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ON NONHOMOGENEOUS ELLIPTIC PROBLEMS
INVOLVING THE HARDY POTENTIAL AND

CRITICAL SOBOLEV EXPONENT

JING ZHANG AND SHIWANG MA

ABSTRACT. In this paper, we are concerned with el-
liptic equations with Hardy potential and critical Sobolev
exponents where 2∗ = 2N/(N − 2) is the critical Sobolev
exponent, N ≥ 3, 0 ≤ µ < µ = (N − 2)2/4, Ω ⊂ RN an
open bounded set. For λ ∈ [0, λ1) with λ1 being the first
eigenvalue of the operator −∆ − µ/|x|2 with zero Dirichlet
boundary condition, and for f ∈ H1

0 (Ω)−1 = H−1, f ̸= 0, we
show that (1.1) admits at least two distinct nontrivial solu-
tions u0 and u1 in H1

0 (Ω). Furthermore, u0 ≥ 0 and u1 ≥ 0
whenever f ≥ 0.

1. Introduction and main result. In this paper, we shall study
the existence and multiplicity of nontrivial solutions of the critical
elliptic problem

(1.1)

{
−∆u− µ u

|x|2 = λu+ |u|2∗−2u+ f in Ω,

u = 0 on ∂Ω,

where 2∗ = 2N/(N − 2) is the critical Sobolev exponent, N ≥ 3,
0 ≤ µ < µ = (N − 2)2/4, Ω ⊂ RN an open bounded set. For λ ∈ [0, λ1)
with λ1 being the first eigenvalue of the operator −∆−µ/|x|2 with zero
Dirichlet boundary condition, and for f ∈ H1

0 (Ω)−1 = H−1, f ̸= 0,
satisfying

∥f∥H−1 < CN

(
1− λ

λ1

)(N+2)/4

SN/4
µ ,
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where

CN = (2∗ − 2)

(
1

2∗ − 1

)(2∗−1)/(2∗−2)

,

and

Sµ = inf

{∫
Ω

(
|∇u|2 − µu2

|x|2

)
: u ∈ H1

0 (Ω), |u|2∗ = 1

}
,

and where Ω is a bounded domain in RN , 2∗ = 2N/(N − 2), N ≥ 3,
0 ≤ µ < µ = (N − 2)2/4, and 0 ≤ λ < λ1 is a positive constant, where
λ1 is the first eigenvalue of the operator −∆−µ/|x|2 with zero Dirichlet
boundary condition, f ∈ H−1 satisfies a suitable condition and f ̸= 0,
and we denote the dual space of H0

1 (Ω) by H−1.

The existence of solutions of the problems related to (1.1) has been
studied extensively. The Hardy potential is critical in nonrelativistic
quantum mechanics, as it represents an intermediate threshold between
regular and singular potentials, for more details see [14]. Problem (1.1)
was studied in [5, 8, 16] where f = 0, λ ̸= 0, and many interesting
results have been obtained. If f ̸≡ 0, µ = λ = 0, Tarantello [17]
established a possibly sharp estimate for the upper bound of the norm
of f , under which problem (1.1) was proved to have at least two distinct
solutions. For problem (1.1) on RN with f ̸≡ 0 and µ = λ = 0, some
similar results can be found in [4, 10] and the references therein. If
f ̸≡ 0, µ ̸= 0 and λ = 0, (1.1) is a special case of the problem considered
in [18]. Chen and Zhao [9] considered problem (1.1) with λ = 0 and
f replaced by σf , and they proved the existence of two solutions for
all σ ∈ (0, σ∗) with 0 < σ∗ < +∞, but they could not give an explicit
estimate of σ∗.

Let λi, i = 1, 2, . . ., be eigenvalues of operator −∆−µ/|x|2 with zero
Dirichlet boundary conditions. In view of [12, 13], each eigenvalue λi
is positive, isolated and has finite multiplicity, the smallest eigenvalue
λ1 is simple and λi → ∞ as i → ∞. Moreover, each L2 normalized
eigenfunction ei corresponding to λi belongs to H0

1 (Ω), and e1 is
positive.

Consider the classic elliptic problems involving Hardy potential

(1.2)

{
−∆u = µu/|x|2 + |u|2∗−2u in RN ,

u > 0 in D1,2(RN ).
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For 0 < µ < µ, setting β =
√
µ− µ, Catrina and Wang [7] proved that

all positive solutions of (1.2) are of the form uε(x) = ε2−N/2u(x/ε),
ε > 0, where

u(x) =
C

|x|(N−2)/2−β(1 + |x|4β/(N−2))(N−2)/2

for an appropriate constant C > 0. These solutions achieve Sµ, where

Sµ = inf

{∫
RN

(
|∇u|2 − µu2

|x|2

)
: u ∈ H1

0 (RN ), |u|2∗ = 1

}
.

