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ON WEAK CONTINUITY OF THE MOSER
FUNCTIONAL IN LORENTZ-SOBOLEV SPACES

ROBERT ČERNÝ

ABSTRACT. Let B(R) ⊂ Rn, n ∈ N, n ≥ 2, be an
open ball. By a result from [1], the Moser functional with
the borderline exponent from the Moser-Trudinger inequality
fails to be sequentially weakly continuous on the set of radial

functions from the unit ball in W 1,n
0 (B(R)), only in the

exceptional case of sequences acting like a concentrating
Moser sequence.

We extend this result into the Lorentz-Sobolev space
W 1

0L
n,q(B(R)), with q ∈ (1, n], equipped with the norm

||∇u||n,q := ||t1/n−1/q |∇u|∗(t)||Lq((0,|B(R)|)).

We also consider the case of a nontrivial weak limit and the
corresponding Moser functional with the borderline exponent
from the concentration-compactness alternative.

1. Introduction. Throughout the paper, Ω is a bounded domain
in Rn, n ≥ 2, ωn denotes the volume of the unit ball in Rn, Ln is
the n-dimensional Lebesgue measure and |Ω| stands for Ln(Ω). By
∇u, we denote the generalized gradient of a function u, and u∗ is its
non-increasing rearrangement. The spaceW 1,n

0 (Ω) orW 1
0L

n,q(Ω), with
q ∈ (1,∞), stands for the closure of C∞

0 (Ω) in W 1,n(Ω) or W 1Ln,q(Ω),
respectively. We use the standard notation q′ = q/(q − 1) (with the
convention that ∞′ = 1 and 1′ = ∞).

For functions from W 1,n
0 (Ω), the famous Moser-Trudinger inequal-

ity [11] concerning a classical embedding theorem by Trudinger [13]
states that

2010 AMS Mathematics subject classification. Primary 26D10, 46E30, 46E35.
Keywords and phrases. Sobolev spaces, Lorentz-Sobolev spaces, Moser-

Trudinger inequality, concentration-compactness principle, sharp constants.
The author was supported by the Czech Ministry of Education, ERC CZ, grant

No. LL1203.
Received by the editors on January 8, 2015, and in revised form on July 31,

2015.
DOI:10.1216/RMJ-2017-47-3-757 Copyright c⃝2017 Rocky Mountain Mathematics Consortium

757



758 ROBERT ČERNÝ

(1.1)

sup
||∇u||Ln(Ω)≤1

∫
Ω

exp((K|u(x)|)n
′
) dx

{
≤C(n,K, |Ω|) when K ≤ nω

1/n
n ,

=∞ when K > nω
1/n
n .

The proof in the case of K > nω
1/n
n easily follows from the properties

of the Moser functions ms ∈W 1,n
0 (B(R)), s ∈ (0, 1), defined by

(1.2)

ms(x) =

{
n−1/nω

−1/n
n log1/n

′
(1/t) for |x| ∈ [0, sR],

n−1/nω
−1/n
n log−1/n(1/t) log(R/|x|) for |x| ∈ [sR,R].

From (1.1) and the Vitali convergence theorem, see e.g., [7, page 187],
it follows that, if p < 1, then the functional

Jp(u) =

∫
Ω

exp((nω1/n
n p|u(x)|)n

′
) dx

is sequentially weakly continuous on the unit ball in W 1,n
0 (Ω), that is,

uk⇀u and ||∇uk||Ln(Ω) ≤ 1 =⇒ Jp(uk) −→ Jp(u).

If p ≥ 1, then it is well known and easy to check that the above
implication is not true. Indeed, if p > 1, and Ω contains the origin,
we fix R > 0 such that B(R) ⊂ Ω, and we obtain Jp(ms) → ∞ as
s → 0+, while, for every sequence sk ⊂ (0, 1) such that sk → 0, we
have msk ⇀ 0 and Jp(0) = Ln(Ω) < ∞ (in the case of 0 /∈ Ω, we use
translated Moser functions). If p = 1, fix R > 0, set Ω = B(R) and
check that there are C0 > Ln(B(R)) = J1(0) and t0 ∈ (0, 1) such that
J1(ms) ≥ C0 for every s ∈ (0, t0).

The following characterization of the sequential weak continuity of
the functional Jp for p = 1 and uk⇀ 0, where uk are radial functions

from W 1,n
0 (B(R)), is given in the recent paper [1].

Theorem 1.1. Let n ∈ N, n ≥ 2 and R > 0. Suppose that
{uk} ⊂W 1,n

0 (B(R)) are radial functions such that ||∇uk||Ln(B(R)) ≤ 1

and uk⇀ 0 in W 1,n
0 (B(R)). If

lim sup
k→∞

J1(uk) > J1(0),
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then there are {ukm} ⊂ {uk} and {sm} ⊂ (0, 1), sm → 0, such that

ukm −msm
m→∞−→ 0 in W 1,n

0 (B(R)).

In fact, Theorem 1.1 gives some information only in the case of u = 0
almost everywhere; otherwise, i.e., when u is nontrivial, Theorem 1.2
and the Vitali convergence theorem imply that limk→∞ J1(uk) = J1(u).

Note that, in [1], a more difficult version of Theorem 1.1 for non-
radial functions on an open set Ω ⊂ R2 is given. In that case, one must
consider translated Moser sequences. It is an open problem whether
some analogue of Theorem 1.1 for non-radial functions in the general
dimension n ≥ 2 holds.

If p > 1 and uk⇀u (we do not mind whether u is trivial or not), then
there are many sequences distant from {msk} such that Jp(uk) → ∞,
while we always have Jp(u) < ∞ by the Trudinger embedding, (for

example, if we fix any ϱ ∈ [1, p) and consider uk = ϱ−(n−1)/nmsk , with

sk → 0, then we can observe that uk⇀ 0 in W 1,n
0 (B(R))).

A natural question to ask is, “what occurs if the limit function u in
Theorem 1.1 is nontrivial?” This question was answered in [3]. The
result is as follows. If 0 ≤ ||∇u||Ln(B(R)) < 1, then there is a P > 1
depending on ||∇u||Ln(B(R)) such that the functional JP behaves in
a similar way as that in Theorem 1.1 while, for every p < P , we
have Jp(uk) → Jp(u) and, for every p > P , we generally do not
have that {Jp(uk)} is a bounded sequence. On the other hand, if
||∇u||Ln(B(R)) = 1, it is easy to see that uk → u (in norm) and Jp(uk)
→ Jp(u) for every p ∈ R.

The above-mentioned constant P is the borderline exponent corre-
sponding to the following result from [5] and [9, Theorem I.6, Remark
I.18] which concerns one of the cases in the concentration-compactness
alternative for the Moser-Trudinger inequality.

Theorem 1.2. Let n ∈ N, n ≥ 2, and let Ω ⊂ Rn be a bounded domain.
Let {uk} ⊂W 1,n

0 (Ω) be a sequence satisfying

||∇uk||Ln(Ω) ≤ 1, uk⇀u in W 1,n
0 (Ω)

and uk → u almost everywhere in Ω, for some non-trivial function
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u ∈W 1,n
0 (Ω). Set

(1.3) θ = ||∇u||nLn(Ω) ∈ (0, 1] and P = (1− θ)−1/n

(where P = ∞ if θ = 1). Then, for every p < P , there is a C > 0 such
that ∫

Ω

exp((nω1/n
n p |uk(x)|)n

′
) dx ≤ C.

Moreover, such an upper bound for p is sharp.

