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NEVANLINNA UNIQUENESS
OF LINEAR DIFFERENCE POLYNOMIALS

NAN LI, RISTO KORHONEN AND LIANZHONG YANG

ABSTRACT. In this paper, we investigate shared value
problems related to an entire function f(z) of hyper-order
less than one and its linear difference polynomial L(f) =∑k

i=1 aif(z + ci), where ai, ci ∈ C. We give sufficient
conditions in terms of weighted value sharing and truncated
deficiencies, which imply that L(f) ≡ f .

1. Introduction. Difference Nevanlinna theory has emerged as a
result of recent interest in value distribution and growth of meromor-
phic solutions of difference equations, see, e.g., [2, 5]. Resulting de-
velopment of new tools in value distribution theory suited to study
solutions of difference equations have enabled the study of the general
value distribution properties of meromorphic functions from a new per-
spective. A new active direction of study has been uniqueness problems
of meromorphic functions and their shifts, see, e.g., [1, 8, 9, 11, 12].

Here, and throughout the rest of this paper, a meromorphic function
is assumed to be meromorphic in the whole complex plane. The basic
notions of Nevanlinna theory of meromorphic functions are assumed
to be known to the reader, see e.g., [7, 10, 15]. An exception to the
standard notation is that S(r, f) is defined to be any quantity of the
growth o(T (r, f)) as r → ∞, outside of an exceptional set of finite
logarithmic measure. This differs from the usual convention, where the
exceptional set is assumed to be of finite linear measure. The family of
all small meromorphic functions with respect to f , i.e., of the growth

S(r, f), is denoted by S(f). Moreover, Ŝ(f) = S(f) ∪ {∞}.
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Heittokangas, et al., proved that, if a finite-order meromorphic
function f(z) and f(z + η) share three distinct periodic functions

aj ∈ Ŝ(f), j = 1, 2, 3, with period η CM, then f is a periodic function
with period η, see [8, Theorem 2.1 (a)]. They also showed that the
3 CM assumption can be replaced by 2 CM + 1 IM, and the same
conclusion holds, see [9, Theorem 2]. Chen and Yi [1] considered the
case where f(z) and ∆f(z) share three distinct values a, b,∞ CM as
follows.

Theorem A ([1]). Let f(z) be a transcendental meromorphic function
such that its order of growth σ(f) is not an integer or infinite, and let
η ∈ C be a constant such that f(z+η) ̸≡ f(z). If ∆f(z) = f(z+η)−f(z)
and f(z) share three distinct finite values a, b,∞ CM, then f(z + η) ≡
2f(z).

In the case of only one CM value, but with the function f being
entire and additionally having a finite Borel exceptional value, Chen
and Yi obtained the following theorem.

Theorem B ([1]). Let f(z) be a finite order transcendental entire
function which has a finite Borel exceptional value a, and let η ∈ C be
a constant such that f(z + η) ̸≡ f(z). If ∆f(z) = f(z + η)− f(z) and
f(z) share the value a CM, then a = 0 and

f(z + η)− f(z)

f(z)
= A,

where A is a nonzero constant.

An immediate question which arises upon comparing the aforemen-
tioned results of Heittokangas, et al., to Theorems A and B is, “can the
CM condition in these theorems be weakened to IM?” Another ques-
tion is, “can we extend these results in a natural way to general linear
operators, rather than just the difference ∆f(z) or the shift operator?”

The purpose of this paper is to study these problems from the point
of view of weighted value sharing. In order to explain exactly what we
intend to do, first we need to introduce some additional notation.
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Let l be a non-negative integer or infinite. Denote by El(a, f) the
set of all a-points of f where an a-point of multiplicity m is counted
m times if m ≤ l and l + 1 times if m > l. If El(a, f) = El(a, g), we
say that f and g share (a, l). It is easy to see that, if f and g share
(a, l), then f and g share (a, p) for 0 ≤ p ≤ l. Also, we note that f
and g share the value a IM or CM if and only if f and g share (a, 0) or
(a,∞), respectively.