It is well known that solutions of problem (1.1) are the critical points
of the functional Iµ : H1

0 (Ω) → R given by

Iµ(u) =
1

2

∫
Ω

(
|∇u|2 − µ

u2

|x|2
− λu2

)
dx− 1

2∗

∫
Ω

|u|2
∗
dx−

∫
Ω

fu.

We observe that Iµ(u) is bounded from below in the manifold:

Λ = {u ∈ H1
0 (Ω) : I ′µ(u)u = 0}.

Thus, a natural question to ask is whether or not Iµ(u) achieves a
minimum in Λ.

We assume that:

(∗) ∥f∥H−1<CN

(
1− λ

λ1

)(N+2)/4

S
N/4
µ , CN =(2∗ − 2)

(
1

2∗−1

)(2∗−1)/(2∗−2)

.

In this paper, we take advantage of the method applied in [6, 17]
and obtain at least two weak solutions in H1

0 (Ω).

Theorem 1.1. Let f ̸= 0 satisfy (∗). Then

(1) infΛ Iµ = c0 is achieved at a point u0 ∈ Λ which is a critical point
of Iµ and u0 ≥ 0 whenever f ≥ 0;

(2) u0 is a local minimum of Iµ and ∥u0∥2µ − λu20 − (2∗ − 1)|u0|2
∗

2∗ ≥ 0.

Similarly to the method used in [17], we split Λ into three parts:

Λ+ = {u ∈ Λ : ∥u∥2µ − λu2 − (2∗ − 1)|u|2
∗

2∗ > 0},

Λ0 = {u ∈ Λ : ∥u∥2µ − λu2 − (2∗ − 1)|u|2
∗

2∗ = 0},

Λ− = {u ∈ Λ : ∥u∥2µ − λu2 − (2∗ − 1)|u|2
∗

2∗ < 0}.
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It turns out that assumption (∗) implies Λ0 = {0} (see Lemma 2.3
below). Therefore, for f ̸= 0, we obtain u0 ∈ Λ+, and consequently,

c0 = inf
Λ
Iµ = inf

Λ+
Iµ.

So we are led to investigate a second minimization problem, namely,

c1 = inf
Λ−

Iµ.

Theorem 1.2. Let f ̸= 0 satisfy (∗),

β > min

{
1, max

{
(N − 2)2

2(N + 2)
,
N − 2

4

}}
.

Then c1 > c0 and c1 = infΛ− Iµ is achieved at a point u1 ∈ Λ− which
defines a critical point for Iµ. Furthermore, u1 ≥ 0 whenever f ≥ 0.

As an immediate consequence of Theorem 1.1 and Theorem 1.2, we
have the following conclusion.

Theorem 1.3. Problem (1.1) has at least two weak solutions u0, u1 ∈
H1

0 (Ω) for f ̸= 0 satisfying (∗). Moreover, u0 ≥ 0, u1 ≥ 0 for f ≥ 0.

The remainder of this paper is organized as follows. In Section 2,
we obtain the first solution of (1.1) which is a local minimum of Iµ. In
Section 3, we verify the PS condition and get the second solution of
(1.1).

2. The first solution. Throughout this paper, we denote the norm
of Lp(Ω) by |u|p = (

∫
Ω
|u|p)1/p. Denote the scalar product in H1

0 (Ω)
by

⟨u, v⟩µ =

∫
Ω

(
∇u∇v − µ

|x|2
uv

)
dx,

and the corresponding norm by ∥u∥µ = ⟨u, u⟩1/2µ . Note that 0 ≤ µ < µ,
and by the Hardy inequality,∫

Ω

u2

|x|2
dx ≤ 1

µ

∫
Ω

|∇u|2dx for all u ∈ H1
0 (Ω),
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it is easy to see that ∥u∥µ is equivalent to the usual norm

∥u∥ =

(∫
Ω

|∇u|2dx
)1/2

on H1
0 (Ω),

see [8]. Denote by Bl(x) an open ball in RN, which is concentrated at x
with radius l.

In the following discussion, we denote various positive constants as
C or Ci, i = 0, 1, 2, 3, . . ., for convenience.

Since 0 ≤ λ < λ1 and λ1 = inf u̸=0 ∥u∥2µ/|u|22, we can obtain∫
Ω

|∇u|2 − µ
u2

|x|2
− λu2 ≥

(
1− λ

λ1

)
∥u∥2µ,

so that ∥u∥2µ is equivalent to
∫
Ω
|∇u|2 − µ(u2/|x|2)− λu2.

To obtain the main results, several preliminary lemmas are in order.