It is natural to work with the functional Jp with p = P in the version
of Theorem 1.1 with a nontrivial weak limit. Indeed, if p < P , we can
again use the Vitali convergence theorem. Furthermore, it is shown
in [5] that, if we take a suitable function u ∈ W 1,n

0 (B(3R)), and if we
set

uk = u+ (1− θ)1/nm1/k,

then we have ||∇uk||Ln(B(3R)) = 1, uk⇀u and Jp(uk) → ∞ for every
p > P . Hence, for p > P , we can again construct many sequences such
that uk⇀u and Jp(uk) → ∞, while Jp(u) <∞.

Now, let us recall the full statement of the main result of [3].

Theorem 1.3. Let n ∈ N, n ≥ 2 and R > 0. Let {uk} ⊂ W 1,n
0

(B(R)) be radial functions such that ||∇uk||Ln(B(R)) ≤ 1 and uk⇀u in

W 1,n
0 (B(R)). Let θ ∈ [0, 1] and P ∈ [1,∞] be defined by (1.3). If θ < 1

and
lim sup
k→∞

JP (uk) > JP (u),

then there are {ukm} ⊂ {uk} and {sm} ⊂ (0, 1), sm → 0, such that

ukm − u− (1− θ)1/nmsm
m→∞−→ 0 in W 1,n

0 (B(R)).

1.1. The Lorentz-Sobolev case. The aim of this paper is to extend
Theorem 1.3 into Lorentz-Sobolev spaces W 1

0L
n,q(Ω), with q ∈ (1, n],

equipped with the norm

(1.4) ||∇u||n,q := ||t1/n−1/q|∇u|∗(t)||Lq((0,|Ω|)).

Recall that the above quantity is not a norm but a quasi-norm for
q > n.
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The Moser-type inequality for Lorentz-Sobolev spaces W 1
0L

n,q(Ω)
was obtained in [2], and it has the following form. If q ∈ (1,∞), then

sup
||∇u||n,q≤1

∫
Ω

exp((K|u(x)|)q
′
) dx

{
≤C(n,K, q, |Ω|) when K≤nω1/n

n ,

=∞ when K>nω
1/n
n

and, if q = ∞, then

sup
||∇u||n,∞≤1

∫
Ω

exp(K|u(x)|) dx

{
≤C(n,K, |Ω|) when K<nω

1/n
n ,

=∞ when K≥nω1/n
n .

Note that, since ∞′ = 1, the main difference between cases q ∈ (1,∞)
and q = ∞ is the uniform boundedness of the integrals in the case

K = nω
1/n
n for q ∈ (1,∞). There is no Moser-type inequality for q = 1

since W 1
0L

n,1(Ω) is embedded into L∞(Ω).

We define the Moser functionals as

(1.5) Jp(u) =

∫
Ω

exp((nω1/n
n p|u(x)|)q

′
) dx

and, for a fixed R > 0, and every s ∈ (0, 1), we define the Moser
function ms ∈W 1

0L
n,q(B(R)) by

(1.6)

ms(x) =

{
n−1/qω

−1/n
n log(q−1)/q(1/s) for 0 ≤ |x| ≤ sR,

n−1/qω
−1/n
n log−1/q(1/s) log(R/|x|) for sR ≤ |x| ≤ R.

Now, let us recall the result from [4] concerning the improvement of
the Moser-Trudinger inequality in the case of a nontrivial weak limit.

Theorem 1.4. Let n ∈ N, n ≥ 2, q ∈ (1,∞), and let Ω ⊂ Rn be an
open bounded set. Let u ∈ W 1

0L
n,q(Ω) be a non-trivial function, and

let {uk} ⊂W 1
0L

n,q(Ω) be a sequence such that

||∇uk||n,q ≤ 1, uk⇀u in W 1
0L

n,q(Ω)

and uk → u almost everywhere in Ω.

Set

P :=

{
(1− ||∇u||qn,q)−1/q for ||∇u||n,q < 1,

∞ for ||∇u||n,q = 1.
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If q ∈ (1, n], then, for every p < P , there is a C > 0 such that

(1.7)

∫
Ω

exp((nω1/n
n p|uk(x)|)q

′
) dx ≤ C for every k ∈ N.

Moreover, the assumption p < P is sharp.

If q ∈ (n,∞), then there is a P̃ ∈ (1, P ] such that (1.7) holds for

every p < P̃ but not for P̃ = P in general.

Note that, in the case of q ∈ (1, n] (in this case, the quantity (1.4)
is a norm) the result is of the same type as Theorem 1.2. On the other
hand, when q ∈ (n,∞), the fact that the quantity (1.4) is not weakly
lower semicontinuous, entails some loss of integrability, see [4, Lemma
3.1].

Now, we shall state our new result concerning the sequential weak
continuity of the functional JP .

Theorem 1.5. Let n ∈ N, n ≥ 2, q ∈ (1, n], and let R > 0. Let
{uk} ⊂W 1

0L
n,q(B(R)) be a sequence of radial functions satisfying

||∇uk||n,q ≤ 1 and uk⇀u in W 1
0L

n,q(B(R))

for some u ∈W 1
0L

n,q(B(R)). Set

(1.8) θ := ||∇u||qn,q ∈ [0, 1] and P = (1− θ)−1/q ∈ [1,∞].

If θ < 1 and
lim sup
k→∞

JP (uk) > JP (u),

then there are {ukm} ⊂ {uk} and {sm} ⊂ (0, 1), sm → 0, such that

ukm − u− (1− θ)1/qmsm
m→∞−→ 0 in W 1

0L
n,q(B(R)).

It can easily be seen (again, with the aid of the Vitali convergence
theorem) that, if θ = 1, then Jp(uk) → Jp(u) for every p ∈ R.

We do not study the case of q > n for two reasons. On one hand, we

do not know the value of the borderline parameter P̃ from Theorem 1.4.
On the other hand, for q > n, the quantity (1.4) is not a norm and we
lose such tools as the uniform convexity.
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The paper is organized as follows. After Section 2, Preliminaries,
we show that, if q ≤ n, then the norm (1.4) is uniformly convex. Such
a result was already proven by Halperin [8]; however, his definition of
uniform convexity slightly differs from the classical one by Clarkson [6],
which is the definition that is useful for our purposes.

In Section 4, we derive some properties of the Moser functions
from (1.6).

Section 5 contains construction and properties of a collection of
auxiliary linear functionals that are used to estimate the distance from
the Moser functions. Recall that, in paper [1] (the Sobolev case), the
suitable functionals were

Ls(u) =

∫
B(R)

|∇ms|n−2∇ms · ∇u dx, s ∈ (0, 1),

(for n = 2, it is merely a scalar product of the gradients) satisfying, in
addition, an important property,

Ls(u) =
h(Rs)

gs(Rs)
,

where h, gs : (0, R) 7→ R are the one-dimensional representatives of
radial functions u and ms, respectively (the above identity is easily
obtained using the definition of Moser functions (1.2) and the Newton
formula). In the case of Lorentz-Sobolev spaces, the functionals must
be modified so that they correspond to the norm (1.4). The resulting
functionals are given in (5.1) (we also had to overcome the fact that
the weight t 7→ t(q/n)−1 has a bit of wild behavior near the origin).

Note that our functionals do not use the non-increasing rearrange-
ment (surprisingly, as it is involved in norm (1.4)). This defect is re-
paired by the fact that −g′s is positive and decreasing on (sR,R), and
the Hardy-Littlewood inequality ensures that Ls(u) is large only if −h′
behaves in a similar manner.