Let p be a positive integer and a ∈ C∪{∞}. We useNp)(r, 1/(f − a))
to denote the counting function of the zeros of f − a, whose multiplici-
ties are not greater than p, N(p+1(r, 1/(f − a)) to denote the counting
function of the zeros of f−a whose multiplicities are not less than p+1,
and we use Np) (r, 1/(f − a)) and N (p+1(r, 1/(f − a)) to denote their
corresponding reduced counting functions (ignoring multiplicities), re-
spectively. We use Ep)(a, f) (E(p+1(a, f)) to denote the set of zeros of
f − a with multiplicities ≤ p (≥ p+ 1) (ignoring multiplicity), respec-
tively. We also use Np(r, 1/(f − a)) to denote the counting function of
the zeros of f − a where a zero of multiplicity m is counted m times if
m ≤ p and p times if m > p. Then, by defining the truncated deficiency
as

δp(a, f) = 1− lim sup
r→+∞

Np(r, 1/(f − a))

T (r, f)
,

it follows that δp(a, f) ≥ δ(a, f), where δ(a, f) is the usual Nevanlinna
deficiency of f .

Our results give sufficient conditions in terms of weighted value
sharing and truncated deficiencies for a transcendental entire function
of relatively slow growth to be mapped to itself by a linear difference
operator.

Theorem 1.1. Let f(z) be a transcendental entire function with hyper-
order less than 1, and let aj , cj ∈ C be constants such that L(f) :=∑k

j=1 ajf(z + cj) ̸≡ 0. Assume that f(z)− 1 and L(f)− 1 share value

(0, l). Then,

(1.1) L(f) ≡ f,

if one of the following assumptions holds:
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(i) l ≥ 2, and

(1.2) δ2(0, f) + δ(0, f) + δ(1, f) > 1;

(ii) l = 1, and

(1.3)
1

2
δ2(0, f) +

3

4
δ(0, f) +

1

2
δ(1, f) >

3

4
;

(iii) l = 0, i.e., f − 1 and L(f)− 1 share the value 0 IM, and

(1.4) δ2(0, f) + 3δ(0, f) + Θ(0, f) + δ(1, f) > 4.

In Theorem B, it was assumed that a = 0 is a Borel exceptional value
of an entire function f , which immediately implies that f is of regular
growth. Thus, for any 0 < 2ε < ρ − λ, it follows by the definition of
Borel exceptional value that

N

(
r,

1

f

)
≤ N2

(
r,

1

f

)
≤ N

(
r,

1

f

)
< rλ+ε < rρ−ε = o(T (r, f)),

where λ is the exponent of convergence of the zeros of f(z), and ρ is
the order of f(z). However, this implies that

δ2(0, f) = δ(0, f) = Θ(0, f) = 1,

which means that, in fact, all of the conditions (1.2), (1.3) and (1.4)
are satisfied, provided that a = 0 is a Borel exceptional value of f .

Equation (1.1) also implies that f is a solution to a linear difference
equation with constant coefficients. Therefore, the exact form of f can
be, at least in principle, determined by using the characteristic equation
for linear difference equations.

The remaining two theorems give a different set of sufficient condi-
tions for the same assertion.

Theorem 1.2. Let f and L(f) ( ̸≡ 0) be defined as in Theorem 1.1.
Assume that f − 1 and L(f) − 1 share value (0, l) and E(i(0, f) ⊆
E(i(0, L(f)), i ≥ 3. Then,

L(f) ≡ f,

if one of the following assumptions holds:
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(i) l ≥ 2, and

(1.5) 2δ2(0, f) + δ(1, f) > 1;

(ii) l = 1, and

(1.6)
5

4
δ2(0, f) +

1

2
δ(1, f) >

3

4
;

(iii) l = 0, i.e., f − 1 and L(f)− 1 share the value 0 IM, and

(1.7) 2δ2(0, f) +
1

2
Θ(0, f) +

1

2
δ(1, f) > 2.

If, instead of assuming that i ≥ 3 as in Theorem 1.2, we consider the
more general case i ≥ 2, we must impose slightly stronger conditions
to obtain the same assertion.

Theorem 1.3. Let f and L(f)( ̸≡ 0) be defined as in Theorem 1.1.
Assume that f − 1 and L(f)− 1 share the value (0, l) and E(i(0, f) ⊆
E(i(0, L(f)), i ≥ 2. Then,

L(f) ≡ f,

if one of the following assumptions holds:

(i) l ≥ 2, and

(1.8) 2δ2(0, f) + δ(1, f) > 1;

(ii) l = 1, and

(1.9) δ2(0, f) +
1

4
Θ(0, f) +

1

2
δ(1, f) >

3

4
;

(iii) l = 0, i.e., f − 1 and L(f)− 1 share the value 0 IM, and

(1.10) δ2(0, f) +
3

2
Θ(0, f) +

1

2
δ(1, f) > 2.

