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ON THE STRUCTURE OF MULTIPLIER ALGEBRAS

CHANGGUO WEI AND SHUDONG LIU

ABSTRACT. This note gives a characterization of matrix
structures for multipliers of a stable C∗-algebra A ⊗ K
with any C∗-algebra A. We represent elements in (A ⊗
K)′′, QM(A ⊗ K) and M(A ⊗ K) as infinite matrices over
certain C∗-algebras, respectively. These results generalize
the related work of Brown, Lin and Zhang in this area.

1. Introduction and preliminaries. Multiplier algebras play a
crucial role in the theory of C∗-algebras and their extensions. In
some early work, semicontinuity was used to give characterizations of
multipliers, [1, 2, 3, 4]. In the early 1980s, Brown [5] took another
approach to reveal the structures of quasi-multiplier algebra of a stable
C∗-algebra. He represented quasi-multipliers of A⊗K as certain infinite
matrices in the setting of A being a unital C∗-algebra and proved a
necessary and sufficient condition for

QM(A⊗K) = LM(A⊗K) +RM(A⊗K).

Brown’s idea and work on this topic were adopted and developed by Lin
and Zhang. In [12], Zhang gave a representation of multipliers of A⊗K
in the case where A ⊗ K is stably unital. Lin [7] constructed matrix
structures of multipliers of A when A is σ-unital, and subsequently,
he provided an in-depth series of research on quasi-multipliers and
multipliers, see [8, 9, 10].

Inspired by the above work, this note is engaged in characterizing
the matrix structure of multiplier algebras of stable C∗-algebras. In
contrast with previous work we do not require that A be unital or
σ-unital. This is an essential difference because A ⊗ K is no longer
σ-unital. As a result, we represent elements in (A⊗K)′′, QM(A⊗K)
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and M(A ⊗ K) as infinite matrices over certain C∗-algebras for any
C∗-algebra A, respectively.

Suppose that A is a C∗-algebra and A′′ is its enveloping von Neu-
mann algebra. An element x in A′′ is called a multiplier of A if
xa, ax ∈ A for any a ∈ A. Similarly, x is a left multiplier if xa ∈ A
for any a ∈ A, x is a right multiplier if ax ∈ A for any a ∈ A, and x
is a quasi-multiplier if axb ∈ A for all a, b ∈ A. Denote the sets of
multipliers, left multipliers, right multipliers and quasi-multipliers by
M(A), LM(A), RM(A) and QM(A), respectively.

Recall that M(A) is the completion of A in the strict topology,
and LM(A), RM(A) and QM(A) are norm closed subspaces of A′′.
Moreover,

LM(A)∗ = RM(A) and M(A) = LM(A) ∩RM(A).

Hence, M(A) is a C∗-algebra.

Let D be a C∗-algebra. Denote the set of infinite matrices over D
by

M∞(D) = {(xij) : xij ∈ D, i, j = 1, 2, . . .}.

2. Main results. Suppose that H and H1 are two Hilbert spaces
such that H1 is separable and infinite-dimensional. Let {ε1, ε2, . . .} be
an orthonormal basis for H1 and K = K(H1) the compact operators
on H1. Suppose that {eij : i, j = 1, 2, . . .} is the standard matrix unit
of K corresponding to {ε1, ε2, . . .}. Then, there is an isomorphism

α : H ⊗H1 −→
∞⊕
i=1

H

such that α(x ⊗ εi) = (0, . . . , 0, x, 0, . . .) for any x ∈ H and i ∈ N,
where x is on the ith entry. Under this isomorphism,

B(H ⊗H1) ∼= B

( ∞⊕
i=1

H

)
.
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For every T ∈ B(⊕∞
i=1H), there is a unique matrix (Tij) with entries

in B(H) such that

Tξ = (Tij)

x1

x2

...

 =

( ∞∑
j=1

T1jxj ,
∞∑
j=1

T2jxj , . . .

)
,

where ξ = (x1, x2, . . .) ∈ ⊕∞
i=1H.

In order to differentiate the relation between infinite matrices over
B(H) and bounded operators on ⊕∞

i=1H, we need the following two
propositions. Although they may be known to specialists, we provide
them here for the sake of completeness.