Lemma 2.1. Let f ̸= 0 satisfy (∗). For every u ∈ H1
0 (Ω), u ̸= 0, there

exists a unique t+ = t+(u) > 0 such that t+u ∈ Λ−. In particular,

t+ > tmax =

(∥u∥2µ − λ|u|22
(2∗ − 1)|u|2∗2∗

)1/(2∗−2)

and

Iµ(t
+u) = max

t≥tmax

Iµ(tu).

Moreover, if
∫
Ω
fu > 0, then there exists a unique t− = t−(u) > 0 such

that t−u ∈ Λ+. In particular,

t− <

(∥u∥2µ − λ|u|22
(2∗ − 1)|u|2∗2∗

)1/(2∗−2)

and Iµ(t
−u) ≤ Iµ(tu), for all t ∈ [0, t+].

Proof. Set φ(t) = t(∥u∥2µ − λ|u|22) − t2
∗−1|u|2∗2∗ . Easy computations

show that φ is concave and achieves its maximum at

tmax =

(∥u∥2µ − λ|u|22
(2∗ − 1)|u|2∗2∗

)1/(2∗−2)

.
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And

φ(tmax) =

(
1

2∗ − 1

)(2∗−1)/(2∗−2)

(2∗−2)

(
(∥u∥2µ − λ|u|22)2

∗−1

|u|2∗2∗

)1/(2∗−2)

,

so that

φ(tmax) = CN

(∥u∥2µ − λ|u|22)(N+2)/4

|u|N/2
2∗

.

Therefore, if
∫
Ω
fu ≤ 0, then there exists a unique t+ > tmax such

that φ(t+) =
∫
Ω
fu and φ′(t+) < 0. Equivalently, t+u ∈ Λ− and

I(t+u) ≥ I(tu), for all t ≥ tmax.

If
∫
Ω
fu > 0, by assumption (∗), we have that

∫
Ω

fu < CN

((1− (λ/λ1))∥u∥2µ)(N+2)/4

|u|N/2
2∗

≤ φ(tmax)

= CN

(∥u∥2µ − λ|u|22)(N+2)/4

|u|N/2
2∗

.

Consequently, we have a unique 0 < t− < tmax < t+ such that

φ(t−) =

∫
Ω

fu = φ(t+)

and

φ′(t−) > 0 > φ′(t+).

Equivalently, t+u ∈ Λ− and t−u ∈ Λ+. Also, we have I(t+u) ≥ I(tu)
for all t ≥ t− and I(t−u) ≤ I(tu) for all t ∈ [0, t+]. �

Lemma 2.2. If f satisfies (∗), then

C2 := inf
|u|2∗=1

(
CN (∥u∥2µ − λ|u|22)(N+2)/4 −

∫
Ω

fu

)
> 0.
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Proof. For u ∈ H1
0 (Ω) with |u|2∗ = 1, we have that

CN (∥u∥2µ − λ|u|22)(N+2)/4 −
∫
Ω

fu

≥ CN (∥u∥2µ − λ|u|22)(N+2)/4 − ∥f∥H−1∥u∥µ

>

(
CN

(
1− λ

λ1

)(N+2)/4

∥u∥N/2
µ −CN

(
1− λ

λ1

)(N+2)/4

SN/4
µ + ξ0

)
∥u∥µ

>
1

2
∥u∥µξ0 > 0,

where ξ0 is some positive constant. This completes the proof. �

For u ̸= 0, set

ψ(u) = CN

(∥u∥2µ − λ|u|22)(N+2)/4

|u|N/2
2∗

−
∫
Ω

fu.

Fixing ν > 0, it follows from Lemma 2.2 that

inf
|u|2∗≥ν

ψ(u) ≥ C2ν.

Lemma 2.3. Let f satisfy (∗). For every u ∈ Λ, u ̸= 0, we have

∥u∥2µ − λ|u|22 − (2∗ − 1)|u|2
∗

2∗ ̸= 0,

i.e., Λ0 = {0}.

Proof. Arguing by contradiction, we assume that, for some u ∈ Λ,
u ̸= 0,

∥u∥2µ − λ|u|22 − (2∗ − 1)|u|2
∗

2∗ = 0,

which implies

|u|2∗ ≥
((

1− λ

λ1

)
Sµ

2∗ − 1

)1/(2∗−2)

= ν0.

For u ∈ Λ, we have

0 = ∥u∥2µ − λ|u|22 − |u|2
∗

2∗ −
∫
Ω

fu = (2∗ − 2)|u|2
∗

2∗ −
∫
Ω

fu.
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By Lemma 2.2,

0 < C2ν0 ≤ ψ(u)

=

(
1

2∗ − 1

)(2∗−1)/(2∗−2)

(2∗ − 2)

(
(∥u∥2µ−λ|u|22)2

∗−1

|u|2∗2∗

)1/(2∗−2)

−
∫
Ω

fu

= (2∗ − 2)

((
1

2∗ − 1

)(2∗−1)/(2∗−2)((∥u∥2µ − λ|u|22)2
∗−1

|u|2∗2∗

)1/(2∗−2)

− |u|2
∗

2∗

)
= (2∗ − 2)|u|2

∗

2∗

((∥u∥2µ − λ|u|22
(2∗ − 1)|u|2∗2∗

)2∗−1/2∗−2

− 1

)
= 0,

which yields a contradiction. �

As a consequence of Lemma 2.3, we obtain the next lemma.