2. Lemmas. A difference analogue of the lemma on the logarithmic
derivative for finite-order meromorphic functions was proved indepen-
dently by Halburd and Korhonen [3, Theorem 2.1], [4, Theorem 2.1]
and Chiang and Feng [2, Theorem 2.4, Corollary 2.6].
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The next lemma due to Halburd, Korhonen and Tohge [6] is an
extension of these results to the case of hyper-order less than one.

Lemma 2.1 ([6]). Let f be a non-constant meromorphic function,
ε > 0 and c ∈ C. If ς(f) = ς < 1, then

m

(
r,
f(z + c)

f(z)

)
= o

(
T (r, f)

r1−ς−ε

)
,

for all r outside of a set of finite logarithmic measure.

Suppose that f and g are two non-constant meromorphic functions
such that f and g share the value 1 IM. Let z0 be a 1-point of f with
order p and simultaneously a 1-point of g with order q. We denote
by NL(r, 1/(f − 1)) the counting function of those 1-points of f where

p > q, by N
1)
E (r, 1/(f − 1)) the counting function of those 1-points of f

where p = q = 1, and by N
(2
E (r, 1/(f−1)) the counting function of those

1-points of f where p = q ≥ 2. Each point in these functions is counted

only once. Similarly, we can define NL(r, 1/(g − 1)), N
1)
E (r, 1/(g − 1))

and N
(2
E (r, 1/(g − 1)).

With this notation in hand, we can state the following auxiliary
result.

Lemma 2.2 ([14]). Let f and g be two nonconstant meromorphic
functions, and let

(2.1) ∆ =

(
f ′′

f ′ − 2f ′

f − 1

)
−
(
g′′

g′
− 2g′

g − 1

)
.

If f and g share 1 IM and ∆ ̸≡ 0, then

(2.2) N
1)
E

(
r,

1

f − 1

)
≤ N(r,∆) + S(r, f) + S(r, g).

The following basic inequalities, by [6, Lemma 8.3], are frequently
used in value distribution theory for differences.
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Lemma 2.3. Let f(z) be a non-constant meromorphic function with
hyper-order less than 1, c ∈ C. Then,

N

(
r,

1

f(z + c)

)
≤ N

(
r,

1

f(z)

)
+ S(r, f),

N(r, f(z + c)) ≤ N(r, f(z)) + S(r, f),

N

(
r,

1

f(z + c)

)
≤ N

(
r,

1

f(z)

)
+ S(r, f),

N(r, f(z + c)) ≤ N(r, f(z)) + S(r, f).

The next lemmas and remark are needed in the proofs of Theo-
rems 1.1–1.3.

Lemma 2.4. Let f be a non-constant meromorphic function with
hyper-order less than 1, and let L(f) ( ̸≡ 0) be defined as in Theorem 1.1.
Then,

(2.3) N

(
r,

1

L(f)

)
≤ T (r, L(f))− T (r, f) +N

(
r,

1

f

)
+ S(r, f),

and

(2.4) N

(
r,

1

L(f)

)
≤ N

(
r,

1

f

)
+ (k − 1)N(r, f(z)) + S(r, f).

Proof. From Lemma 2.1, we have

m

(
r,

1

f

)
= m

(
r,
L(f)

f
· 1

L(f)

)
≤ m

(
r,

1

L(f)

)
+ S(r, f).

By the first fundamental theorem, we have

T (r, f)−N

(
r,

1

f

)
≤ T (r, L(f))−N

(
r,

1

L(f)

)
+ S(r, f).

Thus, we obtain

N

(
r,

1

L(f)

)
≤ T (r, L(f))− T (r, f) +N

(
r,

1

f

)
+ S(r, f).

This proves (2.3).
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By using Lemmas 2.1 and 2.3, we have

T (r, L(f)) = m(r, L(f)) +N(r, L(f))

≤ m

(
r,
L(f)

f

)
+m(r, f) +

k∑
j=1

N(r, ajf(z + cj))

≤ m(r, f) + kN(r, f) + S(r, f)

≤ T (r, f) + (k − 1)N(r, f) + S(r, f).

From this and (2.3), we obtain (2.4). Thus, Lemma 2.4 is proved. �

Lemma 2.5. Let f and L(f) ( ̸≡ 0) be defined as in Theorem 1.1.
Suppose that

(2.5) E(i(0, f) ⊆ E(i(0, L(f)), i ≥ 3.

