
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 47, Number 3, 2017

CONTINUOUS FIELDS OF
POSTLIMINAL C∗-ALGEBRAS

ALDO J. LAZAR

ABSTRACT. We discuss a problem of Dixmier [6, Prob-
lem 10.10.11] on continuous fields of postliminal C∗-algebras
and the greatest liminal ideals of the fibers.

1. Introduction. In [6, Problem 10.10.11], Dixmier asked the ques-
tion: given a continuous field ((A(t)),Θ) of postliminal C∗-algebras
over some topological space T , and with B(t) the greatest liminal ideal
of A(t), and

Θ′ := {x ∈ Θ | x(t) ∈ B(t), t ∈ T},

is ((B(t)),Θ′) a continuous field of C∗-algebras? A tame continuous
field is a continuous field of postliminal C∗-algebras for which the
answer to this question is affirmative.

An example of a continuous field that is not tame can be constructed
over T := N ∪ {∞}. We let A(n), n ∈ N, be the unitization of
K(H), the algebra of all compact operators over an infinite-dimensional
Hilbert space H, and A(∞) := CIH , IH the identity operator on H.
Let Θ consist of all fields x such that x(n) = λnIH + an with {λn}
a sequence in C that converges to some λ ∈ C, {an} a sequence in
K(H) that converges to {0} and x(∞) = λIH . Then, ((A(t))t∈T ,Θ) is
a continuous field of postliminal C∗-algebras. Now, the largest liminal
ideal of A(n) is B(n) = K(H), and the largest liminal ideal of A(∞)
is B(∞) = A(∞) = CIH . Clearly, x ∈ Θ satisfies x(t) ∈ B(t) for every
t ∈ T if and only if x(∞) = 0 and the continuous field is not tame.

In Theorem 2.3, we show that the continuous fields of postliminal
C∗-algebras in a certain class that properly includes the locally trivial
continuous fields are always tame. In the last section, we shall exhibit
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an example of a continuous field of postliminal C∗-algebras such that
all of its fibers are mutually isomorphic and its restriction to any open
subset of the base space is not tame.

Let A be the C∗-algebra of the continuous field ((A(t)),Θ) of C∗-
algebras over the locally compact Hausdorff space T as defined in [6,
10.4.1]. By [8, Theorem 1.1], for every primitive ideal P of A, there
exist a unique tP ∈ T and a unique primitive ideal QP of A(tP ) such
that P = {x ∈ A | x(tP ) ∈ QP }, and conversely, every pair (t,Q),
t ∈ T , Q ∈ Prim (A(t)) determines a primitive ideal of A in this manner.
Obviously, P is minimal in Prim (A) if and only if QP is minimal in
A(tP ).

We shall use the terminology and notation for continuous fields as
introduced in [6, Chapter 10]. The preference to work with continuous
fields (rather than the more common Banach bundles) is motivated by
the fact that Dixmier’s original question was expressed in these terms.
The closed unit ball of the Banach space X is denoted X1. All para-
compact spaces considered in the following are implicitly Hausdorff;
hence, T4 by [7, Theorem VIII.2.2].

2. Results. The main ingredient in the proof of Proposition 2.1 is
Michael’s selection theorem [11, Theorem 3.2′′]: a multivalued map φ
from a paracompact space T to the family of the non-void closed convex
subsets of a Banach space X that is lower semicontinuous admits a
continuous selection, i.e., there is a continuous function f : T → X such
that f(t) ∈ φ(t) for every t ∈ T . Moreover, if F is a closed subset of T
and g : F → X is a continuous selection for φ|F , then one may choose f
so that f |F = g is satisfied. Recall that φ is called lower semicontinuous
if, for each open subset U of X, the set {t ∈ T | φ(t)∩U ̸= ∅} is open.

Proposition 2.1. Let T be a paracompact space or a locally compact
Hausdorff space and X a Banach space. Denote by M the space of
closed unit balls of all closed subspaces of X endowed with the Hausdorff
metric. Suppose that t → X(t)1, t ∈ T , is a continuous map into
M, X(t) a closed subspace of X. With Γ the space of all continuous
functions φ : T → X such that φ(t) ∈ X(t), t ∈ T , ((X(t)),Γ) is a
continuous field of Banach spaces.

