F = 4/3|a10|eiψ with ψ ∈ (0, 2π].
Then, we get

(4.7) ż = iz − i
5

3
z5 + izz4 ± 4

3
eiψz5.

In real coordinates, system (4.7) becomes

ẋ = −y + 34

3
x4y − 44

3
x2y3 +

2

3
y5 ± 4

3
x5 cosψ ∓ 40

3
x3y2 cosψ(4.8)

± 20

3
xy4 cosψ ± 20

3
x4y sinψ ∓ 40

3
x2y3 sinψ ± 4

3
y5 sinψ,

ẏ = x− 2

3
x5 +

44

3
x3y2 − 34

3
xy4 ∓ 20

3
x4y cosψ ± 40

3
x2y3 cosψ

∓ 4

3
y5 cosψ ± 4

3
x5 sinψ ∓ 40

3
x3y2 sinψ ± 20

3
xy4 sinψ.

In this case, the complex differential system (2.11) is given by

(4.9)
ẋ = x− 5

3
x5 + xy4 ∓ 4

3
iy5 cosψ ± 4

3
y5 sinψ,

ẏ = −y − x4y +
5

3
y5 ∓ 4

3
ix5 cosψ ∓ 4

3
x5 sinψ.

In fact, if we compute Poincaré-Liapunov constants for system (4.9), we
obtain that the first 12 are zero, but the next is nonzero, and its value is
V13 = π sin 4ψ. Therefore, we have that this constant vanishes only for
ψ = kπ/4 with k ∈ Z. Hence, ψ = 0+kπ, ψ = π/2+kπ, ψ = π/4+kπ
and ψ = 3π/4 + kπ with k ∈ Z \ {0}. The first two cases give time-
reversible systems. For the third and fourth cases, system (4.9) takes
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the form

(4.10)
ẋ = x− 5

3
x5 + xy4 ± 2

√
2

3
(1− i)y5,

ẏ = −y − x4y +
5

3
y5 ∓ 2

√
2

3
(1 + i)x5.

System (4.10) has no invariant algebraic curves of degree ≤ 16 except

the curve of fourth degree f1 = 1−x4±(1−i)
√
2x3y±(1+i)

√
2xy3−y4.

From now on, we work only with system (4.10) with upper signs to
simplify the computations. For the other determination, we can obtain
similar results. We write f1 as

f1 = 1− ((−1− i)x+
√
2y)3((1 + i)x+

√
2y)/4.

This factorization suggests the following change of coordinates:

X = (1 + i)x+
√
2y and Y = (−1− i)x+

√
2y,

whose inverse change is

x =
1

4
(1− i)(X − Y ), Y =

1

2
√
2
(X + Y ).

With these new coordinates, system (4.10) with the upper signs be-
comes

(4.11)
Ẋ = −Y +

X5

16
+
X3Y 2

2
+

3XY 4

16
,

Ẏ = −X − X4Y

48
+
X2Y 3

12
+
Y 5

48
,

and the invariant curve has the form f̃1 = 1 −XY 3/4. Now, we have
the transformation

U =
1−G/12

(1−G/4)1/3
− 1, V = − 3G2 + Y 8

144(1−G/4)2/3
,

where G = XY 3 and system (4.11) takes the form

U̇ = V, V̇ = −7(U + 1)V − 4(3U + 3U2 + U3).(4.12)
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Finally, we have the rotation U = u+ v, V = −4u− 3v, obtaining the
system

(4.13)
u̇ = −4u− 16u2 + 4u3 − 25uv + 12u2v − 9v2 + 12uv2 + 4v3,

v̇ = −3v + 16u2 − 4u3 + 25uv − 12u2v + 9v2 − 12uv2 − 4v3.