In Section 6, we present the conclusion of the proof of Theorem 1.5.
The basic strategy of the proof is inspired by [1]; the problems arising
when dealing with nontrivial limit functions are solved in the same
way as [3]. However, some problems related to the non-increasing
rearrangement involved in the norm (1.4) occurred, and the solution to
these problems required some new ideas.
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2. Preliminaries.

2.1. Notation. If u is a measurable function on Ω, then, by u = 0
(or u ̸= 0), we mean that u is equal (or not equal) to the zero function
almost everywhere on Ω.

By B(x,R), we denote an open Euclidean ball in Rn centered at
x ∈ Rn with radius R > 0. If x = 0, we simply write B(R).

We write that uk⇀u in W 1
0L

n,q(Ω), q ∈ (1,∞), if∫
Ω

∂uk
∂xi

v dx −→
∫
Ω

∂u

∂xi
v dx,

for every v ∈ Ln
′,q′(Ω) and i = 1, . . . , n.

By C, we denote a generic positive constant which may depend upon
n, p, q and R. This constant may vary from expression to expression,
as usual. Occasionally we use that, for every ϵ > 0, something is true.
Then, the constant C in such a case may also depend upon a fixed
ϵ > 0.

2.2. Non-increasing rearrangement. The non-increasing rearrange-
ment f∗ of a measurable function f on Ω is

f∗(t) = sup{s ≥ 0 : |{x ∈ Ω : |f(x)| > s}| > t} for t ∈ (0,∞).

We shall use the Hardy-Littlewood inequality for measurable func-
tions ∫

Ω

|f(x)g(x)| dx ≤
∫ |Ω|

0

f∗(t)g∗(t) dt.

When dealing with a radial function u on B(R), it is often convenient
to work with its one-dimensional representative h : (0, R) 7→ [0,∞),
defined by

(2.1) h(|x|) := u(x) for 0 < |x| < R.

Remark 2.1. For every radial function u ∈ W 1,1
0 (Ω), its one-

dimensional representative h from (2.1) is locally absolutely continuous
on (0, R), and thus, differentiable almost everywhere.
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Proof. The proof easily follows from the fact that every function
from W 1,1(Ω) satisfies ACL, i.e., it is absolutely continuous on almost
all lines parallel to coordinate axes, see [10, subsection 1.1.3]. �

Finally, let us recall an inequality obtained in [12]. If Ω is open and

u ∈W 1,1
0 (Ω), then, for every t ∈ (0, |Ω|), we have

(2.2)

u∗(t) ≤ 1

nω
1/n
n

=

(
t−1/n′

∫ t

0

|∇u|∗(s) ds+
∫ |Ω|

t

|∇u|∗(s)s−1/n′
ds

)
.

If Ω is bounded, combining (2.2) with Hölder’s inequality,

||∇u||n,q ≤ 1 and ((1/q − 1/n)q′ + 1)(1/q′) = (n− 1)/n,

we obtain
(2.3)

u∗(t) ≤ 1

nω
1/n
n

(
t−1/n′

∫ t

0

|∇u|∗(s)s1/n−1/qs1/q−1/n ds

+

∫ |Ω|

t

|∇u|∗(s)s1/n−1/qs(1/q)−1 ds

)
≤ 1

nω
1/n
n

(
t−1/n′

(∫ t

0

(|∇u|∗(s)s1/n−1/q)qds

)1/q

×
(∫ t

0

(s1/q−1/n)q
′
ds

)1/q′

+

(∫ |Ω|

t

(|∇u|∗(s)s1/n−1/q)q ds

)1/q

×
(∫ |Ω|

t

(s1/q−1)q
′
ds

)1/q′)
≤ 1

nω
1/n
n

(
||∇u||n,qt−(n−1)/n

(
1

(1/q−1/n)q′+1

[
s(1/q−1/n)q′+1

]t
0

)1/q′

+ ||∇u||n,q
(
[log(s)]

|Ω|
t

)1/q′)
≤ C +

1

nω
1/n
n

log1/q
′
(
|Ω|
t

)
.
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Note that (2.3) implies that, for any ε > 0, we have

u∗(t) ≤

{
(1 + ε)n−1ω

−1/n
n log1/q

′
(|Ω|/t) for t sufficiently small,

C otherwise.

3. Uniform convexity. Clarkson [6] defined uniform convexity as
follows.

Definition 3.1. A Banach space is uniformly convex if, for every
ε > 0, there is a δ > 0 with the property that, if ||f || = ||g|| = 1
and ||f − g|| > ε, then ||(f + g)/2|| < 1− δ.

In this paper, uniform monotonicity is also used.

Definition 3.2. A Banach space is uniformly monotone if, for every
ε > 0, there is an η > 0 with the property that, if 0 ≤ g ≤ f , ||f || = 1
and ||g|| > ε, then ||f − g|| < 1− η.

It is an easy exercise to show that uniform convexity implies uniform
monotonicity.

Halperin [8] proved that Lorentz spaces have the following property.

Theorem 3.3. Let 1 < q ≤ p < ∞. For every ε > 0 and η ∈ (0, 1),
there is a δ > 0 with the property that, whenever two non-negative
Lorentz functions satisfy ||u||p,q = ||v||p,q = 1 and (1 − η)u(x) ≥ v(x)
in some set G with ||uχG||p,q > ε, then ||(u+ v)/2||p,q < 1− δ.

Our aim is to prove that the Halperin property implies uniform
convexity.

Corollary 3.4. If 1 < q ≤ p <∞, then the Lorentz norm is uniformly
convex.

Proof. Step 1. Uniform convexity for non-negative functions. Fix
ε > 0, set η = ε, and let δ > 0 be the constant given by Theorem 3.3.
Let u and v be two non-negative Lorentz functions satisfying ||u||p,q =
||v||p,q = 1 and ||(u+v)/2||p,q ≥ 1−δ. Hence, the set Gu := {(1−ε)u ≥
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v} satisfies ||uχGu ||p,q ≤ ε, and the set Gv := {(1 − ε)v ≥ u} satisfies
||vχGv

||p,q ≤ ε. Thus,

||u− v||p,q = ||(u− v)χGu ||p,q + ||(v − u)χGv ||p,q
+ ||(u− v)χΩ\(Gu∪Gv)||p,q

≤ ||uχGu ||p,q + ||vχGv ||p,q + ||εu||p,q + ||εv||p,q
≤ 4ε.

Step 2. Uniform monotonicity. Fix ε ∈ (0, 1), let δ > 0 be the
number corresponding to ε/2 in the definition of uniform convexity
(for non-negative functions), and let f and g be the same as in
Definition 3.2. Set u = f and v = (f − g)/||f − g||p,q ≥ 0. We assume
that ||f − g||p,q > 1 − (ε/2); otherwise, we complete the proof of the
uniform monotonicity, setting η = ε/2.

Hence,

||u− v||p,q =
∥∥∥∥(1− 1

||f − g||p,q

)
f +

1

||f − g||p,q
g

∥∥∥∥
p,q

=
1

||f − g||p,q
||g − (1− ||f − g||p,q)f ||p,q

≥ ||g − (1− ||f − g||p,q)f ||p,q
≥ ||g||p,q − (1− ||f − g||p,q)||f ||p,q

> ε− 1

2
ε =

1

2
ε.

Thus, by uniform convexity for non-negative functions,

1− δ >

∥∥∥∥12 (u+ v)

∥∥∥∥
p,q

=
1

||f − g||p,q

∥∥∥∥ ||f − g∥p,q + 1

2
f − 1

2
g

∥∥∥∥
p,q

≥ 1

||f − g||p,q

∥∥∥∥ ||f − g||p,q + 1

2
f − ||f − g||p,q + 1

2
g

∥∥∥∥
p,q

=
||f − g||p,q + 1

2
.