Proof. The only evidence we must provide is that, for t0 ∈ T and
x0 ∈ X(t0), there exists φ ∈ Γ such that φ(t0) = x0. Clearly, we may
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suppose that x0 ̸= 0. Set y0 := x0/∥x0∥. We claim that t → X(t)1 is
lower semicontinuous as a multivalued map from T to X. In order to
see this, let U be an open subset of X,

s ∈ {t ∈ T | U ∩X(t)1 ̸= ∅} and z ∈ U ∩X(s)1.

There is an open ball of X with center z and radius ε > 0 contained
in U and a neighborhood V of s in T such that d(X(s)1, X(t)1) < ε
for all t ∈ V , d the Hausdorff metric. Thus, for each t ∈ V , there is a
wt ∈ X(t)1 for which ∥z − wt∥ < ε. It follows that

V ⊂ {t ∈ T | U ∩X(t) ̸= ∅} ;

thus, we conclude that {t ∈ T | U ∩X(t) ̸= ∅} is open. We obtain that
the map t→ X(t)1 is indeed lower semicontinuous.

Now, suppose that T is paracompact. By Michael’s selection theo-
rem, there exists a continuous map φ′ : T → X such that φ′(t) ∈ X(t)1
for every t ∈ T and φ′(t0) = y0. The map φ defined by φ(t) := ∥x0∥
φ′(t) suits the requirements.

Let T be locally compact Hausdorff. Let W be a compact neigh-
borhood of t0. Again, by Michael’s selection theorem, there is a con-
tinuous map φ′ : W → X such that φ′(t) ∈ X(t)1 for every t ∈ W
and φ′(t0) = y0. Let f : T → [0, 1] be a continuous function such that
f(t0) = 1 and f(t) = 0 for t /∈ Int (W ). The function φ : T → X,
defined by

φ(t) :=

{
∥x0∥f(t)φ′(t) if t ∈W,

0 if t /∈W,

is continuous, satisfies φ(t) ∈ X(t) for t ∈ T and φ(t0) = x0. �

A continuous field of Banach spaces over a paracompact or a locally
compact Hausdorff space T isomorphic to a continuous field of Banach
spaces as described in Proposition 2.1 will be called uniform. Obviously,
a trivial continuous field of Banach spaces is uniform. A continuous field
of Banach spaces ((X(t)),Γ) over T is called locally uniform if there
is a family {Fα} of closed subsets of T such that {Int (Fα)} is a cover
of T with open non-void sets and the restriction of the field to each Fα

is uniform. It is understood that, for t ∈ Fα, the Banach space X(t)
is a closed subspace of a Banach space Yα. Note that, if t ∈ Fα1 ∩ Fα2
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and x ∈ X(t), then

∥x∥α1 = ∥x∥X(t) = ∥x∥α2 .

By [6, 10.1.2 (iv)], if x is a vector field that is continuous on each Fα as
a function into Yα, then x ∈ Γ. We note that each Fα is paracompact
if T is such and locally compact Hausdorff in the second case.

The next proposition gives us a sufficient condition for a field of
Banach spaces to be locally uniform.

Proposition 2.2. Let T be as in Proposition 2.1, {Uα}α∈A an open
cover of T and Xα a Banach space, α ∈ A. Denote by Mα the space
of the closed unit balls of all the closed subspaces of Xα endowed with
the Hausdorff metric. Suppose that X(t), t ∈ T is a Banach space that
is a closed subspace of Xα whenever t ∈ Uα. Moreover, suppose that
the map t→ X(t)1 from Uα into Mα, α ∈ A, is continuous. Denote by
Γ the space of all functions φ : T → ∪α∈AXα such that φ(t) ∈ X(t),
t ∈ T , and the restriction of φ to Uα is continuous as a map into
Xα, α ∈ A. Then, ((X(t)),Γ) is a locally uniform continuous field of
Banach spaces.

Proof. For t ∈ Uα, we choose closed sets Et,α and Ft,α such that

t ∈ Int (Ft,α) ⊂ Ft,α ⊂ Int (Et,α) ⊂ Et,α ⊂ Uα.