Proposition 2.1. Let (Tij) ∈ M∞(B(H)). Then, the following are
equivalent :

(i) (Tij) represents an element in B(⊕∞
i=1H);

(ii) sup{∥(Tij)1≤i,j≤n∥⊕n
i=1H

: n ∈ N} < +∞;

(iii) {
∑n

ij Tij ⊗ eij}∞n=1 converges in the sot in B(H ⊗H1) as n → ∞.

Proof.

(i) ⇔ (ii). This is from [6, 2.6.13].

(iii) ⇒ (ii). Since ∥∥∥∥ n∑
ij

Tij ⊗ eij

∥∥∥∥ =
∥∥∥ (Tij)

1≤i≤n
1≤j≤n

∥∥∥,
by the uniformly bounded theorem,

sup

{∥∥∥ (Tij)
1≤i≤n
1≤j≤n

∥∥∥
⊕n

i=1H
: n ∈ N

}
< +∞.

(i)⇒ (iii). Suppose that (Tij) represents an element T in B(⊕∞
i=1H).

Then, for any ξ = (x1, x2, . . .) ∈ ⊕∞
i=1H,

Tξ =

( ∞∑
j=1

T1jxj ,
∞∑
j=1

T2jxj , . . .

)
.
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For every x ∈ H and l ∈ N,

α(x⊗ εl) = (0, . . . , 0, x, 0, . . .)

and, when n > l,( n∑
ij

Tij ⊗ eij

)
(x⊗ εl) =

n∑
i

Til ⊗ εi.

It follows that

T ◦ α(x⊗ εl) = (T1lx, T2lx, . . .)

= lim
n→∞

α

( n∑
i

Til ⊗ εi

)

= lim
n→∞

α

( n∑
ij

Tij ⊗ eij

)
(x⊗ εl).

By the above proof, the sequence
∑n

ij Tij ⊗eij is uniformly bounded
and

span{x⊗ εi : x ∈ H, i = 1, 2, . . .} = H ⊗H1.

Hence,
n∑
ij

Tij ⊗ eij
sot−→ α−1 ◦ T ◦ α, as n → ∞. �

Proposition 2.2. Suppose that D is a C∗-subalgebra of B(H) and
(Tij) ∈ M∞(B(H)). Then, (Tij) represents an element T in D ⊗ K if
and only if every Tij ∈ D and

n∑
ij

Tij ⊗ eij
∥·∥−→ T.

Proof. Suppose that (Tij) represents T in D ⊗ K. We note that
eij(εl) = δjlεi , where δjl is the Kronecker symbol. Then, (1⊗eii)T (1⊗
ejj) = Tij ⊗ eij . Since T ∈ D ⊗K, we have

Tij ⊗ eij ∈ (1⊗ eii)(D ⊗K)(1⊗ ejj) = D ⊗ eij .

Hence, Tij ∈ D.
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Note that

n∑
ij

Tij ⊗ eij =
n∑
ij

(1⊗ eii)T (1⊗ ejj) =

( n∑
1

1⊗ eii

)
T

( n∑
1

1⊗ ejj

)
,

and {
∑n

1 1⊗ eii}∞n=1 is an approximate unit of D⊗K (which may not
be contained in D⊗K). It follows that

∑n
ij Tij ⊗ eij converges to T in

the norm in D ⊗K.

Conversely, since Tij ∈ D and
∑n

ij Tij ⊗ eij → T in the norm,

then T ∈ D ⊗ K. By Proposition 2.1, (Tij) represents the bounded
operator T . �

Let A be a C∗-algebra. Suppose that π : A → B(Hπ) is the
universal representation of A and A′′ is the universal enveloping von
Neumann algebra of A. Let H be a separable, infinite-dimensional
Hilbert space and K = K(H) the compact operators on H. Then, we
get a representation of A⊗K,

φ = π ⊗ ι : A⊗K −→ B(Hπ ⊗H),

where ι is the inclusion map from K into B(H).

Let A′′⊗̄B(H) be the von Neumann tensor product of A′′ and B(H).
Then, (A⊗K)′′ ∼= A′′⊗̄B(H) as C∗-algebras. Since π and ι are faithful
and non-degenerate, then so is φ. If we identify A⊗K with its images
under these homomorphisms, then we have the following relation of the
above algebras:

A⊗K ⊂ (A⊗K)′′ ∼= A′′⊗̄B(H) ⊂ B(Hπ ⊗H).