Therefore, ||f − g||p,q < 1− 2δ, and we can set η = 2δ.

Step 3. Uniform convexity for general functions. Fix ε > 0, and
let η > 0 be the number from Step 2 corresponding to ε/3. Let u
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and v be two Lorentz functions satisfying ||u||p,q = ||v||p,q = 1 and
||u− v||p,q > ε. We distinguish between two cases.

Case 1. If || |u| − |v| ||p,q > min{ε/6, η/2}, then, by Step 1, we can
use the uniform convexity for non-negative functions |u|, |v| to obtain
δ > 0 such that

1− δ >

∥∥∥∥12(|u|+ |v|)
∥∥∥∥
p,q

≥
∥∥∥∥12(u+ v)

∥∥∥∥
p,q

This completes the first case.

Case 2. Let || |u| − |v| ||p,q ≤ min{ε/6, η/2}. We simply suppose
that u ≥ 0 and v = v+ − v−, where v+, v− ≥ 0. To simplify notation,
write u = u1 + u2, where u1 = uχ{v≥0} and u2 = uχ{v<0}. Now, as
|| |u| − |v| ||p,q ≤ ε/6, we have

ε < ||u− v||p,q
= ||u1 + u2 − v+ + v−||p,q
≤ ||u1 − v+||p,q + ||u2 − v−||p,q + 2||v−||p,q

≤ ε

6
+
ε

6
+ 2||v−||p,q.

Hence, ||v−||p,q > ε/3, and thus, uniform monotonicity implies ||v+||p,q
≤ 1− η, see the first line of Step 3. Therefore, as || |u| − |v| ||p,q ≤ η/2,∥∥∥∥12 (u+ v)

∥∥∥∥
p,q

=
1

2
||u1 + u2 + v+ − v−||p,q

≤ 1

2
(||u1 − v+||p,q + 2||v+||p,q + ||u2 − v−||p,q)

≤ 1

2

(
η

2
+ 2(1− η) +

η

2

)
= 1− 1

2
η.

This completes the second case. �

Remark 3.5. If 1 ≤ p < q ≤ ∞, then the Lorentz quasi-norm is not
uniformly convex.
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Proof. Fix δ > 0 very small. Define u, v : [0, 1) 7→ [0,∞) by

u(t) =

{
1 + δ for t ∈ [0, 1/2),

1− δ for t ∈ [1/2, 1)

and

v(t) =

{
1− δ for t ∈ [0, 1/2),

1 + δ for t ∈ [1/2, 1).

Straightforwardly, we have (u+ v)/2 ≡ 1.

Now, let us estimate the quasi-norms.

Case q ∈ (p,∞). We have:∥∥∥∥u+ v

2

∥∥∥∥q
p,q

=

∫ 1

0

t(q/p)−1 dt =
p

q
[tq/p]10 =

p

q

and

||u||qp,q = ||v||qp,q =
∫ 1/2

0

t(q/p)−1(1 + δ)qdt+

∫ 1

1/2

t(q/p)−1(1− δ)qdt

=
p

q
(1 + δ)q[tq/p]

1/2
0 +

p

q
(1− δ)q[tq/p]11/2

=
p

q

(
(1 + δ)q

(
1

2

)q/p
+ (1− δ)q

(
1−

(
1

2

)q/p))
.

Hence, if δ > 0 is small enough, we have

q

p

(
||u||qp,q −

∥∥∥∥u+ v

2

∥∥∥∥q
p,q

)

= (1 + δ)q
(
1

2

)q/p
+ (1− δ)q

(
1−

(
1

2

)q/p)
− 1

=

(
1

2

)q/p
(1 + qδ − 1 + qδ + o(δ)) + 1− qδ + o(δ)− 1

= qδ

((
1

2

)(q/p)−1

− 1 + o(1)

)
.

Now, since (1/2)(q/p)−1 < 1, setting ũ = u/||u||p,q and ṽ = v/||v||p,q,
we obtain ∥ũ∥ = ∥ṽ∥ = 1 and ||(ũ+ ṽ)/2|| > 1. Nevertheless, uniform
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convexity requires the last number to be bounded away from 1 from
below.

Case q = ∞. In this case, we easily see that∥∥∥∥u+ v

2

∥∥∥∥
p,∞

= sup
t∈(0,1)

tq/p = 1,

and, if δ is small enough, we obtain

||u||p,∞= ||v||p,∞=max

{
sup

t∈(0,1/2)

t1/p(1+δ), sup
t∈(1/2,1)

t1/p(1−δ)
}
=1−δ.

Thus, the proof is finished. �

It is a well-known fact that, if a sequence converges weakly in a
uniformly convex Banach space, that is, uk⇀u and ||uk|| → ||u||
(where ∥ · ∥ is a norm in this space), then uk → u (strong norm
convergence). We shall need a slight modification of this property.

Lemma 3.6. In every uniformly convex Banach space the following
assertion holds. For every ε > 0, there is a δ ∈ (0, 1) such that

uk⇀u, ||u|| = 1, ||uk||≤1+δ for every k

=⇒||uk−u||<ε for every k sufficiently large.

Proof. The proof is straightforward. �

4. Moser functions. In this section, we study properties of the
Moser functions defined by (1.6). We begin with the estimate of the
Dirichlet norm. We have

(4.1) |∇ms|(x) =

{
0 for 0 ≤ |x| < sR,

n−1/qω
−1/n
n log−1/q( 1s )1/|x| for sR < |x| < R,

and thus,

(4.2) |∇ms|∗(t) =


n−1/qω

−1/n
n log−1/q( 1s )1/((t/ωn) + snRn)1/n

for 0 < t < ωnR
n − ωns

nRn,

0 for ωnR
n − ωns

nRn < t < ωnR
n;

indeed, the value of |∇ms|∗(t) corresponds to the value of |∇ms| on
the sphere ∂B(ϱ), where ϱ > 0 satisfies t = |B(ϱ)| − |B(sR)| =
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ωn(ϱ
n − snRn). Hence,

∥∇ms∥qn,q =
∫ ωnR

n

0

tq/n(|∇ms|∗(t))q
dt

t

=
1

n
log−1

(
1

s

)∫ ωnR
n−ωns

nRn

0

tq/n
(

1

t+ ωnsnRn

)q/n
dt

t
.

Applying the change of variables t = ωns
nRny we infer for s > 0 small

enough such that log(log(1/s)) > 0,

∥∇ms∥qn,q = log−1

(
1

sn

)∫ s−n−1

0

(
y

y + 1

)q/n
dy

y

= log−1

(
1

sn

)(∫ log(log(1/s))

0

+

∫ s−n−1

log(log(1/s))

)
(4.3)

= log−1

(
1

sn

)
(I1 + I2).

Next,

0 < I1 <

∫ log(log(1/s))

0

y(q/n)−1 dy =
n

q
logq/n

(
log

(
1

s

))
,

and thus, I1 log
−1(1/sn) → 0 as s→ 0+.

For the second integral, we have

I2 ≤
∫ s−n−1

log(log(1/s))

dy

y
= log(s−n − 1)− log

(
log

(
log

(
1

s

)))
and contrariwise,

I2 ≥
(

log(log(1/s))

log(log(1/s)) + 1

)q/n ∫ s−n−1

log(log(1/s))

dy

y

=

(
1− 1

log(log(1/s))+1

)q/n(
log(s−n−1)−log

(
log

(
log

(
1

s

))))
.