In the case where T is locally compact, we shall require Et,α to be
compact in addition to the above. We shall show that the restriction
of ((X(t)),Γ) to Ft,α is a uniform, continuous field of Banach spaces.
To this end, let φ : Ft,α → Xα be a continuous function such that
φ(s) ∈ X(s) for every s ∈ Ft,α. We must produce an element φ′

of Γ whose restriction to Ft,α is φ. Observe that, in both situations
for T , Et,α is paracompact, hence, normal. Let g : Et,α → (0,∞)
be a continuous function such that g(s) = 1 + ∥φ(s)∥ for s ∈ Ft,α.
The function ψ : Ft,α → Xα given by ψ(s) := (1 + ∥φ(s)∥)−1φ(s),
s ∈ Ft,α, is a continuous selection for the restriction to Ft,α of the
lower semicontinuous map s → X(s)1 from Et,α to Xα. By [11,

Example 1.3, Theorem 3.2], ψ has a continuous extension ψ̃ from Et,α

to Xα such that ψ̃(s) ∈ X(s)1, s ∈ Et,α. Then, φ̃ : Et,α → Xα defined

by φ̃(s) := g(s)ψ̃(s) is a continuous extension of φ from Et,α to Xα and
satisfies φ̃(s) ∈ X(s), s ∈ Et,α. In both cases, there is a continuous



POSTLIMINAL C∗-ALGEBRA CONTINUOUS FIELDS 853

function f : T → [0, 1] such that f(s) = 1 for s ∈ Ft,α and f(s) = 0 for
s /∈ Int (Et,α). The function φ′ : T → ∪β∈AXβ , given by

φ′(s) :=

{
f(s)φ̃(s) if s ∈ Et,α,

0 if s /∈ Int (Et,α),

satisfies φ′(s) ∈ X(s), s ∈ T , and is the required element of Γ. In
checking that φ′ |Uβ

as a map into Xβ , β ∈ A, is continuous, we rely
on the fact that, for s ∈ Xα∩Xβ , the norm onX(s) is the same whether
X(s) is considered to be a closed subspace of Xα or of Xβ . Obviously,
on Uβ ∩ Int (Et,α), φ

′ is continuous. If s ∈ Uβ \ Int (Et,α) and {sκ} is
a net in Uβ that converges to s, then it is easily seen that

∥φ′(sκ)∥ −→ 0 = ∥φ′(s)∥.

This establishes the claim for φ′. �

The continuous fields of C∗-algebras are of interest to us, and, for
uniform continuous fields of C∗-algebras, we shall require that the
Banach space appearing in the definition be a C∗-algebra and the
fibers to be C∗-subalgebras of it. It is natural to ask whether a
uniform, continuous field of C∗-algebras must be locally trivial. There
is some indication [4, Theorem 4.3] that this may be the case when the
fibers are nuclear and separable. On the other hand, [3, Theorem 3.3]
provides an example of a uniform, continuous field of (non-separable)
nuclear C∗-algebras that is not locally trivial.

Theorem 2.3. Suppose that ((A(t)),Θ) is a locally uniform, continu-
ous field of postliminal C∗-algebras over a paracompact or locally com-
pact Hausdorff space T . Let B(t) be the largest liminal ideal of A(t)
and Θ′ := {x ∈ Θ | x(t) ∈ B(t), t ∈ T}. Then, ((B(t)),Θ′) is a locally
uniform, continuous field of C∗-algebras over T .

Proof. Let {Fα} be a family of closed subsets of T as given by the
definition of a locally uniform field for ((A(t)),Θ), and set Uα :=
Int (Fα). There is no loss of generality if we suppose that over Fα

all of the fibers A(t) are C∗-subalgebras of a certain C∗-algebra Aα,
and t → A(t)1 is continuous for the Hausdorff metric. If t′, t′′ ∈ Uα

satisfy d(A(t′)1, A(t
′′)1) < s(≤ 1/21), then it follows from [14, Lemma

1.10] that there is a lattice isomorphism ϕ between the family of closed,
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two-sided ideals of A(t′) and that of closed, two-sided ideals of A(t′′)
such that d(ϕ(I)1, I1) < 7s for every ideal I. The restriction of ϕ to
Prim (A(t′)) is a homeomorphism onto Prim (A(t′′)). Now, Prim (B(t′))
is the largest open subset of Prim (A(t′)), that is, T1 in the relative
topology; hence, it is mapped by ϕ onto Prim (B(t′′)), and we obtain
ϕ(B(t′)) = B((t′′)). We infer that d(B(t′)1, B(t′′)1) < 7s, and we
conclude that t→ B(t)1 is continuous on Uα.