System (4.13) has a node at the origin whose eigenvalues are 3 and 4
and, consequently, is a linearizable node, see [7]. Moreover, it is
easy to check that, going back through all the changes of coordinates,
pulls the first meromorphic integral back (or the linearizing change of
coordinates) to a first integral of the original system (4.10). Thus, for
this case, we have a center. �

Proof of (h). The conditions in real parameters are a3 = a5 = a9 =
a11 = 0. Note that, in this case, we are under the assumptions of
Lemma 2.1 with γ = 0. Hence, by Lemma 2.1, under the conditions of
statement (8), system (1) is reversible and consequently has a center
at the origin. �

Proof of (i). The conditions in real parameters are a5 = a9 = a10 =
a4− a12 = a3+ a11 = a2− a6 = a26− (a211+ a

2
12). Making the change of

variables ξ = (1/a6)
1/4 and since the last condition is |F | = |C|, we get

that F = |a6|eiψ with ψ ∈ (0, 2π]. Moreover, we have B = −F , that
is, B = −|a6|e−iψ. Then, we obtain

(4.14) ż = iz + iz5 ∓ e−iψz4z + iz3z2 ± eiψz5.

In real coordinates, system (4.14) becomes

ẋ = −y − 6x4y + 8x2y3 − 2y5 ∓ 8x3y2 cosψ ± 8xy4 cosψ(4.15)

± 2x4y sinψ ∓ 12x2y3 sinψ + 2y5 sinψ,

ẏ = x+ 2x5 − 8x3y2 + 6xy4 ∓ x4y cosψ ± 8x2y3 cosψ

± 2x5 sinψ ∓ 12x3y2 sinψ ± 2xy4 sinψ.

In this case, the complex differential system (2.11) is given by

(4.16)
ẋ = x+ x5 + x3y2 ± i(xy4 − y5) cosψ ± (x4y + y5) sinψ,

ẏ = −y − x2y3 − y5 ∓ i(x5 − xy4) cosψ ∓ (x5 + xy4) sinψ.
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System (4.16) has the invariant curve f1 = 1 + (x2 + y2)2 and the
invariant curve of degree 8

f2 =
1

4

(
4 + 2(x2 + y2)2(2 + 3x2y2)

+ 4ix(x− y)y(x+ y)(2 + (x2 + y2)2) cosψ

− (x2 + y2)2(x4 + y4) cos 2ψ

+ 4xy(x2 + y2)(2 + (x2 + y2)2) sinψ

+ i(x− y)(x+ y)(x2 + y2)3 sin(2ψ)
)
.

Moreover, system (4.16) has an inverse integrating factor of the form

V = f
1/4
1 f2, well defined at the origin. �

Proof of (j). The conditions in real parameters are a5 = a9 = a10 =
a4 + a12 = a3 − a11 = a2 + a6 = a26 − (a211 + a212). Making the change
of variables ξ = (1/a6)

1/4 and, since the last condition is |F | = |C|, we
get that F = |a6|eiψ with ψ ∈ (0, 2π]. Moreover, we have B = F , that
is, B = |a6|e−iψ. Then, we obtain

(4.17) ż = iz − iz5 ± e−iψz4z + iz3z2 ± eiψz5.

In real coordinates, system (4.17) becomes

ẋ = −y + 4x4y − 12x2y3 ± 2x5 cosψ ∓ 12x3y2 cosψ(4.18)

± 2xy4 cosψ ± 8x4y sinψ ∓ 8x2y3 sinψ,

ẏ = x+ 12x3y2 − 4xy4 ∓ 2x4y cosψ ± 12x2y3 cosψ

∓ 2y5 cosψ ∓ 8x3y2 sinψ ± 8xy4 sinψ.

In this case, the complex differential system (2.11) is given by

(4.19)
ẋ = x− x5 + x3y2 ∓ i(xy4 + y5) cosψ ∓ (x4y − y5) sinψ,

ẏ = −y − x2y3 + y5 ∓ i(x5 + xy4) cosψ ∓ (x5 − xy4) sinψ.

