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IF B AND f(B) ARE BROWNIAN
MOTIONS, THEN f IS AFFINE

MICHAEL R. TEHRANCHI

ABSTRACT. It is shown that, if the processes B and
f(B) are both Brownian motions (without a random time
change), then f must be an affine function. As a by-product
of the proof it is shown that the only functions which
are solutions to both the Laplace equation and the eikonal
equation are affine.

1. Statement of results. Suppose that the process B is a Brow-
nian motion and that the function f is affine. Then the process f(B)
is again a Brownian motion. This short note proves the converse: if
both B and f(B) are Brownian motions, then f must be affine.

To be precise, we will use the following definition of Brownian
motion.

Definition 1.1. The continuous process B = (Bt)t≥0 is called an n-
dimensional Brownian motion in a filtration F = (Ft)t≥0 if and only if
there exist an n-dimensional vector b and an n×n non-negative definite
matrix A such that, for all 0 ≤ s ≤ t, the conditional distribution of the
increment Bt−Bs given Fs is normal with mean (t−s)b and covariance
matrix (t− s)A.

A Brownian motion is standard if and only if B0 = 0, b = 0 and A
is the n× n identity matrix.

The main result of this note is the following theorem.

Theorem 1.2. Suppose that B is an n-dimensional Brownian motion
in the filtration F with non-singular diffusion matrix A. Suppose that
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the process f(B) = (f(Bt))t≥0 is an m-dimensional Brownian motion
in the same filtration F for a measurable function f : Rn → Rm. Then
there exist an m× n matrix P and vector q ∈ Rm such that

f(x) = Px+ q

for almost every x.

There are already a number of similar results in the literature. For
instance, Dudley [2] showed that, if B is a one-dimensional standard
Brownian and f : R → R is a continuous function such that the law of
the process f(B) is absolutely continuous with respect to the law of B,
then, necessarily, f(x) = x or f(x) = −x. This implies Theorem 1.2 in
the case n = 1.

When B is an n-dimensional standard Brownian motion, Bernard,
Campbell and Davie [1] studied functions f : Rn → Rm such that
f(B) is a standard Brownian motion up to a random time change. For
instance, it is easy to see by the Dambis, Dubins and Schwarz theorem,
for instance, [4, subsection 3.4.B] that, in the casem = 1, it is sufficient
that f is harmonic with f(0) = 0. In particular, we do not allow for
time change in Theorem 1.2, and hence, more structure is imposed on
the function f .

Letac and Pradines [5] proved that, if f : Rn → Rm is such that
f(x +

√
tZ) has the normal distribution for all x ∈ Rn and t ≥ 0,

where Z is an n-dimensional standard normal random vector, then f is
necessarily equal to an affine function almost everywhere. At first look,
it would seem that Letac and Pradines’ result would imply Theorem 1.2
since, if f(B) is a Brownian motion, then f(Bt) is normally distributed
for all t ≥ 0. However, the implication is not entirely obvious, due to
the following, perhaps surprising, result.

Theorem 1.3. Let B be an n-dimensional standard Brownian motion
with n ≥ 2. There exists a continuous non-linear function g : Rn → Rn

such that the random vectors g(Bt) and Bt have the same law for each
t ≥ 0.

Indeed, the reason that Letac and Pradines’ result does not contra-
dict Theorem 1.3 is that they impose normality for all x ∈ Rn, whereas
the mean is fixed at x = B0 = 0 in Theorem 1.3.
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The idea of the proof of Theorem 1.2 is simply an application of
the following form of Jensen’s inequality: if G is strictly convex and∫
G(x) dµ = G

(∫
x dµ

)
for a probability measure µ, then µ is a point

mass. A similar argument yields a related theorem. We will use the
notation ∥ · ∥ for the Euclidean norm and ⟨·, ·⟩ for the Euclidean inner
product on Rn.

Theorem 1.4. Let D ⊆ Rn be an open, connected set, and suppose
that u : D → R is a classical solution to both the Laplace equation

∆u = 0

and the eikonal equation
∥∇u∥ = 1.

Then, u(x) = ⟨p, x⟩ + q for some constants p ∈ Rn and q ∈ R, where
∥p∥ = 1.

Theorem 1.4 is contained in the recent paper of Garnica, Palmas
and Ruiz-Hernandez [3, Lemma 4.1]. Their proof appeals to methods
of differential geometry, while the proof given below only uses Jensen’s
inequality.

Remark 1.5. There is little loss in assuming that u is a classical
solution to the Laplace equation. Indeed, if u is only assumed to be
locally integrable and a solution to the Laplace equation in the sense
of distributions, then u automatically has an infinitely differentiable
version which is, in particular, a classical solution to the Laplace
equation. See [6, subsection 9.3].

2. Proofs. In this section, we prove the results presented above.

Proof of Theorem 1.2. Since every component of a vector-valued
Brownian motion is a scalar Brownian motion, it is sufficient to consider
the case m = 1.

First, we show that f is smooth. Now, since the conditional
distribution of f(Bt) given F0 is normal, we can conclude that

E
[
|f(Bt)| | F0

]
< ∞
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almost surely for all t ≥ 0. In particular, we have the growth bound

(∗) x 7−→ f(x)e−ϵ∥x∥2

is Lebesgue integrable on Rn

for all ϵ > 0. Now, since f(B) is a Brownian motion, there is a constant
µ ∈ R such that

E[f(Bt) | Fs] = (t− s)µ+ f(Bs),

and hence, for almost every x, we have the representation

f(x) = −τµ+

∫
f(y)ϕ(τ, x, y) dy,

where

ϕ(τ, x, y) = (2πτ)−n/2 det(A)−1/2 exp

(
− 1

2τ
⟨y−bτ−x,A−1(y−bτ−x)⟩

)
is the Brownian transition density. However, by the boundedness
property (∗) and the smoothness of x 7→ ϕ(t, x, y) combined with the
dominated convergence theorem, the function f has a differentiable
version. Furthermore, its gradient ∇f has the representation

∇f(x) =

∫
∇f(y)ϕ(τ, x, y) dy

and also satisfies the boundedness property (∗). By iterating this
argument, we see that f is infinitely differentiable.