Denoting by Θ′′, the space of all vector fields x such that x(t) ∈ B(t),
t ∈ T , and for which x |Uα : Uα → Aα is continuous, by Proposition 2.2,
we obtain that ((B(t)),Θ′′) is a locally uniform, continuous field.

It remains to show that Θ′′ = Θ′. Clearly, Θ′ ⊂ Θ′′. Let x ∈ Θ′′.
We want to show that x as a function from Fα into Aα is continuous.
Let U be a neighborhood of t ∈ Fα contained in some Uβ . Then x is
continuous on U to Aβ . The vector field x maps Fα ∩ U continuously
into Aα∩Aβ ; thus, we conclude that x is continuous at t as a map from
Fα to Aα. We infer that x ∈ Θ, and since x(t) ∈ B(t), t ∈ T , we obtain
x ∈ Θ′. �

We shall now discuss the behavior of locally uniform, continuous
fields of postliminal C∗-algebras with respect to two kinds of ideals that
give rise to canonical composition series. Recall that one says that a

point π in the spectrum Â of a C∗-algebra A satisfies the Fell condition

if there exist a neighborhood V of π in Â and a ∈ A+ such that ϱ(a)
is a projection of rank 1 for every ϱ ∈ V . A Fell C∗-algebra is a C∗-
algebra for which all points in its spectrum satisfy the Fell condition,
see [1], [12, 6.1], where these algebras were called of Type I0. Every
non trivial postliminal C∗-algebra has a non trivial largest Fell ideal by
[12, Proposition 6.1.7]. A C∗-algebra A is called uniformly liminal if
its ideal of all elements a ∈ A for which the function π → π(a) bounded

on Â is dense in A, see [2, page 443] and the references therein. Every
non trivial postliminal C∗-algebra has a non trivial largest uniformly
liminal ideal by [2, Theorems 2.6, 2.8].

Theorem 2.4. Let ((A(t)),Θ) be a locally uniform, continuous field of
postliminal C∗-algebras over a paracompact or locally compact Haus-
dorff space T . Let B(t) be the largest Fell ideal of A(t) and Θ′ :=
{x ∈ Θ | x(t) ∈ B(t), t ∈ T}. Then ((B(t)),Θ′) is a locally uniform,
continuous field of C∗-algebras.



POSTLIMINAL C∗-ALGEBRA CONTINUOUS FIELDS 855

Proof. Let Fα, Uα, and Aα be as in the proof of Theorem 2.3. Now,
take t′, t′′ ∈ Uα that satisfy d(A(t′)1, A(t

′′)1) < s(< 1/147), and let ϕ
be the lattice isomorphism between the spaces of ideals of these two
C∗-algebras given by [14, Lemma 1.10].

The ideal J := ϕ(B(t′)) of A(t′′) satisfies d(B(t′)1, J1) < 7s(< 1/21).

There is a homeomorphism h from Â(t′) onto Â(t′′) such that ϕ maps

the kernel of π′ ∈ Â(t′) to the kernel of h(π′), see [14, Lemma 1.10].

We have h(B̂(t′)) = Ĵ . Pick π0 ∈ B̂(t′), and set ϱ0 = h(π0) ∈ Ĵ .

There is an a ∈ B(t′)+1 and a neighborhood V of π0 in B̂(t′) such that
π(a) is a rank 1 projection for π ∈ V . We imitate the proof of [14,
Lemma 2.4] in order to obtain an element b ∈ J+

1 such that ϱ(b) is
a rank 1 projection when ϱ ∈ h(V ). It follows that J is a Fell ideal;
therefore, ϕ(B(t′)) ⊂ B(t′′). There exists a Hermitian c ∈ J1 such that
∥a− c∥ < 7s. With the function f : R → R given by

f(t) :=


0 if t ≤ 21s,

(t− 21s)/(1− 42s) if 21s ≤ t ≤ 1− 21s,

1 if t ≥ 1− 21s,

we define b := f(c). Let π ∈ V , and set ϱ := h(π). Then, [14,
Lemma 2.2] allows us to consider π and ϱ as acting on the same Hilbert
space with

d(π(B(t′))1, ϱ(J)1) < 21s(≤ 1/7),

and ∥π(a)− ϱ(c)∥ < 21s. It is easily seen that the spectrum of ϱ(b) is
contained in {0, 1}; hence, ϱ(b) is a projection. Moreover,