Thus, I2 log
−1(1/sn) → 1 as s→ 0+. Hence, we obtain from (4.3),

(4.4) ∥∇ms∥n,q
s→0+−→ 1.



772 ROBERT ČERNÝ

Note that, by a minor modification of the above procedure, it can be
shown that

∫ ωnR
n−ωns

nRn

ωnsn logn(1/s)Rn−ωnsnRn

tq/n(|∇ms|∗(t))q
dt

t

(4.5)

= log−1

(
1

sn

)∫ s−n−1

logn(1/s)−1

(
y

y + 1

)q/n
dy

y

s→0+−→ 1.

Furthermore, as |∇ms|∗ is uniformly bounded for s bounded away from
zero, see (4.2), we obtain from (4.4),

(4.6) ∥∇ms∥n,q ≤ C for every s ∈ (0, 1).

It can also be seen from (1.6) and (4.1) that the Moser functions
concentrate at the origin in the following sense:

η > 0 =⇒ sup
η<|x|<R

|∇ms(x)|
s→0+−→ 0 and sup

η<|x|<R
|ms(x)|

s→0+−→ 0.

We also have, for any sequence sk ∈ (0, 1), sk → 0,

msk −→ 0 on B(R) \ {0} and msk ⇀ 0 in W 1
0L

n,q(B(R)).

5. Linear functionals. In this section, we use the following nota-
tion. The function h : (0, R) 7→ R is the one-dimensional representative
of a radial function u ∈ W 1

0L
n,q(B(R)), and functions gs : (0, R) 7→ R,

s ∈ (0, 1), represent ms, that is,

h(|x|) = u(x) and gs(|x|) = ms(x)

for x ∈ B(R) \ {0}.

For every s ∈ (0, 1/e), define a linear functional Ls acting on the radial
function u ∈W 1

0L
n,q(B(R)) by

Ls(u) =

∫ ωnR
n−ωns

nRn

ωnsn logn(1/s)Rn−ωnsnRn

tq/n
∣∣∣∣g′s(( t

ωn
+ snRn

)1/n)∣∣∣∣q−2

(5.1)

× g′s

((
t

ωn
+ snRn

)1/n)
h′
((

t

ωn
+ snRn

)1/n)
dt

t
.
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Changing the variables so that z = ((t/ωn) + snRn)1/n (hence, t =
ωnz

n − ωns
nRn and dt/dz = nωnz

n−1) and using (1.6) and (4.1), we
infer

Ls(u)=

∫ R

s log(1/s)R

(ωnz
n−ωnsnRn)q/n−1|g′s(z)|q−2g′s(z)h

′(z)nωnz
n−1dz

(5.2)

= −
∫ R

s log(1/s)R

(ωnz
n − ωns

nRn)q/n−1

×
(
n−1/qω−1/n

n log−1/q

(
1

s

)
1

z

)q−1

h′(z)nωnz
n−1dz

= −ω1/n
n n1/qlog−(q−1)/q

(
1

s

)∫ R

s log(1/s)R

(
1− snRn

zn

)q/n−1

h′(z) dz

= − 1

gs(sR)

∫ R

s log(1/s)R

(
1− snRn

zn

)q/n−1

h′(z) dz.

Hence, we have (recall that q ≤ n and h(z) → 0 as z → R−)

h

(
s log

(
1

s

)
R

)
= −

∫ R

s log(1/s)R

h′(z) dz

(5.3)

≤ Ls(u)gs(sR) = Ls(u)n
−1/qω−1/n

n log(q−1)/q

(
1

s

)
.

On the other hand, from (5.2), we also have

h

(
s log

(
1

s

)
R

)
≥

(
1− snRn

(s log(1/s)R)n

)1−q/n

Ls(u)gs(sR)(5.4)

≥
(
1− 1

logn(1/s)

)
Ls(u)gs(sR).
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Let ψ be the inverse function to s 7→ s log(1/s) on (0, 1/e). From (5.3),
we obtain

h(sR) ≤ Lψ(s)(u)n
−1/qω−1/n

n log(q−1)/q

(
1

ψ(s)

)(5.5)

≤ Lψ(s)(u)n
−1/qω−1/n

n log(q−1)/q

(
1

s

)(
1 +

C

log1/2(1/s)

)
.

Indeed, for s > 0 very small, we have

s log−2(1/s) < ψ(s) < s log−1(1/s),

and thus,

log

(
1

ψ(s)

)
≤ log

(
1

s log−2(1/s)

)
= log

(
1

s

)
+ log

(
log2

(
1

s

))
= log

(
1

s

)
+ 2 log

(
log

(
1

s

))
= log

(
1

s

)(
1 +

2 log(log(1/s))

log(1/s)

)
≤ log

(
1

s

)(
1 +

1

log1/2(1/s)

)
.

Lemma 5.1. Ls(u) ≤ C∥∇u∥n,q and Ls(u) ≤ (1 + o(s))∥∇u∥n,q as
s→ 0+.

Proof. Using (4.4), (5.1), Hölder’s inequality, q ≤ n, the relation
between |∇ms| and |∇ms|∗ (compare (4.1) and (4.2)) and the Hardy-
Littlewood inequality, we obtain

Ls(u) ≤
∫ ωnR

n

0

t(q/n)−1

∣∣∣∣g′s(( t

ωn
+ snRn

)1/n)∣∣∣∣q−1

×
∣∣∣∣h′(( t

ωn
+ snRn

)1/n)∣∣∣∣ dt
=

∫ ωnR
n

0

(
tq/n−1

)(q−1)/q

(|∇ms|∗(t))q−1

(
tq/n−1

)1/q
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×
∣∣∣∣h′(( t

ωn
+ snRn

)1/n)∣∣∣∣ dt
≤ ∥∇ms∥q−1

n,q

(∫ ωnR
n

0

tq/n−1

∣∣∣∣h′(( t

ωn
+ snRn

)1/n)∣∣∣∣qdt)1/q

≤ ∥∇ms∥q−1
n,q

(∫ ωnR
n

0

tq/n−1((|∇u|χB(R)\B(sR))
∗(t))qdt

)1/q

= ∥∇ms∥q−1
n,q ∥∇u∥n,q.

Now, the results follow from (4.4) and (4.6), respectively. �

Lemma 5.2. For every fixed radial Lorentz-Sobolev function u, we
have Ls(u) → 0 as s→ 0+.

Proof. Fix ε > 0. By the absolute continuity of the Lebesgue
integral, we can find τ ∈ (0, 1) so small that

(5.6)

∫ τ

0

t(q/n)−1(|∇u|∗(t))qdt < εq.

Next, from (4.1) and (5.1),

|Ls(u)|≤
∫ ωnR

n−ωns
nRn

ωnsn logn(1/s)Rn−ωnsnRn

t(q/n)−1

(
n−1/qω

−1/n
n log−1/q(1/s)

(t/ωn + snRn)1/n

)q−1

×
∣∣∣∣h′(( t

ωn
+ snRn

)1/n)∣∣∣∣ dt ≤ C log−(q−1)/q

(
1

s

)
×
∫ ωnR

n−ωns
nRn

ωnsn logn(1/s)Rn−ωnsnRn

t(1/n)−1

∣∣∣∣h′(( t

ωn
+ snRn

)1/n)∣∣∣∣ dt
= C log−(q−1)/q

(
1

s

)(∫ τ

ωnsn logn(1/s)Rn−ωnsnRn

+

∫ ωnR
n−ωns

nRn

τ

)
= C log−(q−1)/q

(
1

s

)
(I1 + I2).