Let M(A) be the multiplier algebra of A and 1M(A) the unit of
M(A). Suppose that {ε1, ε2, . . .} is an orthonormal basis of H and
{eij : i, j = 1, 2, . . .} is the standard matrix unit of K corresponding to
{ε1, ε2, . . .}. Set pn =

∑n
1 eii. Then {pn} is an approximate unit of K.

Recall that the strict topology (st) on B(Hπ ⊗ H) is induced by
A⊗K, which is induced by the family of semi-norms of:

pa(x) = ∥xa∥+ ∥x∗a∥, a ∈ A⊗K, x ∈ B(Hπ ⊗H).
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Hence, xα
st→ x in B(Hπ ⊗ H) if and only if, for every a in A ⊗ K,

axα
∥·∥→ ax and xαa

∥·∥→ xa. Set Pn = 1M(A)⊗pn. Then, Pn
st→ 1B(Hπ⊗H)

in B(Hπ ⊗H).

Next, we try to establish the connection of B(Hπ ⊗H) and infinite
matrices over B(Hπ) and specialize this connection for several impor-
tant C∗-subalgebras of B(Hπ ⊗H).

Theorem 2.3. Suppose A is a C*-algebra. Let Hπ and B(Hπ ⊗H) be
as above.

(i) There is an injection Φ from B(Hπ ⊗ H) into M∞(B(Hπ))
with Φ(x) = (xij), such that xij ⊗ eij = (1 ⊗ eii)x(1 ⊗ ejj). Now,
{
∑n

ij xij ⊗ eij} converges to x in the strong operator topology (sot).

Conversely, if (xij) ∈ M∞(B(Hπ)) such that {
∑n

ij xij ⊗ eij} con-

verges to some x ∈ B(Hπ ⊗H) in the sot, then the matrix (xij) repre-
sents x in the above correspondence, i.e., Φ(x) = (xij).

(ii) Let (xij) ∈ M∞(B(Hπ)). Then, there exists an x ∈ (A ⊗ K)′′

such that Φ(x) = (xij) if and only if xij ∈ A′′ and
∑n

ij xij ⊗ eij
sot→ x.

Proof.

(i) Let x ∈ B(Hπ ⊗H). Since H = ⊕∞
i=1Cεi, we have

Hπ ⊗H =
∞⊕
i=1

(Hπ ⊗ εi) ∼=
∞⊕
i=1

Hπ.

Set x′
ij = (1 ⊗ eii)x(1 ⊗ ejj) ∈ B(Hπ ⊗ H). Note that 1 ⊗ eii and

1 ⊗ ejj are the projections of Hπ ⊗ εi and Hπ ⊗ εj , respectively.
Hence, x′

ij can be identified with its restriction on Hπ ⊗ εj . Then,
x′
ij ∈ B(Hπ ⊗ εj ,Hπ ⊗ εi). Since eij(εj) = εi, we have

B(Hπ ⊗ εj ,Hπ ⊗ εi) = B(Hπ)⊗ eij .

Thus, there is a unique xij ∈ B(Hπ) such that x′
ij = xij ⊗ eij for all

i, j ∈ N.
Define a map Φ from B(Hπ ⊗H) into M∞(B(Hπ)) by Φ(x) = (xij),

where xij is obtained from the preceding proof.

Note that the sequence {Pn} is bounded and the representation

φ : A⊗K −→ B(Hπ ⊗H)
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is non-degenerate. Since {Pn} converges to 1 in the strict topology, it
converges to 1 in the sot inB(Hπ⊗H). Thus, PnxPn → x in the sot as n

tends to infinity. Since PnxPn =
∑n

ij xij ⊗ eij , then
∑n

ij xij ⊗ eij
sot→ x.

Let y ∈ B(Hπ ⊗ H) and y ̸= x. Suppose (yij) represents y. Then
(xij) ̸= (yij). This is equivalent to saying that there are i, j such that
xij ̸= yij . Otherwise, if xij = yij for all i, j, then

PnxPn =

n∑
ij

xij ⊗ eij =

n∑
ij

yij ⊗ eij = PnyPn.

By the above proof, we have PnxPn → x and PnyPn → y, and
hence, x = y. This is a contradiction. Therefore, the map x 7→ (xij) is
injective.