∥π(a)− ϱ(b)∥ ≤ ∥π(a)− ϱ(c)∥+ ∥ϱ(c)− ϱ(b)∥ < 42s;

thus, an application of [14, Lemma 1.7] allows us to conclude that ϱ(b)
is one-dimensional.

Using a similar argument, we obtain ϕ−1(B(t′′)) ⊂ B(t′); thus,
ϕ(B(t′)) = B(t′′) and d(B(t′)1, B(t′′)1) < 7s. We find that t → B(t)1
is continuous on Uα, and subsequently, we proceed as in the last
paragraph of the proof of Theorem 2.3. �

In the next result, the hypothesis of separability may be unnecessary;
however, we were not able to find a proof that dispenses with it.
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Theorem 2.5. Let ((A(t)),Θ) be a locally uniform, continuous field of
separable postliminal C∗-algebras over a paracompact or locally compact
Hausdorff space T . Let B(t) be the largest uniformly liminal ideal of
A(t) and Θ′ := {x ∈ Θ | x(t) ∈ B(t), t ∈ T}. Then ((B(t)), Θ′) is a
locally uniform, continuous field of C∗-algebras.

Proof. Let F be a closed subset of T such that Int (F ) ̸= ∅ and the
given continuous field of C∗-algebras restricted to F is uniform. We
shall also suppose that the family of C∗-algebras

{A(t) | t ∈ F}

is contained in a certain C∗-algebra, and the map t → A(t)1 is
continuous on F for the Hausdorff metric. If t1, t2 ∈ F satisfy
d(A(t1)1, A(t2)1) < s < 1/420, 000, then A(t1) and A(t2) are isomor-
phic by [4, Theorem 4.3]. Of course, every isomorphism between these
two C∗-algebras maps B(t1) onto B(t2). Hence, the same result of [4]
tells us that d(B(t1)1, B(t2)1) ≤ 28s1/2; thus, the map t → B(t)1 is
continuous on F . Once more, Proposition 2.2 yields the conclusion as
in the proof of Theorem 2.3. �

Question 2.6. Let ((A(t)),Θ) be a uniform, continuous field of
postliminal C∗-algebras over T . Can one choose a non-trivial contin-
uous trace ideal B(t), t ∈ T , of A(t) such that, with Θ′ := {x ∈ Θ |
x(t) ∈ B(t), t ∈ T}, ((B(t)), Θ′) is a continuous field ofC∗-algebras?

Remark 2.7. Given a continuous field ((A(t)),Θ) of postliminal C∗-
algebras over a locally compact Hausdorff space T , let A be the C∗-
algebra defined by this continuous field; obviously, it is a postliminal
C∗-algebra. Let B be its greatest liminal ideal. If the image of B
in A(t) by the evaluation map is the greatest liminal ideal of A(t),
t ∈ T , then it is easily seen that the given field is tame. Conversely,
suppose that ((A(t)),Θ) is tame, and let C be the C∗-algebra defined
by the continuous field of the greatest liminal ideals. Then, C = B, the
greatest liminal ideal of A. Indeed, it is clear that C is a liminal ideal

of A, thus C ⊂ B. Now, let x ∈ B. With t ∈ T , ρ ∈ Â(t), we have
that y → ρ(y(t)), y ∈ A, is an irreducible representation of A; hence,
ρ(x(t)) is a compact operator over the space of the representation. We
conclude that x(t) ∈ C(t) by [6, 4.2.6]. Thus, B ⊂ C.
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The next proposition may already be known; however, in the absence
of a reference, we provide its simple proof.

Proposition 2.8. Let A be a postliminal C∗-algebra, and let M ⊂
Prim (A) be the set of all minimal primitive ideals. Then Int (M) is
the primitive ideal space of the greatest liminal ideal I of A.