From (5.6), Hölder’s inequality and the fact that the non-increasing re-
arrangement of the function |h′((·/ωn+snRn)1/n)| is (|∇u|χB(R)\B(sR))

∗,
we obtain for s sufficiently small,
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I1 ≤
∫ τ

ωnsn logn(1/s)Rn−ωnsnRn

t1/n−1|∇u|∗(t) dt

≤
(∫ τ

0

(|∇u|∗(t)t(1/n)−(1/q))qdt

)1/q

×
(∫ τ

ωnsn logn(1/s)Rn−ωnsnRn

(t1/q−1)q
′
dt

)1/q′

≤ ε([log(t)]τωnsn logn(1/s)Rn−ωnsnRn)1/q
′
≤ Cε log1/q

′
(
1

s

)
.

For the second integral, use finiteness of the Dirichlet norm of u and
Hölder’s inequality in order to obtain

I2 ≤
∫ ωnR

n−ωns
nRn

τ

t1/n−1|∇u|∗(t) dt

≤
(∫ ωnR

n

0

(|∇u|∗(t)t1/n−(1/q))qdt

)1/q(∫ ωnR
n

τ

(t1/q−1)q
′
dt

)1/q′

≤ C([log(t)]ωnR
n

τ )1/q
′
= C log1/q

′
(
1

τ

)
.

Therefore,

|Ls(u)| ≤ C log−(q−1)/q

(
1

s

)
(I1 + I2)

≤ Cε+ C log−(q−1)/q

(
1

s

)
log1/q

′
(
1

τ

)
,

and the result follows easily. �

Lemma 5.3. If uk⇀u, ∥∇uk∥Ln,q ≤ 1 and lim supk→∞ JP (uk) >
JP (u), then there is a subsequence {ukm} ⊂ {uk} and a sequence
{sm} ⊂ (0, 1) such that sm → 0 and (recall that θ = ||∇u||qn,q)

lim inf
m→∞

Lsm(ukm) ≥ (1− θ)1/q.

Proof. Proceed by contradiction. Suppose that there are δ > 0,
k0 ∈ N and ε > 0 such that

(5.7) Ls(uk) ≤ (1− 2ε)(1− θ)1/q
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for every s < 2δ and every k ≥ k0. Furthermore, suppose that δ is
small enough such that

(5.8) (1− 2ε)

(
1 +

C

log1/2(1/δ)

)
≤ 1− ε,

where the constant C is a fixed number obtained from (5.5).

Passing to a subsequence, also suppose that uk → u almost every-
where in B(R). By (1.5) and (1.8), we have

JP (uk) =

∫
B(R)

exp ((nω1/n
n P |uk|)q

′
) dx

= nωn

∫ R

0

exp ((nω1/n
n (1− θ)−1/qhk(y))

q′)yn−1dy

= nωnR
n

∫ 1

0

exp ((nω1/n
n (1− θ)−1/qhk(Rz))

q′)zn−1dz

= nωnR
n

(∫ δ

0

+

∫ 1

δ

)
.

We shall obtain a common majorant for the above integrands. First,
from (5.5) and Lemma 5.1, we obtain

exp((nω1/n
n (1− θ)−1/qhk(Rz))

q′) zn−1 ≤ C for z ∈ (δ, 1).

Thus, we have obtained an integrable majorant on (δ, 1) in a straight-
forward manner.

The next computation based on (5.5), (5.7) and (5.8) gives us an
integrable majorant on (0, δ), and it also proves the integrability of the
majorant. We have∫ δ

0

exp ((nω1/n
n (1− θ)−1/qhk(Rz))

q′)zn−1dz

≤
∫ δ

0

exp

((
nω1/n

n (1−θ)−1/qLψ(z)(uk)n
−1/qω−1/n

n log(q−1)/q

(
1

z

)
×

(
1 +

C

log1/2(1/z)

))q′)
zn−1dz

=

∫ δ

0

exp

(
n(1− θ)−q

′/qLq
′

ψ(z)(uk) log

(
1

z

)
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×
(
1 +

C

log1/2(1/z)

)q′)
zn−1dz

≤
∫ δ

0

exp

(
n(1− 2ε)q

′
log

(
1

z

)(
1 +

C

log1/2(1/z)

)q′)
zn−1dz

≤
∫ δ

0

exp

(
n(1− ε)q

′
log

(
1

z

))
zn−1dz

≤
∫ δ

0

zn−1−n(1−ε)q
′

z ≤ C.

Hence, an integrable majorant has been obtained, and thus, the
Lebesgue dominated convergence theorem can be used in order to ob-
tain JP (uk) → JP (u), a contradiction. �

Lemma 5.4. Let {sk} ⊂ (0, 1), sk → 0, and let {uk} ⊂W 1
0L

n,q(B(R))
be radial functions satisfying ||∇uk||n,q ≤ (1 + o(1)). If Lsk(uk) → 1,
then

uk −msk −→ 0 in W 1
0L

n,q(B(R)).

Proof. The proof easily follows from uniform convexity of the norm
|| · ||n,q applied to gradients of functions uk and msk . We now give the
details.

First, from Lemma 5.1, we infer that

||∇uk||n,q −→ 1.

Now, since Lsk(msk) → 1 (see (4.5) and (5.1)) and ||∇msk ||n,q → 1
(see (4.4)) from Lsk(uk) → 1 and ||∇uk||n,q → 1, we obtain

Lsk

(
(msk/||∇msk ||n,q) + (uk/||∇uk||n,q)

2

)
=

1

2

(
Lsk

(
msk

||∇msk ||n,q

)
+ Lsk

(
uk

||∇uk||n,q

))
−→ 1.

Combining this result with Lemma 5.1 and the triangle inequality, we
obtain ∥∥∥∥ (∇msk/||∇msk ||n,q) + (∇uk/||∇uk||n,q)

2

∥∥∥∥
n,q

−→ 1.
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Therefore, uniform convexity of the norm || · ||n,q implies∥∥∥∥ ∇msk

||∇msk ||n,q
− ∇uk

||∇uk||n,q

∥∥∥∥
n,q

−→ 0.

Finally, since ||∇msk ||n,q → 1 and ||∇uk||n,q → 1, we have

||∇msk −∇uk||n,q

≤
∥∥∥∥∇msk − ∇msk

||∇msk ||n,q

∥∥∥∥
n,q

+

∥∥∥∥ ∇msk

||∇msk ||n,q
− ∇uk

||∇uk||n,q

∥∥∥∥
n,q

+

∥∥∥∥ ∇uk
||∇uk||n,q

−∇uk
∥∥∥∥
n,q

−→ 0.

Thus, we are done. �

6. Proof of Theorem 1.5.

Proof of Theorem 1.5. The strategy of the proof was taken from the
proof of [3, Theorem 1.3], which has three steps. However, there are
still some technical difficulties that must be overcome. These occur in
the case where the limit function u is nontrivial, and they are caused
by the fact that, in the Lebesgue spaces for two functions with disjoint
support, we have

||f + g||p = (||f ||pp + ||g||pp)1/p,

while a corresponding formula does not hold in Lorentz spaces in
general. However, it was observed [4] that, if {fk} is a concentrating
sequence and {gk} is a sequence with nice behavior, then we have

||fk + gk||n,q − (||fk||qn,q + ||gk||qn,q)1/q
k→∞−→ 0.