Conversely, suppose that (xij) ∈ M∞(B(Hπ)) such that
∑n

ij xij⊗eij
converges to some x ∈ B(Hπ ⊗H) in the sot. Fix k, l ∈ N. Then

(1⊗ ell)

( n∑
ij

xij ⊗ eij

)
(1⊗ ekk)

sot−→ (1⊗ ell)x(1⊗ ekk)

as n → ∞. When n ≥ max{k, l}, we have

(1⊗ ell)

( n∑
ij

xij ⊗ eij

)
(1⊗ ekk) = xlk ⊗ elk.

Hence, (1⊗ ell)x(1⊗ ekk) = xlk ⊗ elk. Therefore, (xij) represents x.

(ii) Suppose that x is in (A ⊗ K)′′. By the Kaplansky density
theorem, there is a bounded net {xα} ⊂ A⊗K such that {xα} converges
to x as α tends to α0 in the weak operator topology (wot).

Note that (A ⊗ K)′′ ∼= A′′⊗̄B(H). Since ∗-isomorphisms between
von Neumann algebras are continuous with respect to the σ-wot, and
it is also known that σ-wot is identified with wot on bounded subsets,

we have xα
wot→ x in A′′⊗̄B(H). Then

(1⊗ eii)xα(1⊗ ejj)
wot−→ (1⊗ eii)x(1⊗ ejj)

in A′′⊗̄B(H).

By the fact that xα ∈ A⊗K ⊂ A′′ ⊗B(H), then

(1⊗ eii)xα(1⊗ ejj) ∈ A⊗ eij ⊂ A′′ ⊗ eij .
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Since A′′ ⊗ eij is closed in the wot, then (1⊗ eii)x(1⊗ ejj) ∈ A′′ ⊗ eij .
Therefore, there is an xij ∈ A′′ such that xij ⊗ eij = (1⊗ eii)x(1⊗ ejj).
Since M∞(A′′) ⊂ M∞(B(Hπ)) and Φ is injective, we have Φ(x) = (xij)

and
∑n

ij xij ⊗ eij
sot→ x.

On the other hand, since xij ∈ A′′, we have

xij ⊗ eij ∈ A′′ ⊗K ⊂ (A⊗K)′′.

Since
∑n

ij xij ⊗ eij
sot→ x, xij ∈ (A⊗K)′′. By (i), Φ(x) = (xij). �

Using Theorem 2.3, we can build a C∗-construction on the set of
infinite matrices which represent bounded operators such that Φ is
a C∗-algebra isomorphism. Obviously, M∞(B(Hπ)) can be equipped
with an addition, a scalar-multiplication and an involution, as usual,
which make it a linear space with an involution. However, the usual
multiplication of matrix algebras dose not exist on infinite matrices, in
general.

Let E = {(xij) ∈ M∞(B(Hπ)) : sup{∥
∑n

ij xij ⊗ eij∥ : n ∈ N} <

+∞}. Then E is a self-adjoint linear subspace of M∞(B(Hπ)). We
can check that the function

∥(xij)∥ = sup

{∥∥∥∥ n∑
ij

xij ⊗ eij

∥∥∥∥ : n ∈ N
}

transforms E into a linear normed space with ∥(xij)
∗∥ = ∥(xij)∥.

Next, we define multiplication on E as follows.

For any (xij), (yij) ∈ E, let

(xij)(yij) = (zij) where zij = (sot)
∞∑
k=1

xikykj

for i, j = 1, 2, . . ..

Proposition 2.4. The above map is indeed a multiplication on E, and
thus, E constitutes a C∗-algebra which is isomorphic to B(Hπ ⊗H).

Proof. Firstly, we need to show that the definition is well defined.
For (xij), (yij) ∈ E, suppose that x and y are the elements in
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B(Hπ ⊗ H) which correspond to (xij) and (yij), respectively. Then,
Φ(x) = (xij) and Φ(y) = (yij). Hence,

xij ⊗ eij = (1⊗ eii)x(1⊗ ejj)

and

yij ⊗ eij = (1⊗ eii)y(1⊗ ejj).

Let z = xy, and set Φ(z) = (zij). Since 1 = (sot)
∑∞

k=1 1 ⊗ ekk,
and the multiplication in B(Hπ ⊗H) is jointly continuous on bounded
subsets in the sot, then

(sot) lim
n→∞

(
(1⊗ eii)x

( n∑
k=1

1⊗ ekk

))(( n∑
k=1

1⊗ ekk

)
x(1⊗ ejj)

)
= (1⊗ eii)xy(1⊗ ejj) = zij ⊗ eij .