Proof. Dixmier remarked [5, page 111, Remark C] that we have
Prim (I) ⊂ Int (M). Int (M) is the primitive ideal space of an ideal, J ,
say, of A. If P ∈ Int (M), then the relative closure of {P} in Int (M)
is merely {P} since all ideals in Int (M) are minimal primitive ideals.
Thus, Int (M) is T1 in the relative topology, and we infer that J is a
liminal ideal of A. Hence, J ⊂ I, and Int (M) ⊂ Prim (I). �

The aforementioned set M need not be open; for examples, see [9],
[10, Example 4.3].

Now, let ((A(t)),Θ) be a continuous field of postliminal C∗-algebras
over the locally compact Hausdorff space T . Denote by A the C∗-
algebra of the field and by M the set of all minimal primitive ideals
of A. The set of all minimal primitive ideals of A(t) isM ∩Prim (A(t));
thus, in view of Proposition 2.8, we can reformulate Remark 2.7 as: the
given field is tame if and only if Int (M) ∩ Prim (A(t)) is the relative
interior in Prim (A(t)) of M ∩ Prim (A(t)) for every t ∈ T .

3. An example. As mentioned in the introduction we shall con-
struct a continuous field of postliminal C∗-algebras over [0, 1] whose
fibers are mutually isomorphic and which has the additional property
that none of its restrictions to the relatively open subsets of [0, 1] is
tame.

First, we prepare two C∗-algebras that will serve as building blocks
of the fibers. Let N = ∪∞

p=1Sp, where the sets {Sp} are mutually

disjoint and each Sp = {np1 < np
2 < · · · } is infinite. Here, p in npm is a

superscript, not an exponent. Let H be a separable Hilbert space with
an orthonormal basis {ξk}∞k=1 and B(H) the C∗-algebra of all bounded
operators on H. Denote by e0ij the partial isometry that maps ξj to
ξi and vanishes on each ξk with k ̸= j. The C∗-subalgebra of B(H)
generated by {e0ij | i, j = 1, 2, . . .} is the ideal of all compact operators,
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and we shall denote it by A0. Now, put

e1ij :=

∞∑
m=1

e0
ni
mnj

m
, i, j = 1, 2, . . . ,

where the series converges in the strong operator topology. Then,
{e1ii}∞i=1 are mutually orthogonal projections,

∞∑
i=1

e1ii = 1H ,

e1ij is a partial isometry from e1jj(H) onto e1ii(H), (e1ij)
∗ = e1ji and

e1ije
1
rs =

{
e1is j = r,

0 j ̸= r.

Hence, the C∗-subalgebra K1 of B(H) generated by

{e1ij | i, j = 1, 2, . . .}

is isomorphic to A0 and A0 ∩K1 = {0}. We have

(3.1) e1ije
0
rs =

{
e0ni

ms if r = njm for some m,

0 otherwise

and

(3.2) e0rse
1
ij =

{
e0
rnj

m
if s = nim for some m,

0 otherwise.

Since A0 and K1 ∼ A1/A0 are postliminal C∗-algebras (actually,
liminal C∗-algebras in this case), A1 := A0 +K1 is a postliminal C∗-
algebra. Each x ∈ A1 admits a unique decomposition x = x0 + xK1

with x0 ∈ A0 and xK1 ∈ K1. The map x → xK1 is a homomorphism;
hence, ∥xK1∥ ≤ ∥x∥ and ∥x0∥ ≤ 2∥x∥.

From (3.1) and (3.2), it follows that the sequence{ m∑
i=1

e1ii

}∞

m=1

is an increasing, approximate unit for A1 consisting of projections.
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We now suppose that the C∗-subalgebras K1, . . .Kl−1 of B(H) have
been defined such that Kp, 1 ≤ p ≤ l − 1, is spanned by

epij :=
∞∑

m=1

ep−1

ni
mnj

m
, i, j = 1, 2, . . . .