Then,

(2.6) N2

(
r,

1

L(f)

)
≤ T (r, L(f))− T (r, f) +N2

(
r,

1

f

)
+ S(r, f),

and

(2.7) N2

(
r,

1

L(f)

)
≤ N2

(
r,

1

f

)
+ S(r, f).

Proof. From (2.3), we have

N2

(
r,

1

L(f)

)
+

∞∑
j=3

N (3

(
r,

1

L(f)

)

≤ T (r, L(f))− T (r, f) +N2

(
r,

1

f

)
+

∞∑
j=3

N (3

(
r,

1

f

)
+ S(r, f).
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Since E(i(0, f) ⊆ E(i(0, L(f)), i ≥ 3, we have

N2

(
r,

1

L(f)

)
≤ T (r, L(f))− T (r, f) +N2

(
r,

1

f

)
+

∞∑
j=3

N (3

(
r,

1

f

)
−

∞∑
j=3

N (3

(
r,

1

L(f)

)
+ S(r, f)

≤ T (r, L(f))− T (r, f) +N2

(
r,

1

f

)
+ S(r, f).

Thus, (2.6) holds. By the same arguments as above, we obtain (2.7)
from (2.4). �

Remark 2.6. Suppose (2.5) also holds for i = 2, i.e., (2.5) holds for
i ≥ 2. Then, we have the following inequalities:

N

(
r,

1

L(f)

)
≤ T (r, L(f))− T (r, f) +N

(
r,

1

f

)
+ S(r, f)

and

N

(
r,

1

L(f)

)
≤ N

(
r,

1

f

)
+ S(r, f).

3. Proof of Theorem 1.1. From the conditions of Theorem 1.1,
we know that f and L(f) share (1, l). From the proof of Lemma 2.4,
we have

(3.1) T (r, L(f)) = O(T (r, f)) + S(r, f).

Let ∆ be defined by (2.1). We discuss the following two cases.

Case 1. ∆ ≡ 0. By integration, we obtain from (2.1) that

(3.2)
1

f − 1
=

A

L(f)− 1
+B,

where A ( ̸= 0) and B are constants. From (3.2), we get that f and
L(f) share 1 CM.
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From (3.2), we also have

f =
(B + 1)L(f) + (A−B − 1)

BL(f) + (A−B)
,(3.3)

L(f) =
(B −A)f + (A−B − 1)

Bf − (B + 1)
.

We discuss the following three subcases.

Subcase 1.1. Suppose that B ̸= 0,−1. From (3.3) and L(f) entire,
we have that (B + 1)/B is a Picard value of f . From this and the
second fundamental theorem, we have

T (r, f) ≤ N

(
r,

1

f

)
+N

(
r,

1

f − ((B + 1)/B)

)
+ S(r, f)(3.4)

≤ N

(
r,

1

f

)
+ S(r, f),

and thus,

T (r, f) ≤ N

(
r,

1

f

)
+ S(r, f) ≤ N2

(
r,

1

f

)
+ S(r, f)

≤ N

(
r,

1

f

)
+ S(r, f) ≤ T (r, f) + S(r, f).

By the definition of deficiency, we have that δ(0, f) = δ2(0, f) =
Θ(0, f) = 0, which contradicts assumptions (1.2), (1.3), (1.4).

Subcase 1.2. Suppose that B = 0. From (3.3), we have

(3.5) f =
L(f) +A− 1

A
, L(f) = Af − (A− 1).

If A ̸= 1, from (3.5), we obtain

N

(
r,

1

f − (A− 1)/A

)
= N

(
r,

1

L(f)

)
.
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From this, Lemma 2.4 and the second fundamental theorem, we have

2T (r, f) ≤ N

(
r,

1

f

)
+N

(
r,

1

f − A−1
A

)
+N

(
r,

1

f − 1

)
+ S(r, f)

≤ N

(
r,

1

f

)
+N

(
r,

1

L(f)

)
+N

(
r,

1

f − 1

)
+ S(r, f)

≤ 2N

(
r,

1

f

)
+N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+ S(r, f),

which gives that

(3.6) Θ(0, f) + δ(0, f) + δ(1, f) ≤ 1.

The definition of deficiency then implies

(3.7) Θ(0, f) ≥ δ2(0, f) ≥ δ(0, f).