Note that( n∑
k=1

xikykj

)
⊗eij =

( n∑
k=1

xik ⊗ eik

)( n∑
k=1

ykj ⊗ ekj

)

=

(
(1⊗ eii)x

( n∑
k=1

1⊗ ekk

))(( n∑
k=1

1⊗ ekk

)
x(1⊗ ejj)

)
.

Hence, ( n∑
k=1

xikykj

)
⊗ eij

sot−→ zij ⊗ eij

as n → ∞. Furthermore, (sot)
∑∞

k=1 xikykj = zij for i, j = 1, 2, . . ..
Therefore, Φ(xy) = Φ(x)Φ(y).

Secondly, by Proposition 2.1 and Theorem 2.3, Φ is a surjective *-
isometry. It follows that E is a C∗-algebra with the operations defined
above, and Φ is an isomorphism between B(Hπ ⊗H) and E. �
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Theorem 2.5. Let (xij) be in M∞(A′′). Then:

(i) there is an x ∈ QM(A⊗K) such that Φ(x) = (xij) if and only if

every xij ∈ QM(A) and
∑n

ij xij ⊗ eij
sot→ x.

(ii) Suppose that every xij ∈ LM(A),

n∑
ij

xij ⊗ eij
sot−→ x,

and there is an increasing sequence {nk} such that {
∑

(i,j)∈σn
xij ⊗

eij}∞n=1 converges in the norm in A⊗K. Then x ∈ LM(A⊗K), where

σn = {(i, j) : there exists k > l, such that n ≥ nk ≥ i > nk−1,

n ≥ nl ≥ j > nl−1}.

(iii) There is an x ∈ A ⊗ K such that Φ(x) = (xij) if and only if
every xij ∈ A and

n∑
ij

xij ⊗ eij
∥·∥−→ x.

Proof.

(i) Let x ∈ QM(A⊗K) with Φ(x) = (xij). By the proof of Theorem
2.3 (ii), we have xij ⊗ eij = (1⊗ eii)x(1⊗ ejj) ∈ A′′⊗ eij . Suppose that

{eα} is an approximate unit of A. Since eα
st→ 1 in M(A), then

eα ⊗ eii
st−→ 1⊗ eii

in A′′⊗ eii, where the strict topology on A′′⊗ eii is inherited from that

on B(Hπ ⊗H). Similarly, eα ⊗ ejj
st→ 1 ⊗ ejj in A′′ ⊗ eii. Hence, for

any a, b ∈ A,

(a⊗ eii)(eα ⊗ eii)x(eα ⊗ ejj)(b⊗ ejj)
∥·∥−→ (a⊗ eii)x(b⊗ ejj).

Since x ∈ QM(A⊗K), then (a⊗ eii)(eα ⊗ eii)x(eα ⊗ ejj)(b⊗ ejj) ∈
A⊗K. Note that

(axijb)⊗ eij = (a⊗ eii)(xij ⊗ eij)(b⊗ ejj)

= (a⊗ eii)(1⊗ eii)x(1⊗ ejj)(b⊗ ejj)

= (a⊗ eii)x(b⊗ ejj).



ON THE STRUCTURE OF MULTIPLIER ALGEBRAS 1007

Hence, (axijb)⊗ eij ∈ A⊗K. Furthermore,

(axijb)⊗ eij = (1⊗ eii)((axijb)⊗ eij)(1⊗ ejj)

∈ (1⊗ eii)(A⊗K)(1⊗ ejj)

= A⊗ eij .

Therefore, axijb ∈ A and xij ∈ QM(A).

By Theorem 2.3 (i), it follows that
∑n

ij xij ⊗ eij
sot→ x.

Conversely, suppose that (xij) is inM∞(QM(A)) such that
∑n

ij xij⊗
eij

sot→ x for some x ∈ B(Hπ ⊗H). For any a, b ∈ A and l, k, s, t ∈ N,
we have

(a⊗ elk)

( n∑
ij

xij ⊗ eij

)
(b⊗ est)

sot−→ (a⊗ elk)x(b⊗ est)

as n → ∞. Set N = max{k, s}. Then, when n > N ,

(a⊗ elk)

( n∑
ij

xij ⊗ eij

)
(b⊗ est) = (a⊗ elk)

( N∑
ij

xij ⊗ eij

)
(b⊗ est).