System (4.19) has the invariant curve f = 1 − (x2 + y2)2 and the
invariant curve of degree 8

f2 =
1

4

(
4− 2(x2 − y2)2(2 + 3x2y2)

+ 4ix(x− y)y(x+ y)(−2 + (x2 − y2)2) cosψ



CENTERS FOR GENERALIZED QUINTIC SYSTEMS 1115

+ (x2 − y2)2(x4 + y4) cos 2ψ − i(x2 − y2)3 sin 2ψ

+ (x2 + y2)(4xy(−2 + (x2 − y2)2)) sinψ
)
.

Moreover, system (4.19) has an inverse integrating factor of the form

V = f
1/4
1 f2, well defined at the origin. �

Proof of (k). The conditions in real parameters are a5 = a9 = 0 and

(4.20)

p1 = a2 − a10 = 0

p2 = a4a11 + a3a12 = 0,

p3 = 2a6a10 + a3a11 − a4a12 = 0,

p4 = a26 − a211 − a212 = 0,

p5 = a4a6 − 2a10a12 = 0,

p6 = a3a6 + 2a10a11 = 0,

p7 = a23 + a24 − 4a210 = 0.

We can take a6=1 by making the change ξ=(1/a6)
1/4. From p1=0,

we get a2 = a10. Furthermore, condition p4 =0 implies |F |= |a6|, and
thus, F = |a6|eiψ=±eiψ, i.e., a11=± sinψ, a12=± cosψ. From p5=0,
we get a4 = 2a10a12, and, from p6 = 0, we get a3 = −2a10a11. With
these parameters, we obtain that pj=0 for j=1, . . . , 7.

In real coordinates, we get

ẋ = −y − x4y − 2a10x
4y − 2x2y3 + 12a10x

2y3 − y5 − 2a10y
5

± 5x4y cosψ ∓ 6a10x
4y cosψ ∓ 10x2y3 cosψ ∓ 4a10x

2y3 cosψ

± y5 cosψ ± 2a10y
5 cosψ ± x5 sinψ ∓ 2a10x

5 sinψ

∓ 10x3y2 sinψ ± 4a10x
2y3 sinψ ± 5xy4 sinψ ± 6a10xy

4 sinψ,

ẏ = x+ x5 + 2a10x
5 + 2x3y2 − 12a10x

3y2 + xy4 + 2a10xy
4

± x5 cosψ ± 2a10x
5 cosψ ∓ 10x3y2 cosψ ∓ 4a10x

3y2 cosψ

± 5xy4 cosψ ∓ 6a10xy
4 cosψ ∓ 5x4y sinψ ∓ 6a10x

4y sinψ

± 10x2y3 sinψ ∓ 4a10x
2y3 sinψ ∓ y5 sinψ ± 2a10y

5 sinψ.

We integrate this system into the complex saddle form (2.11) as

ẋ = x+ a10x
5 + x3y2 + a10xy

4(4.21)

∓ iy5(i cosψ + sinψ)∓ ia10x
4y(2i cosψ − 2 sinψ),
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ẏ = −y − a10x
4y − x2y3 − a10y

5

± x5(− cosψ − i sinψ)± 2a10xy
4(− cosψ + i sinψ).

System (4.21) is Darboux integrable because it has three invariant
algebraic curves of degree 4 of the form fi(0, 0) ̸= 0 and, with these
three curves, it is possible to construct an integrating factor of system
(4.21) of the form V = f1f2f3. Consequently, it has a complex center
at the origin. �

Proof of (l). The conditions in real parameters are a5 = a9 = a6 =
a4 − a12 = a3 + a11 = a2 + a10 = 4a210 − (a211 + a212) = 0.

Making the change of variables ξ = (1/a10)
1/4, and, since the last

condition is |F | = 2|E|, we get that F = 2|a10|eiψ with ψ ∈ (0, 2π].
Moreover, we have B = −F , that is, B = −2|a10|e−iψ. Then, we get

(4.22) ż = iz − iz5 ± 2e−iψz4z + izz4 ± 2eiψz5.