Combining this with (3.6) and (3.7), we have

δ2(0, f) + δ(0, f) + δ(1, f) ≤ Θ(0, f) + δ(0, f) + δ(1, f) ≤ 1,

when l ≥ 2; and

1

2
δ2(0, f) +

3

4
δ(0, f) +

1

2
δ(1, f) ≤ 1

2
Θ(0, f) +

3

4
δ(0, f) +

1

2
δ(1, f)

<
3

4
Θ(0, f) +

3

4
δ(0, f) +

3

4
δ(1, f)

≤ 3

4
,

when l = 1; as well as

δ2(0, f) + 3δ(0, f) + Θ(0, f) + δ(1, f)

≤ Θ(0, f) + 3δ(0, f) + Θ(0, f) + δ(1, f)

< 3Θ(0, f) + 3δ(0, f) + 3δ(1, f)

≤ 3,

when l = 0. This contradicts assumptions (1.2), (1.3) and (1.4). Thus,
A = 1. From (3.5), we have f ≡ L(f).

Subcase 1.3. Supposing that B = −1, it follows from (3.3) that

(3.8) f =
A

−L(f) + (A+ 1)
, L(f) =

(A+ 1)f −A

f
.
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If A ̸= −1, we obtain from (3.8) that

N

(
r,

1

f − (A/(A+ 1))

)
= N

(
r,

1

L(f)

)
.

By the same reasoning as discussed in Subcase 1.2, we obtain a
contradiction. Hence, A = −1. From (3.8), we obtain

(3.9) f · L(f) ≡ 1.

Since f is entire, from (3.9), we get that 0 is a Picard exceptional value
of f . Thus, from Lemma 2.1, we have

2T (r, f) = T

(
r,

1

f2

)
= m

(
r,
L(f)

f

)
+N

(
r,
L(f)

f

)
= S(r, f),

which is a contradiction.

Case 2. ∆ ̸≡ 0. By Lemma 2.2, we know that (2.2) holds. By the
second fundamental theorem, we obtain

T (r, f) + T (r, L(f))(3.10)

≤ N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+N

(
r,

1

L(f)

)
+N

(
r,

1

L(f)− 1

)
−N0

(
r,

1

f ′

)
−N0

(
r,

1

(L(f))′

)
+ S(r, f)

and

N

(
r,

1

f − 1

)
+N

(
r,

1

L(f)− 1

)(3.11)

= 2N
1)
E

(
r,

1

L(f)− 1

)
+ 2NL

(
r,

1

f − 1

)
+ 2NL

(
r,

1

L(f)− 1

)
+ 2N

(2
E

(
r,

1

f − 1

)
+ S(r, f)

≤ N(r,∆) +N
1)
E

(
r,

1

L(f)− 1

)
+ 2NL

(
r,

1

f − 1

)
+ 2NL

(
r,

1

L(f)− 1

)
+ 2N

(2
E

(
r,

1

f − 1

)
+ S(r, f)
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≤ N (2

(
r,

1

f

)
+N (2

(
r,

1

L(f)

)
+ 3NL

(
r,

1

f − 1

)
+ 3NL

(
r,

1

L(f)− 1

)
+N

1)
E

(
r,

1

L(f)− 1

)
+ 2N

(2
E

(
r,

1

f − 1

)
+N0

(
r,

1

f ′

)
+N0

(
r,

1

(L(f))′

)
+ S(r, f),

where N0(r, (1/f
′)) denotes the counting function corresponding to the

zeros of f ′, which are not the zeros of f and f−1, and N0(r, 1/(L(f))
′)

denotes the counting function corresponding to the zeros of (L(f))′,
which are not the zeros of L(f) and L(f)− 1.

Subcase 2.1. l ≥ 2. It is easy to see that

3NL

(
r,

1

f − 1

)
+ 3NL

(
r,

1

L(f)− 1

)
(3.12)

+ 2N
(2
E

(
r,

1

f − 1

)
+N

1)
E

(
r,

1

L(f)− 1

)
≤ N

(
r,

1

f − 1

)
+ S(r, f).

From (3.10), (3.11) and (3.12), we have

T (r, f) + T (r, L(f)) ≤ N2

(
r,

1

f

)
+N2

(
r,

1

L(f)

)
+N

(
r,

1

f − 1

)
+ S(r, f).

Thus, from (2.3), we obtain that

T (r, f) + T (r, L(f)) ≤ N2

(
r,

1

f

)
+ T (r, L(f))− T (r, f)

+N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+ S(r, f).