It follows that {epii}∞i=1 are mutually orthogonal projections,

∞∑
i=1

epii = 1H ,

and epij is a partial isometry from epjj(H) onto epii(H). With Ap :=

Ap−1+Kp, 1 ≤ p ≤ l−1, we have Ap−1∩Kp = {0}, Ap is a postliminal
C∗-subalgebra of B(H), Ap−1 is an ideal of Ap, and{ m∑

i=1

epii

}∞

m=1

is an increasing approximate unit of Ap consisting of projections. Every
element x ∈ Ap admits a unique decomposition x = xp−1 + xKp where
xp−1 ∈ Ap−1, xKp ∈ Kp. Moreover, x → xKp is a homomorphism;
hence, ∥xKp

∥ ≤ ∥x∥ and ∥xp−1∥ ≤ 2∥x∥.

Now, we define

elij :=
∞∑

m=1

el−1

ni
mnj

m
, i, j = 1, 2, . . . .

Then, {elii}∞i=1 are mutually orthogonal projections,

∞∑
i=1

elii = 1H ,

and elij is a partial isometry from eljj(H) onto elii(H). We obtain

(elij)
∗ = elji and

(3.3) elije
l
rs =

{
elis if j = r,

0 otherwise;



860 ALDO J. LAZAR

hence, the C∗-subalgebra Kl of B(H) generated by {elij | i, j = 1, 2, . . .}
is isomorphic to A0. We also have

(3.4) elije
l−1
rs =

{
el−1
ni
ms if r = njm for some m,

0 otherwise

and

(3.5) el−1
rs elij = (eljie

l−1
sr )∗ =

{
el−1

rnj
m

if s = nim for some m,

0 otherwise.

Hence, if x ∈ Kl and y ∈ Kl−1, then xy, yx ∈ Kl−1. Suppose now that
x ∈ Kl, z ∈ Al−2. Then,

xz = lim
m→∞

x

( m∑
i=1

el−1
ii

)
z = lim

m→∞

(
x

m∑
i=1

el−1
ii

)
z.

We have established that

x
m∑
i=1

el−1
ii ∈ Kl−1,

for every m; hence, xz ∈ Al−2. Similarly, zx ∈ Al−1, and we obtain
that Al−1 = Al−2 +Kl−1, k ≥ 2, is an ideal in Al := Al−1 +Kl which
is a C∗-subalgebra of B(H) by [6, 1.8.4].

We shall now prove that Al−1 ∩ Kl = {0}. Denote by Bm
l the

finite-dimensional C∗-algebra generated by {elij | 1 ≤ i, j ≤ m}. Then,
Kl = ∪∞

m=1B
m
l . From∥∥∥∥ m∑

i,j=1

αije
l
ij −

m∑
i,j=1

αije
l
ij

s∑
r=1

el−1
rr

∥∥∥∥ =

∥∥∥∥ m∑
i,j=1

αije
l
ij

∥∥∥∥,
for every s, we obtain Bm

l ∩ Al−1 = {0} for every m. Thus, the
quotient map Al → Al/Al−1 is isometric on each Bm

l ; hence, it is
isometric on Kl, and we conclude that Al−1 ∩ Kl = {0}. Since Al−1

and Al/Al−1 ∼ Ki are postliminal C∗-algebras, Al is a postliminal
C∗-algebra.

In this manner, we inductively construct an increasing sequence
{Al}∞l=0 of postliminal C∗-subalgebras of B(H) such that Al−1 is an

ideal in Al. It follows that A := ∪∞
l=0Al is a postliminal C∗-subalgebra

of B(H) whose greatest liminal ideal is A0.
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Now, set C1 := K1, C2 := C1 + K2. An ideal in C2 is C1; hence,
C2 is closed by [6, 1.8.4]. We have C1 ∩K2 = {0} and A0 ∩ C2 = {0}
since (A0 + K1) ∩ K2 = {0} and A0 ∩ K1 = {0}. We inductively
define Cl : Cl−1 + Kl. Then Cl−1 is an ideal of the C∗-algebra Cl,
Cl−1 ∩Kl = {0} and A0 ∩ Cl = {0}. From (3.3), (3.4) and (3.5), we

find that elij → el−1
ij , 1 ≤ l ≤ p, i, j ≥ 1, yields an isomorphism φp

of Cp onto Ap−1. Obviously, φp+1 extends φp; hence, we obtain an

isomorphism φ from C := ∪∞
p=1Cp onto A that extends each φp.