Hence, when n > N ,

(a⊗ elk)x(b⊗ est) =

N∑
ij

axijb⊗ elkeijest ∈ A⊗K.

Since span{a⊗ elk : a ∈ A; l, k ∈ N} is dense in the norm in A⊗ K, it
follows that (A ⊗ K)x(A ⊗ K) ⊂ A ⊗ K. Therefore, x ∈ QM(A ⊗ K).
By Theorem 2.3, Φ(x) = (xij).

(ii) Suppose that
∑

(i,j)∈σn
xij ⊗ eij

∥·∥−→ x0 for some x0 in A⊗K as

n → ∞. Let y = x− x0. Then y ∈ (A⊗K)′′. Set

λn = {(i, j) : i, j = 1, 2, . . . , n} \ σn, yn =
∑

(i,j)∈λn

xij ⊗ eij .

Then, yn
sot→ y.

For any a ∈ A and l, k ∈ N, yn(a⊗elk)
sot→ y(a⊗elk). Note that yn is

the upper triangular part. Hence, when n > l, yn(a⊗elk) = yl(a⊗elk).
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By the assumption that xij ∈ LM(A), it follows that

y(a⊗ elk) = yl(a⊗ elk) ∈ A⊗K.

Therefore, y(A⊗K) ⊂ A⊗K and y ∈ LM(A⊗K). Finally, by y = x−x0,
we have x ∈ LM(A⊗K).

(iii) This follows from Proposition 2.2. �

Theorem 2.6. Let x ∈ (A ⊗ K)′′ and (xij) ∈ M∞(A′′) satisfy Φ(x)
= (xij). Consider the statements:

(i) x ∈ M(A⊗K);

(ii) xij ∈ M(A) for any i, j such that
∑n

ij xij⊗eij
st→ x in M(A⊗K);

(iii) xij ∈ M(A) for any i, j such that
∑n

ij xij ⊗ eij
sot→ x in (A

⊗K)′′, and there are increasing subsequences {nk} and {ml} such that
{
∑

(i,j)∈σn
xij ⊗ eij}∞n=1 and {

∑
(i,j)∈δn

xij ⊗ eij}∞n=1 converge in the

norm in A⊗K, where

σn = {(i, j) : there exists k > l, such that n ≥ nk ≥ i > nk−1,

n ≥ nl ≥ j > nl−1},

δn = {(i, j) : there exists k < l, such that n ≥ mk ≥ i > mk−1,

n ≥ ml ≥ j > ml−1}.

Then (i) ⇔ (ii) and (iii) ⇒ (i).

Proof.

(i) ⇒ (ii). Let x ∈ M(A ⊗ K). For any r > 0, the closure of
subset {a ∈ A ⊗ K : ∥a∥ ≤ r} in the strict topology is equal to subset
{y ∈ M(A⊗K) : ∥y∥ ≤ r}. Then, there is a bounded net {xα} ⊂ A⊗K
such that xα

st→ x in M(A⊗K). Furthermore,

(1⊗ eii)xα(1⊗ ejj)
st−→ (1⊗ eii)x(1⊗ ejj)

in M(A⊗K).

Since xα ∈ A⊗K, then (1⊗ eii)xα(1⊗ ejj) ∈ A⊗ eij . Hence, there
is an xij

α ∈ A such that (1⊗ eii)xα(1⊗ ejj) = xij
α ⊗ eij . It follows that
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xij
α ⊗ eij

st→ (1⊗ eii)x(1⊗ ejj), and hence,

xij
α ⊗ eij

wot−→ (1⊗ eii)x(1⊗ ejj)

since xij
α ⊗ eij is bounded. Note that the net {xij

α ⊗ eij} is contained in
A′′⊗eij , which is a closed subspace in the wot. Thus, (1⊗eii)x(1⊗ejj) ∈
A′′⊗eij , and there is an xij ∈ A′′ such that xij⊗eij = (1⊗eii)x(1⊗ejj)
for any i, j ∈ N.

For every a ∈ A,

(xij
α ⊗ eij)(a⊗ ejj)

∥·∥−→ (xij ⊗ eij)(a⊗ ejj).