Therefore, we have

2T (r, f) ≤ N2

(
r,

1

f

)
+N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+ S(r, f),

which contradicts (1.2).
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Subcase 2.2. l = 1. Now

2NL

(
r,

1

L(f)− 1

)
+ 3NL

(
r,

1

f − 1

)
(3.13)

+ 2N
(2
E

(
r,

1

f − 1

)
+N

1)
E

(
r,

1

L(f)− 1

)
≤ N

(
r,

1

f − 1

)
+ S(r, f),

and, by Lemmas 2.1, 2.4 and (3.1),

NL

(
r,

1

L(f)− 1

)
≤ 1

2
N

(
r,

L(f)

(L(f))′

)
≤ 1

2
T

(
r,

L(f)

(L(f))′

)
=

1

2
T

(
r,
(L(f))′

L(f)

)
+O(1)

≤ 1

2
N

(
r,
(L(f))′

L(f)

)
+ S(r, L(f)) +O(1)

≤ 1

2
N

(
r,

1

L(f)

)
+ S(r, f) ≤ 1

2
N

(
r,

1

f

)
+ S(r, f).

By combining the above inequalities, and using the same method as in
Subcase 2.1, we get

2T (r, f) ≤ N2

(
r,

1

f

)
+

3

2
N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+ S(r, f),

which contradicts (1.3).

Subcase 2.3. l = 0. Then,

NL

(
r,

1

L(f)− 1

)
+ 2NL

(
r,

1

f − 1

)
(3.14)

+ 2N
(2
E

(
r,

1

f − 1

)
+N

1)
E

(
r,

1

L(f)− 1

)
≤ N

(
r,

1

f − 1

)
+ S(r, f).

From Lemmas 2.1, 2.4 and (3.1), we have

NL

(
r,

1

L(f)− 1

)
≤ N

(
r,

L(f)

(L(f))′

)
≤ N

(
r,
(L(f))′

L(f)

)
+ S(r, f)
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≤ N

(
r,

1

L(f)

)
+ S(r, f) ≤ N

(
r,

1

f

)
+ S(r, f),

and thus,

(3.15) 2NL

(
r,

1

L(f)− 1

)
+NL

(
r,

1

f − 1

)
≤ 2N

(
r,

1

f

)
+N

(
r,

1

f

)
+ S(r, f).

Combining (3.10), (3.11) and (3.14) with (3.15), we have

T (r, f) + T (r, L(f)) ≤ N2

(
r,

1

f

)
+N2

(
r,

1

L(f)

)
+N

(
r,

1

f − 1

)(3.16)

+ 2N

(
r,

1

f

)
+N

(
r,

1

f

)
+ S(r, f).

From Lemma 2.4, it follows that

N2

(
r,

1

L(f)

)
≤ T (r, L(f))− T (r, f) +N

(
r,

1

f

)
+ S(r, f).

Substituting this into (3.16), we have

2T (r, f) ≤ N2

(
r,

1

f

)
+ 3N

(
r,

1

f

)
+N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+ S(r, f),

which contradicts (1.4).

The proof has now been completed. �

4. Proof of Theorem 1.2. From the conditions of Theorem 1.1,
we have that f and L(f) share (1, l) and (3.1). Let ∆ be defined by
(2.1). We discuss the following two cases.

Case 1. ∆ ̸≡ 0. By a similar method as used in the proof of
Theorem 1.1, we know that (2.2), (3.10) and (3.11) hold.

Subcase 1.1. l ≥ 2. We have

T (r, f)+T (r, L(f))≤N2

(
r,

1

f

)
+N2

(
r,

1

L(f)

)
+N

(
r,

1

f − 1

)
+S(r, f).
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Thus, from Lemma 2.5, we obtain that

T (r, f) + T (r, L(f)) ≤ N2

(
r,

1

f

)
+ T (r, L(f))− T (r, f)

+N2

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+ S(r, f).

Therefore, we have

2T (r, f) ≤ 2N2

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+ S(r, f),

which contradicts (1.5).