In real coordinates, system (4.22) becomes

ẋ = −y + 8x4y − 8x2y3(4.23)

∓ 16x3y2 cosψ ± 16xy4 cosψ

± 4x4y sinψ ∓ 24x2y3 sinψ ± 4y5 sinψ,

ẏ = x+ 8x3y2 − 8xy4

∓ 16x4y cosψ ± 16x2y3 cosψ

± 4x5 sinψ ∓ 24x3y2 sinψ ± 4xy4 sinψ.

We integrate this system into the complex saddle form (2.11) as

(4.24)
ẋ = x− x5 + xy4 ± 2i(x4y − y5) cosψ ± 2(x4y + y5) sinψ,

ẏ = −y − x4y + y5 ∓ 2i(x5 − xy4) cosψ ∓ 2(x5 + xy4) sinψ.

System (4.24) is Darboux integrable because it has three invariant
algebraic curves of degree 4 given by f1 = 1 − (x2 + y2)2 and two
other curves that we do not write here due to their extension. In order
to prove their existence, we take polar coordinates x = r cos θ and
y = r sin θ in the real system (4.23) and, following [11], we impose
the existence of an invariant algebraic curve of degree a that, in polar
coordinates, takes the form f = 1 + U1(θ)r

4, i.e., f must satisfy the
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equation

(4.25)
∂f

∂r
ṙ +

∂f

∂ψ
ψ̇ − (U ′(ψ)r4)f ≡ 0,

Now, substituting U1(θ) by an arbitrary homogeneous polynomial of
degree 4, i.e., taking U1(θ) = B1 cos 4θ + B2 sin 4θ + B3 cos 2θ +
B4 sin 2θ + B5, it is easy to prove that equation (4.25) has three
solutions f1, f2 and f3, where f1 has been previously given. Moreover,

V = f
−1/2
1 f2f3 is an inverse integrating factor of system (4.24). �

Proof of (m). The conditions in real parameters are a5 = a9 = a6 =
a4 + a12 = a3 − a11 = a2 + a10 = 4a210 − (a211 + a212) = 0. Making
the change of variables ξ = (1/a6)

1/4 and, since the last condition is
|F | = 2|E|, we get that F = 2|a10|eiψ with ψ ∈ (0, 2π]. Moreover, we
have B = F , that is, B = 2|a10|e−iψ. Then, we obtain

(4.26) ż = iz − iz5 ∓ 2e−iψz4z + izz4 ± 2eiψz5.

In real coordinates, system (4.26) becomes

ẋ = −y + 8x4y − 8x2y3 ± 4x5 cosψ ∓ 24x3y2 cosψ(4.27)

± 4xy4 cosψ ± 16x4y sinψ ∓ 16x2y3 sinψ,

ẏ = x+ 8x3y2 − 8xy4 ∓ 4x4y cosψ ± 24x2y3 cosψ

∓ 4y5 cosψ ∓ 16x3y2 sinψ ± 16xy4 sinψ.

We can integrate this system into the complex saddle form (2.11) as

(4.28)
ẋ = x− x5 + xy4 ∓ 2i(x4y + y5) cosψ ∓ 2(x4y − y5) sinψ,

ẏ = −y − x4y + y5 ∓ 2i(x5 + xy4) cosψ ∓ 2(x5 − xy4) sinψ.

System (4.28) is Darboux integrable because it has three invariant
algebraic curves of degree 4 given by f1 = 1− (x2− y2)2 and two other
curves that we do not write here due to their extension. However, as
in the previous case, we can prove their existence. Moreover, this case

also has an inverse integrating factor of the form V = f
−1/2
1 f2f3. �

Proof of (n). The conditions in real parameters are a4 = a5 = a9 =
a12 = 0. Note that, in this case, we are under the assumptions of
Lemma 2.1 with γ = π/2. Hence, by Lemma 2.1, under the conditions
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of statement (14), system (1.1) is reversible and, consequently, has a
center at the origin. �
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