Then,
∥xij

α a− xija∥ = ∥(xij
α a− xija)⊗ eij∥ −→ 0.

Thus, xija ∈ A for all a ∈ A and xijA ⊂ A. Similarly, we have
Axij ⊂ A. Therefore, xij ∈ M(A).

Finally, note that

n∑
ij

xij ⊗ eij =

n∑
ij

(1⊗ eii)x(1⊗ ejj) = PnxPn,

where Pn =
∑n

1 1⊗eii ∈ M(A⊗K) and Pn
st→ 1 in M(A⊗K). It follows

that PnxPn
st→ x. Since the representation φ : A ⊗ K → B(Hπ ⊗ H)

is faithful and non-degenerate, the strict topology is stronger than
the sot on bounded subsets of B(Hπ ⊗ H). Hence, xij ∈ A′′ and∑n

ij xij ⊗ eij
sot→ x. Therefore, by (i), we have Φ(x) = (xij).

(ii) ⇒ (i). Let xij ∈ M(A) with
∑n

ij xij ⊗ eij
st→ x in M(A ⊗ K).

Since
∑n

ij xij⊗eij ∈ M(A)⊗K ⊂ M(A⊗K) and M(A⊗K) is complete

in the strict topology, then x in M(A⊗K).

(iii) ⇒ (i). Suppose that xij ∈ M(A) satisfies the conditions
in the assumption. Since M(A) ⊂ LM(A), by Theorem 2.5 (ii),
x ∈ LM(A ⊗ K). Similarly, since M(A) ⊂ RM(A), by an analogue
of Theorem 2.5 (ii), x ∈ RM(A⊗K). Therefore,

x ∈ LM(A⊗K) ∩RM(A⊗K) = M(A⊗K). �

Remark 2.7. The assumption that π : A → B(Hπ) is the universal
representation of A is not necessary. In fact, since LM(A⊗K), RM(A



1010 CHANGGUO WEI AND SHUDONG LIU

⊗K), QM(A⊗K) and M(A⊗K) are isomorphic, respectively, for any
faithful and non-degenerate representations. Thus, if we replace the
universal representation π of A with any faithful non-degenerate rep-
resentation ϕ of A and replace the universal enveloping von Neumann
algebra A′′ with the closure of ϕ(A) in the sot, all results given above
still hold.

Remark 2.8. In Theorem 2.6, condition (iii) is not necessary for
x ∈ M(A⊗K).

Let xij ∈ B(Hπ) for i, j = 1, 2, . . .. Set

β =

x11 0 · · ·
x21 0 · · ·
...

...
. . .

 and βn =


x11 0 · · · 0
x21 0 · · · 0
...

...
. . .

...
xn1 0 · · · 0

 .

Then,

∥βn∥2 = ∥β∗
nβn∥ =

∥∥∥∥ n∑
i=1

x∗
i1xi1

∥∥∥∥.
Hence, β represents an element in B(Hπ ⊗H) if and only if

sup
n

∥∥∥∥ n∑
i=1

x∗
i1xi1

∥∥∥∥ < ∞.

Let A = K, and

β =

e11 0 · · ·
e22 0 · · ·
...

...
. . .

 .

Let π be the inclusion map from K into B(H). Then, the representation
π ⊗ ι is the inclusion map from A ⊗ K into B(H ⊗H). By the above
discussion, β represents an element x in B(H ⊗H) = M(A⊗K), that

is,
∑n

i=1 eii ⊗ ei1
sot→ x.

Note that ∥x −
∑n

i=1 eii ⊗ ei1∥ = 1 for any n ∈ N. Hence, for any
increasing subsequence {nk}, the sequence {

∑
(i,j)∈σn

eii⊗ei1}∞n=1 does

not converge in the norm in A⊗K.
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The above example also illustrates that Theorem 2.5 (ii) is not
necessary for x ∈ LM(A⊗K). However, when A is a unital C∗-algebra,
these conditions are sufficient and necessary as Brown, Lin and Zhang
have proved.