Subcase 1.2. l = 1. Noting that (3.13) holds, by Lemmas 2.1, 2.5
and (3.1), we have

NL

(
r,

1

L(f)− 1

)
≤ 1

2
N

(
r,

L(f)

(L(f))′

)
≤ 1

2
N

(
r,
(L(f))′

L(f)

)
+ S(r, f)

≤ 1

2
N

(
r,

1

L(f)

)
+S(r, f)=

1

2
N1

(
r,

1

L(f)

)
+S(r, f)

≤ 1

2
N2

(
r,

1

L(f)

)
+S(r, f) ≤ 1

2
N2

(
r,

1

f

)
+ S(r, f).

Using the same method as in Subcase 2.1, we obtain

2T (r, f) ≤ 5

2
N2

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+ S(r, f),

which contradicts (1.6).

Subcase 1.3. l = 0. Noting that (3.14) holds, from Lemmas 2.1, 2.5
and (3.1), we have

NL

(
r,

1

L(f)− 1

)
≤ N

(
r,

L(f)

(L(f))′

)
≤ N

(
r,
(L(f))′

L(f)

)
+ S(r, f)

≤ N

(
r,

1

L(f)

)
+ S(r, f) = N1

(
r,

1

L(f)

)
+ S(r, f)

≤ N2

(
r,

1

L(f)

)
+ S(r, f) ≤ N2

(
r,

1

f

)
+ S(r, f).
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Thus, we have

2NL

(
r,

1

L(f)− 1

)
+NL

(
r,

1

f − 1

)
(4.1)

≤ 2N2

(
r,

1

f

)
+N

(
r,

1

f

)
+ S(r, f).

Combining (3.10), (3.11) and (3.14) with (4.1), we have

(4.2) T (r, f) + T (r, L(f)) ≤ N2

(
r,

1

f

)
+N2

(
r,

1

L(f)

)
+N

(
r,

1

f − 1

)
+ 2N2

(
r,

1

f

)
+N

(
r,

1

f

)
+ S(r, f).

From Lemma 2.5, we have

N2

(
r,

1

L(f)

)
≤ T (r, L(f))− T (r, f) +N2

(
r,

1

f

)
+ S(r, f).

Substituting this into (4.2), we have

2T (r, f) ≤ 4N2

(
r,

1

f

)
+N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+ S(r, f),

which contradicts (1.7).

Case 2. ∆ ≡ 0. By following a similar method as in the proof of
Theorem 1.1, we have that (3.2) and (3.3) hold, and that f and g share
1 CM. We discuss the following three subcases.

Subcase 2.1. Suppose that B ̸= 0,−1. Following the same method
as Theorem 1.1, Subcase 1.1, we obtain a contradiction.

Subcase 2.2. Suppose that B = 0. Then, we have that (3.5) holds.
If A ̸= 1, from (3.5), we obtain

N

(
r,

1

f − ((A− 1)/A)

)
= N

(
r,

1

L(f)

)
.

From this, Lemma 2.5 and the second fundamental theorem, we have

2T (r, f)≤N

(
r,

1

f

)
+N

(
r,

1

f − ((A− 1)/A)

)
+N

(
r,

1

f − 1

)
+S(r, f)

≤ N

(
r,

1

f

)
+N

(
r,

1

L(f)

)
+N

(
r,

1

f − 1

)
+ S(r, f)
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≤ N

(
r,

1

f

)
+N2

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+ S(r, f),

which contradicts assumptions (i)–(iii) of Theorem 1.2. Thus, A = 1.
From (3.5), we have f ≡ L(f).

Subcase 2.3. Suppose that B = −1. By the same reasoning as in
Subcase 2.2, we obtain a contradiction.

This completes the proof of Theorem 1.2. �

5. Proof of Theorem 1.3. The method of the proof is similar to
that used for proving Theorem 1.2. Therefore, we only give a draft
proof of Theorem 1.3.

From the conditions of Theorem 1.3, we have that f and L(f) share
(1, l) and (3.1). Let ∆ be defined as in (2.1). We discuss the following
two cases.

Case 1. ∆ ̸≡ 0. By a similar method as that used in the proof of
Theorem 1.1, we know that (2.2), (3.10) and (3.11) hold.

Subcase 1.1. l ≥ 2. By a similar method as that used in the proof of
Theorem 1.2, Subcase 1.1, we obtain a contradiction.

Subcase 1.2. l = 1. Noting that (3.13) holds by Lemma 2.1, Remark
2.6 and (3.1), we have

NL

(
r,

1

L(f)− 1

)
≤ 1

2
N

(
r,

L(f)

(L(f))′

)
≤ 1

2
N

(
r,
(L(f))′

L(f)

)
+ S(r, f)

≤ 1

2
N

(
r,

1

L(f)

)
+ S(r, f) ≤ 1

2
N

(
r,

1

f

)
+ S(r, f).