This principle is used in the proofs of inequalities (6.6) and (6.7) below.
The proof is divided into five parts. Moreover, inequalities (6.6) and
(6.7), which belong to Step 2, are proved separately, at the end of the
proof of Theorem 1.5.

Assume that {uk} satisfies the assumptions of Theorem 1.5, θ ∈ [0, 1)
and lim supk→∞ JP (uk) > JP (u). Passing to a subsequence, suppose
that the limit exists and limk→∞ JP (uk) > JP (u). Again, passing to a
subsequence, also suppose that uk → u in Ln,q(Ω) and uk → u almost
everywhere in Ω.
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Define the truncation operators TL and TL acting on any function
v ∈W 1

0L
n,q(B(R)) by

TL(v) = min{|v|, L} sign(v) and TL(v) = v − TL(v).

Note that the weak convergence uk⇀u implies TL(uk)⇀TL(u) and
TL(uk)⇀TL(u) (indeed, TL(uk) is bounded; hence, it has a weakly
convergent subsequence, and the convergence almost everywhere im-
plies that the weak limit must be TL(u), similarly for TL(uk)). We
often use the following, simple observation. Since q ≤ n, we have that
t 7→ t(q/n)−1 is non-increasing on (0,∞), and thus,

∫ |B(R)|

0

tq/n−1(|∇v|∗(t))qdt ≤
∫ |B(R)|

0

tq/n−1(|∇TL(v)|∗(t))qdt

(6.1)

+

∫ |B(R)|

0

tq/n−1(|∇TL(v)|∗(t))qdt.

Step 1. Using Lemma 5.3, we find a sequence {sk} ⊂ (0, 1), sk → 0,
such that

(6.2) lim inf
k→∞

Lsk(uk) ≥ (1− θ)1/q,

(passing to a subsequence of {uk}, if necessary). Next, inequality (6.2)
and Lemma 5.2 imply

(6.3) lim inf
k→∞

Lsk(uk − u) ≥ (1− θ)1/q.

Step 2. Here, we prove

(6.4) lim sup
k→∞

||∇(uk − u)||n,q ≤ (1− θ)1/q.

If θ = 0, the proof trivially follows from the assumption ||∇uk||n,q ≤ 1,
k ∈ N. Thus, let us suppose that θ ∈ (0, 1) in the rest of this step, as
well as in the proofs of inequalities (6.6) and (6.7).

Fix ε > 0. Also fix L > 0 large enough such that

(6.5)

∫ |B(R)|

0

tq/n−1(|∇TL(u)|∗(t))qdt = τ,

where τ ∈ (0,min{θ, 1− θ}/8) is a small number, specified below.
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We have

||∇(uk − u)||n,q ≤ ||∇(TL(uk)− TL(u))||n,q
+ ||∇TL(uk)||n,q + ||∇TL(u)||n,q

= I1 + I2 + I3.

If τ is small enough, then (6.5) implies that I3 < ε.

Next, we claim that, for k large enough, the following inequality
holds

(6.6)

∫ |B(R)|

0

tq/n−1(|∇TL(uk)|∗(t))qdt ≤ 1− θ + 3τ.

We postpone the proof of (6.6). From (6.6), we observe that, if τ is
small enough, we also have I2 < (1− θ)1/q + ε.

We now proceed to the proof that I1 < ε. This is based on Lem-
ma 3.6 (recall that we have TL(uk)⇀TL(u)). Since the norm is
homogeneous, we have by (1.8), (6.1) and (6.5),

θ1/q= ||∇u||n,q≥||∇TL(u)||n,q≥(||∇u||qn,q−||∇TL(u)||qn,q)1/q=(θ−τ)1/q,

and, since τ is small enough, it remains to prove (so that Lemma 3.6
implies ||∇(TL(uk)− TL(u))||n,q < ε)

(6.7) ||∇TL(uk)||n,q ≤ (θ + ζ)1/q,

where ζ is a small number dependent upon ε. We postpone the proof
of (6.7).

Thus, when (6.6) and (6.7) are proved, we shall obtain

I1 + I2 + I3 ≤ ε+ (1− θ)1/q + ε+ ε,

which concludes the proof of (6.4). �

Step 3. Our aim is to prove

(6.8) (1− θ)−1/q(uk − u)−msk
k→∞−→ 0 in W 1

0L
n,q(B(R)).

Combining (6.3) and (6.4) with Lemma 5.1, we obtain

Lsk((1− θ)−1/q(uk − u))
k→∞−→ 1
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and

||(1− θ)−1/q∇(uk − u)||n,q
k→∞−→ 1.

Now, Lemma 5.4 concludes the proof of (6.8).

In order to complete the proof of Theorem 1.5, it remains to prove
inequalities (6.6) and (6.7).

Proof of (6.6). This proof is based upon the method used in [4,
Proof of Theorem 1.3 (iii)]. We omit several detailed computations;
we recall the main ideas for the convenience of the reader.

First, by (6.1) and (6.5), we have ||∇TL(u)||qn,q ≥ θ − τ . Thus,
we can use absolute continuity of the Lebesgue integral to obtain
σ ∈ (0, |B(R)|) small enough such that

(6.9)

∫ |B(R)|

σ

t(q/n)−1(|∇TL(u)|∗(t))qdt ≥ θ − 2τ.

Next, we decompose the interval [σ, |B(R)|] into very short subintervals
[aj−1, aj ], j = 1, . . . ,m, so that the function t 7→ t(q/n)−1 is extremely
close to a constant on each subinterval. Furthermore, let Gj , j =
1, . . . ,m, be disjoint measurable subsets of B(R) satisfying |Gj | =
aj − aj−1 and chosen so that the values of |∇TL(u)| on Gj correspond
to the values of |∇TL(u)|∗ on [aj−1, aj ]. Let G be the union of these
sets. Now, using (6.9), the weak lower semicontinuity of the Lq-norm
(since q ≤ n, we have that Ln,q is embedded into Lq) on each set Gj ,

the fact that t 7→ t(q/n)−1 is almost constant on each [aj−1, aj ] and the
Hardy-Littlewood inequality, we obtain

(6.10)

∫ |B(R)|

σ

tq/n−1(|∇(TL(uk)|G)|∗(t− σ))qdt ≥ θ − 3τ,

for k large enough.

Finally, by the Chebyshev inequality, if L is large enough, then
| suppTL(uk)| < σ for every k ∈ N. This property, the Hardy-
Littlewood inequality, and the fact that t 7→ t(q/n)−1 is non-increasing,
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imply ∫ |B(R)|

0

tq/n−1(|∇uk|∗(t))qdt(6.11)

≥
∫ σ

0

tq/n−1(|∇(TL(uk))|∗(t))qdt

+

∫ |B(R)|

σ

tq/n−1(|∇(TL(uk))|∗(t− σ))qdt.

Now, (6.6) follows from (6.10), (6.11) and the assumption ||∇uk||n,q≤ 1.
�

Proof of (6.7). We restrict to the case q < n (we are not concerned
with q = n since the Sobolev case of Theorem 1.5 is part of Theo-
rem 1.3).

Fix ζ > 0. By uniform monotonicity of the Lorentz norm, we may
find γ > 0 small enough such that

0 ≤ g ≤ f, ||f ||n,q = 1, ||g||n,q >
(
ζ

2

)1/q

(6.12)

=⇒ ||f − g||n,q < (1− 3γ)1/q.

Also suppose that

(6.13) γ ≤ ζ

4
.

Next, since we have (6.2), TL(uk) ≥ uk − L and, since an additive
constant is irrelevant for the behavior of Ls with s very small (observe
(5.3) and (5.4)), we obtain, for k large enough,

Lsk(TL(uk)) ≥ (1− θ − τ)1/q.