Corollary 2.9 ([11, 5.1.9]). Suppose that A is a unital C∗-algebra and
en =

∑n
1 1 ⊗ eii for n = 1, 2, . . .. Then, an infinite matrix (aij) with

aij ∈ A represents an element in M(A⊗K) if and only if

(i) sup{∥
∑n

ij aij ⊗ eij∥ : n ∈ N} < +∞; and

(ii) for any ε > 0 and l ∈ N, there is an N > 0 such that

∥(en+m − en)(aij)el∥ < ε and ∥el(aij)(en+m − en)∥ < ε

for all m ∈ N and all n > N .

Proof.

⇒. Suppose that (aij) represents x in M(A⊗K). By Theorem 2.5,∑n
ij aij ⊗ eij

sot→ x. Therefore, sup{∥
∑n

ij aij ⊗ eij∥ : n ∈ N} < +∞.

Since {en} is an approximate unit of A ⊗ K, then enxel → xel and
elxen → elx for any l ∈ N as n → ∞. Hence, (ii) holds.

⇐. By Theorem 2.6, we need to show that
∑n

ij aij ⊗ eij is a Cauchy

sequence in the strict topology in M(A ⊗ K). Since {
∑n

ij aij ⊗ eij} is

a bounded sequence, it suffices to show that {(
∑n

ij aij ⊗ eij)el} and

{el(
∑n

ij aij ⊗ eij)} are Cauchy sequences for each el in the norm in

A⊗K. This is exactly the statement of condition (ii). �

Corollary 2.10 ([12, 1.6.1]). Suppose that A is a unital C∗-algebra
and x ∈ (A ⊗ K)′′ with Φ(x) = (xij). Let en =

∑n
1 1 ⊗ eii for

n = 1, 2, . . .. Then x ∈ M(A ⊗ K) if and only if there are two
subsequences {eni} and {emj} with en0 = em0 = 0, such that

∞∑
i=1

(eni − eni−1)x(1− eni+1),

∞∑
j=1

(1− emj+1)x(emj − emj−1) ∈ A⊗K.

Proof. The “if” part follows from Theorem 2.6 (iii). The “only if”
part follows from the fact that {en} is contained in A ⊗ K and is an
approximate unit for A⊗K. �
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Corollary 2.11 ([5, 4.1.9 (ii)]). Let A be a unital C∗-algebra and
(aij) ∈ M∞(A′′). Then, (aij) represents an element of LM(A ⊗ K) if
and only if (aij) is bounded, i.e., represents an element in (A ⊗ K)′′,
each (aij) ∈ A and there is an increasing subsequence {nk} such that
{
∑

(i,j)∈σn
xij ⊗ eij}∞n=1 converges in the norm in A⊗K.

REFERENCES

1. C. Akemann, The general Stone-Weierstrass problem, J. Funct. Anal. 4
(1969), 277–294.

2. C. Akemann and G. Pedersen, Complications of semicontinuity in C∗-algebra
theory, Duke Math. J. 40 (1973), 785–795.

3. C. Akemann, G. Pedersen and J. Tomiyama, Multipliers of C∗-algebras, J.
Funct. Anal. 13 (1973), 277–301.

4. L. Brown, Semicontinuity and multipliers of C∗-algebras, Canad. J. Math.

40 (1988), 865–988.

5. , Close hereditary C∗-algebras and the structure of quasi-multipliers,
preprint, 1985.

6. R. Kadison and J. Ringrose, Fundamentals of the theory of operator algebra,
Volume 1, Academic Press, New York, 1983.

7. H. Lin, The structure of quasi-multipliers of C∗-algebras, Trans. Amer. Math.
Soc. 315 (1989), 147–172.

8. , Support algebras of σ-unital C∗-algebras and their quasi-multipliers,
Trans. Amer. Math. Soc. 325 (1991), 829–854.

9. , Bounded module maps and pure completely positive maps, J. Oper.

Th. 26 (1991), 121–138.

10. , Injective Hilbert C∗-modules, Pacific J. Math. 154 (1992), 131–164.

11. , An introduction to the classification of amenable C∗-algebras,
World Scientific Publishing Co., Inc., River Edge, NJ, 2001.

12. S. Zhang, K-theory, K-skeletion factorizations and bi-variable index in-

dex (x, p), preprint.

Ocean University of China, School of Mathematical Sciences, Qingdao,
266100 China
Email address: weicgqd@163.com

Qufu Normal University, School of Mathematical Sciences, Qufu, Shan-
dong, 273165 China
Email address: lshd008@163.com