Using the same method as in Theorem 1.1, Subcase 2.1, we obtain

2T (r, f) ≤ 2N2

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+

1

2
N

(
r,

1

f

)
+ S(r, f),

which contradicts (1.9).

Subcase 1.3. l = 0. Noting that (3.14) holds, from Lemma 2.1,
Remark 2.6 and (3.1), we have

NL

(
r,

1

L(f)− 1

)
≤ N

(
r,

L(f)

(L(f))′

)
≤ N

(
r,
(L(f))′

L(f)

)
+ S(r, f)
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≤ N

(
r,

1

L(f)

)
+ S(r, f) ≤ N

(
r,

1

f

)
+ S(r, f)

and

NL

(
r,

1

f − 1

)
≤ N

(
r,

f

f ′

)
≤ N

(
r,
f ′

f

)
+S(r, f) ≤ N

(
r,

1

f

)
+S(r, f).

Thus, we have

(5.1) 2NL

(
r,

1

L(f)− 1

)
+NL

(
r,

1

f − 1

)
≤ 3N

(
r,

1

f

)
+ S(r, f).

Combining (3.10), (3.11) and (3.14) with (5.1), it follows that

T (r, f) + T (r, L(f)) ≤ N2

(
r,

1

f

)
+N2

(
r,

1

L(f)

)
(5.2)

+N

(
r,

1

f − 1

)
+ 3N

(
r,

1

f

)
+ S(r, f).

Lemma 2.5 then yields

N2

(
r,

1

L(f)

)
≤ T (r, L(f))− T (r, f) +N2

(
r,

1

f

)
+ S(r, f).

Substituting this into (5.2), we have

2T (r, f) ≤ 2N2

(
r,

1

f

)
+ 3N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+ S(r, f),

which contradicts (1.10).

Case 2. ∆ ≡ 0. By following a method similar to the proof of Theo-
rem 1.1, we have that (3.2) and (3.3) hold, and that f and g share
1 CM. We discuss the following three subcases.

Subcase 2.1. Suppose that B ̸= 0,−1. Following the same method
as in the Proof of Theorem 1.1, Subcase 1.1, we obtain a contradiction.

Subcase 2.2. Suppose that B = 0. Then we have that (3.5) holds. If
A ̸= 1, from (3.5), we obtain

N

(
r,

1

f − ((A− 1)/A)

)
= N

(
r,

1

L(f)

)
.



924 NAN LI, RISTO KORHONEN AND LIANZHONG YANG

From this, Remark 2.6 and the second fundamental theorem, we have

2T (r, f) ≤ N

(
r,

1

f

)
+N

(
r,

1

f−((A−1)/A)

)
+N

(
r,

1

f − 1

)
+S(r, f)

≤ N

(
r,

1

f

)
+N

(
r,

1

L(f)

)
+N

(
r,

1

f − 1

)
+ S(r, f)

≤ 2N

(
r,

1

f

)
+N

(
r,

1

f − 1

)
+S(r, f).

This gives that

2Θ(0, f) + Θ(1, f) ≤ 1.

Combining this with

1 ≥ Θ(a, f) ≥ δ2(a, f) ≥ δ(a, f) ≥ 0, a ∈ C,(5.3)

we have

2δ2(0, f) + δ(1, f) ≤ 2Θ(0, f) + Θ(1, f) ≤ 1,

which contradicts (1.8) when l ≥ 2;

δ2(0, f) +
1

4
Θ(0, f) +

1

2
δ(1, f)

≤ 1

4
Θ(0, f) + Θ(0, f) +

1

2
Θ(1, f)

≤ 1

4
+

1

2
≤ 3

4
,

which contradicts (1.9) when l = 1;

δ2(0, f) +
3

2
Θ(0, f) +

1

2
δ(1, f)

≤ δ2(0, f) +
1

2
Θ(0, f) + Θ(0, f) +

1

2
Θ(1, f)

≤ 3

2
+

1

2
= 2,

which contradicts (1.10) when l = 0. Thus, A = 1. From (3.5), we
have f ≡ L(f).

Subcase 2.3. Suppose that B = −1. By the same reasoning as dis-
cussed in Subcase 2.2, we obtain a contradiction.

This completes the proof of Theorem 1.3. �
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