Now, we show that f must satisfy an eikonal equation. Note that
Itô’s formula states that

df(Bt) = ⟨∇f(Bt), dBt⟩+
1

2
∆f(Bt) dt.

Since f(B) is a Brownian motion, the quadratic variation is

[f(B)]t =

∫ t

0

∥∇f(Bs)∥2ds = σ2t

for some constant σ ≥ 0. Hence, ∇f is a solution of the eikonal equation

∥∇f∥ = σ

almost everywhere. However, since f is smooth, it solves the eikonal
equation everywhere.
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Now, note that

σ2 = ∥∇f(x)∥2 =

∫
∥∇f(y)∥2ϕ(τ, x, y) dy.

Since the squared Euclidean norm is strictly convex, Jensen’s inequality
states that, for every x, there exists a vector px ∈ Rn, possibly
dependent upon x, such that ∇f(y) = px almost everywhere y ∈ Rn.
Since ∇f is continuous, we must have ∇f(y) = p for all y and for some
constant vector p. Hence, f(y) = ⟨p, y⟩+ q, as claimed. �

We now proceed to the proof of Theorem 1.4. It follows the same
pattern but differs in a few details which we spell out for completeness.

Proof of Theorem 1.4. We will show that there is a unit vector p
such that ∇u(x) = p everywhere in D. Below, we will use the notation
B = {x ∈ Rn : ∥x∥ < 1} to denote the open unit ball in Rn, and hence,
x+ rB denotes the ball of radius r ≥ 0 centered at the point x ∈ Rn.

Since u is harmonic, it is well known again, see [6, subsection 9.3]
that u has the mean-value property: for every constant r > 0 such that
x+ rB ⊆ D, we have

u(x) =
1

rnV

∫
rB

u(x+ y) dy,

where

V =
πn/2

Γ(n/2)

denotes the Lebesgue measure of the unit ball B. Since u is continu-
ously differentiable in D, the gradient ∇u is bounded on compact sets;
thus, the dominated convergence theorem allows us to differentiate both
sides of the above equation, yielding

∇u(x) =
1

rnV

∫
rB

∇u(x+ y) dy.

Now, for each x ∈ Rn, note that

1 = ∥∇u(x)∥2 =
1

rnV

∫
rB

∥∇u(x+ y)∥2dy.

Again, since the squared Euclidean norm is strictly convex, Jensen’s
inequality states that there is a vector px, possibly dependent upon x,
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such that ∇u(z) = px almost everywhere z ∈ x + rB and ∥px∥ = 1.
Since ∇u is continuous, we must have ∇u(z) = px for all z such that
∥x− z∥ ≤ r.

Furthermore, fix two points x and x′ in D. Since D is open and
connected, there exists a path C ⊆ D connecting them. Hence, there
exist a finite number of points x = x1, . . . , xN = x′ ∈ D and radii
r1, . . . , rN > 0 such that {xi + riB}Ni=1 is a cover of the compact set
C ⊆ D. In particular, px = px′ , and hence, ∇u is constant on D, as
claimed. �

Lastly, we construct an example of the function g claimed to exist
in Theorem 1.3.

Proof of Theorem 1.3. Let Sn−1 = {x ∈ Rn : ∥x∥ = 1} be the
unit (n − 1)-dimensional sphere, and let λ be the uniform probability
measure on Sn−1. Let h : Sn−1 → Sn−1 be a continuous λ-preserving
transformation. Finally, let g(0) = 0 and

g(x) = ∥x∥ h

(
x

∥x∥

)
,

when x ̸= 0. Fix a bounded and measurable function φ : Rn → R and
t ≥ 0. Using the assumption that the transformation h preserves the
measure λ, we obtain

E[φ ◦ g(Bt)] =

∫
Rn

φ

[√
t∥x∥h

(
x

∥x∥

)]
e−∥x∥2/2

(2π)n/2
dx

=

∫ ∞

0

∫
Sn−1

φ[
√
trh(u)]

rn−1e−r2/2

2n/2−1Γ(n/2)
λ(du) dr

=

∫ ∞

0

∫
Sn−1

φ(
√
tru)

rn−1e−r2/2

2n/2−1Γ(n/2)
λ(du) dr

=

∫
Rn

φ(
√
tx)

e−∥x∥2/2

(2π)n/2
dx

= E[φ(Bt)],

where we have used the polar coordinates x = ru with r ≥ 0 and u ∈
Sn−1. Hence, g(Bt) and Bt have the same law for each t ≥ 0.
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In order to show that there exists at least one function h which
is non-linear, it is sufficient to consider the case n = 2 since we
may restrict attention to the first two coordinates of B. Now, let
h : S1 → S1 be defined by h(cos(θ), sin(θ)) = (cos(2θ), sin(2θ)). It is
well known that this transformation h is measure preserving. Explicitly,
the function g in this case is:

g(x1, x2) =

(
x2
1 − x2

2√
x2
1 + x2

2

,
2x1x2√
x2
1 + x2

2

)
,

when x ̸= 0. �
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