Thus, by Lemma 5.1, we have for k large enough,

(6.14) ||∇TL(uk)||n,q ≥ (1− θ − 2τ)1/q.

Recall that τ > 0 is a very small number and can be made as small as
desired.



784 ROBERT ČERNÝ

Next, let ξ > 0 be small enough such that∫ |B(R)|

0

tq/n−1ξqdt ≤ γ,

and, for every k ∈ N, set

ϱk := |{|∇TL(uk)| > ξ}|.

From the choice of ξ and (6.14), we may infer

(6.15)

∫ ϱk

0

tq/n−1(|∇TL(uk)|∗(t))qdt ≥ 1− θ − 2τ − γ.

Next, we claim that, by passing to a subsequence, we obtain ϱk → 0 as
k → ∞. We prove this claim by contradiction. Suppose that there are
ϱ0 > 0 and k0 ∈ N such that ϱk > ϱ0 for every k > k0. This implies,
for every k > k0,∫ |B(R)|

ϱ0/2

tq/n−1(|∇TL(uk)|∗(t))qdt ≥
∫ ϱ0

ϱ0/2

tq/n−1ξqdt = C.

Thus, (6.6) yields∫ ϱ0/2

0

tq/n−1(|∇TL(uk)|∗(t))qdt ≤ 1− θ + 3τ − C,

which means that, if τ is sufficiently small, then there is a β ∈ (0, 1/2)
such that, for every k > k0,

(6.16)

∫ ϱ0/2

0

tq/n−1(|∇TL(uk)|∗(t))qdt ≤ (1− θ)(1− 2β).

Now, follow the computation in (2.3), where the integral over (t,Ω)
is decomposed into the integral over (t, ϱ0/2) and the integral over
(ϱ0/2, |Ω|), and apply estimate (6.16) after Hölder’s inequality when
estimating the integral over (t, ϱ0/2). We obtain, for t small enough,

u∗k(t) ≤ L+ (TL(uk))
∗(t)

≤ L+ C +
((1− θ)(1− 2β))1/q

nω
1/n
n

log1/q
′
(
|Ω|
t

)
+ C

= C +
((1− θ)(1− 2β))1/q

nω
1/n
n

log1/q
′
(
|Ω|
t

)
.
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Therefore, we have an integrable majorant of the integrand of JP (uk).
Indeed, for suitably small t0 > 0, we have

JP (uk) =

∫
B(R)

exp((nω1/n
n P |uk|)q

′
) dx

=

∫ |B(R)|

0

exp((nω1/n
n (1− θ)−1/qu∗k(t))

q′) dt

=

∫ |B(R)|

0

exp

((
C + (1− 2β)1/q log1/q

′
(
|Ω|
t

))q′)
dt

≤
∫ t0

0

exp

((
(1− β)1/q log1/q

′
(
|Ω|
t

))q′)
dt+

∫ |B(R)|

t0

exp(C) dt

= C

∫ t0

0

t−(1−β)q
′/q
dt+ C.

Thus, JP (uk) → JP (u) by the Lebesgue dominated convergence theo-
rem. This is a contradiction, and thus, we can pass to a subsequence
in order to obtain ϱk → 0 as k → ∞.

Next, fix D > 1 large enough such that

(6.17)

(
D

D + 1

)q/n−1

≤ 1 + τ.

Now, use (6.10), (6.15) and the Hardy-Littlewood inequality to obtain

1 ≥ ||∇uk||qn,q ≥
∫ ϱk

0

tq/n−1(|∇TL(uk)|∗(t))qdt(6.18)

+

∫ |B(R)|

σ

tq/n−1(|∇TL(uk)|∗(t− σ))qdt ≥ 1− 5τ − γ.

Next, a trivial estimate∫ Dϱk

0

tq/n−1(|∇TL(uk)|∗(t))qdt ≤
∫ |B(R)|

0

tq/n−1(|∇uk|∗(t))qdt ≤ 1

implies, for k large enough (note that (q/n)− 1 < 0; in our case, q < n
and Dϱk is much smaller than σ for k large),

(6.19)

∫ σ+Dϱk

σ

tq/n−1(|∇TL(uk)|∗(t− σ))qdt < γ.
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Hence, if τ < γ/6, we obtain, from (6.18) and (6.19),

1 ≥
∫ ϱk

0

tq/n−1(|∇TL(uk)|∗(t))qdt(6.20)

+

∫ |B(R)|

σ+Dϱk

tq/n−1(|∇TL(uk)|∗(t− σ))qdt ≥ 1− 3γ.

Therefore, we may use the uniform monotonicity (6.12) to obtain

(6.21) |||∇TL(uk)|∗χ(0,Dϱk)||n,q <
(
ζ

2

)1/q

.

Equation (6.12) was applied to

f =
|∇uk|

||∇uk||n,q
and g =

|∇TL(uk)|χG
||∇uk||n,q

=
|∇uk|χG
||∇uk||n,q

,

where the set G was chosen so that the values of |∇TL(uk)| on G
correspond to the values of |∇TL(uk)|∗ on (0, Dϱk). With this set-
ting, we have f − g = |∇uk|χB(R)\G/||∇uk||n,q and (6.20) implies
∥|∇uk|χB(R)\G∥qn,q ≥ 1 − 3γ. The normalization by 1/||∇uk||n,q is
harmless since 1− 3γ ≤ ||∇uk||qn,q ≤ 1.

By the Hardy-Littlewood inequality, we also have

1 ≥ ||∇uk||qn,q ≥
∫ ϱk

0

t(q/n)−1(|∇TL(uk)|∗(t))qdt

+

∫ (D+1)ϱk

ϱk

t(q/n)−1(|∇TL(uk)|∗(t− ϱk))
qdt

+

∫ ϱk+| supp∇TL(uk)|

(D+1)ϱk

t(q/n)−1(|∇TL(uk)|∗(t− ϱk))
qdt

+

∫ |B(R)|

ϱk+| supp∇TL(uk)|
t(q/n)−1(|∇TL(uk)|∗(t− | supp∇TL(uk)|))qdt.

Thus, by (6.15), for the third summand on the right hand side, we
obtain

(6.22)

∫ ϱk+| supp∇TL(uk)|

(D+1)ϱk

t(q/n)−1(|∇TL(uk)|∗(t−ϱk))qdt ≤ θ+2τ+γ.



WEAK CONTINUITY OF THE MOSER FUNCTIONAL 787

Finally, from (6.13), (6.17), (6.21), (6.22), (q/n)− 1 < 0 and τ < γ/6,
we infer

||∇TL(uk)||qn,q

=

∫ Dϱk

0

tq/n−1(|∇TL(uk)|∗(t))qdt+
∫ |B(R)|

Dϱk

tq/n−1(|∇TL(uk)|∗(t))qdt

≤ ζ

2
+

∫ |B(R)|+ϱk

(D+1)ϱk

(t− ϱk)
q/n−1(|∇TL(uk)|∗(t− ϱk))

qdt

≤ ζ

2
+

(
D

D+1

)q/n−1 ∫ |B(R)|+ϱk

(D+1)ϱk

tq/n−1(|∇TL(uk)|∗(t−ϱk))qdt

≤ ζ

2
+ (1 + τ)(θ + 2τ + γ) ≤ ζ

2
+ θ + 2τ + γ + τ(1 + 2 + 1)

≤ θ +
ζ

2
+ 2γ ≤ θ + ζ.

This is (6.7), which completes the proof of Theorem 1.5. �
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