Now, let x ∈ A, x = limp→∞ xp with xp ∈ Ap, p ≥ 1. Then
xp = x0p+x

p
p where x0p ∈ A0 and x

p
p ∈ Cp. From ∥x0p−x0q∥ ≤ 2∥xp−xq∥,

we conclude that the Cauchy sequence {x0p}∞p=1 converges to some

x0 ∈ A0; hence, {xpp}∞p=1 converges to some xC ∈ C that satisfies

x = x0 + xC . Now, xp → xpp is a homomorphism for each p; therefore,

x → xC is a homomorphism. We have ∥xC∥ ≤ ∥x∥ and ∥x0∥ ≤ 2∥x∥.
The quotient map A → A/A0 is isometric on each Cp; hence, it is
isometric on C. It follows that A0 ∩ C = {0}, and the decomposition
x = x0 + xC is unique.

Now, we can begin constructing the continuous field of C∗-algebras
which we need. Let {rn} be an enumeration of the set of rational
numbers in [0, 1]. For an irrational number t ∈ [0, 1], we define
A(t) := c0(A), that is, the direct sum of A with itself ℵ0 times. A(rn)
is a C∗-subalgebra of c0(A) that is also a direct sum of copies of A,
except that at the nth spot, we insert C instead of A. Clearly, all
fibers are mutually isomorphic postliminal C∗-algebras. The ∗-algebra
Γ of the continuous vector fields consists of all continuous functions
x : [0, 1] → c0(A) such that x(t) ∈ A(t) for every t ∈ [0, 1].

In order to show that ((A(t))t∈[0,1],Γ) so defined is a continuous field,
we must check that {x(t) | x ∈ Γ} = A(t) for t ∈ [0, 1]. To this end,
let t0 ∈ [0, 1] and {an} ∈ A(t0). For n ∈ N, let fn : [0, 1] → [0, 1] be
a continuous function such that fn(t0) = 1 and fn(rn) = 0 if rn ̸= t0.
Define x(t) := {fn(t)an}, t ∈ [0, 1]. Then, x is a continuous function
from [0, 1] to c0(A) such that x(t) ∈ A(t) for t ∈ [0, 1], i.e., x ∈ Γ.
Moreover, x(t0) = {an}, and we have proved that a continuous field of
C∗-algebras has been constructed.

The greatest liminal ideal B(t) of A(t) is c0(A0) when t is irrational.
The greatest liminal ideal B(rn) of A(rn), n ∈ N, is again a direct
sum whose components are all equal to A0, except that at the nth
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place which is equal to K1. Thus, if x ∈ Γ satisfies x(t) ∈ B(t) for
every t ∈ [0, 1], then the nth component of x(rn) must vanish since
A0 ∩ C = {0}. It follows that, for the restriction of our continuous
field of C∗-algebras to any relatively open subset U of [0, 1], the family
(B(t))t∈U , together with {x ∈ Γ | x(t) ∈ B(t), t ∈ U}, does not form a
continuous field of C∗-algebras.
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5. J. Dixmier, Sur les C∗-algèbres, Bull. Soc. Math. France 88 (1960), 95–112.

6. , C∗-algebras, North-Holland, Amsterdam, 1977.

7. J. Dugundji, Topology, Allyn and Bacon, Boston, 1967.

8. J.M.G. Fell, The structure of algebras of operator fields, Acta Math. 106
(1961), 233–280.

9. P. Green, Minimal primitive ideals of GCR C∗-algebras, Proc. Amer. Math.
Soc. 73 (1979), 209–210.

10. A.J. Lazar and D.C. Taylor, Approximately finite dimensional C∗-algebras
and Bratteli diagrams, Trans. Amer. Math. Soc. 259 (1980), 599–619.

11. E. Michael, Continuous selections I, Ann. Math. 63 (1956), 361–382.

12. G.K. Pedersen, C∗-algebras and their automorphism groups, Academic
Press, London, 1979.

13. J. Phillips, Perturbations of C∗-algebras, Indiana Univ. Math. J. 23 (1974),
1167–1176.

14. J. Phillips and I. Raeburn, Perturbations of C∗-algebras, II, Proc. Lond.
Math. Soc. 43 (1981), 46–72.

Tel Aviv University, School of Mathematical Sciences, Tel Aviv, 69978
Israel
Email address: aldo@post.tau.ac.il