Lemma 2.4. Let f ̸= 0 satisfy (∗). Given u ∈ Λ, u ̸= 0, there are
a δ > 0 and a differentiable function t = t(v) > 0, v ∈ H, ∥v∥µ < δ,
satisfying

t(0) = 1, t(v)(u− v) ∈ Λ, for ∥v∥µ < δ,

and
(2.1)

⟨t′(0), v⟩ =
2
∫
Ω
(∇u∇v−µ(uv/|x|2)−λuv)− 2∗

∫
Ω
|u|2∗−2uv−

∫
Ω
fv

∥u∥2µ − λ|u|22 − (2∗ − 1)|u|2∗2∗
.

Proof. Define F : R×H1
0 (Ω) → R as follows:

F (t, v) = t(∥u− v∥2µ − λ|u− v|22)− t2
∗−1|u− v|2

∗

2∗ −
∫
Ω

f(u− v).

Since F (1, 0) = 0, and by Lemma 2.3, we have Ft(1, 0) = ∥u∥2µ−λ|u|22−
(2∗ − 1)|u|2∗2∗ ̸= 0, we can apply the implicit function theorem at the
point (1, 0) to obtain the result. �

Next, we are ready to give a proof of Theorem 1.1.

Proof of Theorem 1.1. We now show that Iµ is bounded from below
in Λ. Indeed, for u ∈ Λ, we have∫

Ω

|∇u|2 − µ
u2

|x|2
− λu2 −

∫
Ω

|u|2
∗
−
∫
Ω

fu = 0,
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so that

Iµ(u) =
1

2

∫
Ω

(|∇u|2 − µ
u2

|x|2
− λu2) dx− 1

2∗

∫
Ω

|u|2
∗
dx−

∫
Ω

fu

=
1

N

∫
Ω

(
|∇u|2 − µ

u2

|x|2
− λu2

)
−
(
1− 1

2∗

)∫
Ω

fu

≥ 1

N

(
1− λ

λ1

)
∥u∥2µ − N + 2

2N
∥f∥H−1∥u∥µ

≥ − λ1
16N(λ1 − λ)

((N + 2)∥f∥H−1)
2
.

In particular,

c0 ≥ − λ1
16N(λ1 − λ)

((N + 2)∥f∥H−1)
2
.

In order to get an upper bound for c0, let w ∈ H1
0 (Ω) be the unique

solution for
−∆u− µ

u

|x|2
= f.

Therefore, for f ̸= 0, ∫
Ω

fw = ∥w∥2µ > 0.

Set t0 = t−(w) > 0 as defined by Lemma 2.1. Then t0w ∈ Λ+, and
consequently,

Iµ(t0w) =
t20
2
(∥w∥2µ − λ|w|22)−

t2
∗

0

2∗
|w|2

∗

2∗ − t0

∫
Ω

fw

= − t
2
0

2
(∥w∥2µ − λ|w|22) +

2∗ − 1

2∗
t2

∗

0 |w|2
∗

2∗

< − t20
N

(∥w∥2µ − λ|w|22) ≤ − t20
N

(
1− λ

λ1

)
∥w∥2µ

= − t20
N

(
1− λ

λ1

)
∥f∥2H−1 .

This yields

(2.2) c0 < − t20
N

(
1− λ

λ1

)
∥f∥2H−1 < 0.
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By Ekeland’s variational principle, see [1], a minimizing sequence
{un} ⊂ Λ of the minimization problem infΛIµ = c0 exists such that

(i) Iµ(un) < c0 + 1/n;
(ii) Iµ(v) ≥ Iµ(un)− (1/n)∥v − un∥µ, for all v ∈ Λ.

Taking n large enough, from (2.2), we obtain

Iµ(un) =
1

N

∫
Ω

(
|∇un|2 − µ

u2n
|x|2

− λ|u|22
)
− N + 2

2N

∫
Ω

fun(2.3)

< c0 +
1

n
< − t20

N

(
1− λ

λ1

)
∥f∥2H−1 .

This implies

(2.4)

∫
Ω

fun ≥ 2

N + 2
t20

(
1− λ

λ1

)
∥f∥2H−1 > 0.

Consequently, un ̸= 0, and combining (2.3) and (2.4), we derive for n
large,

(2.5)
2t20

N + 2

(
1− λ

λ1

)
∥f∥H−1 ≤ ∥un∥µ ≤ N + 2

2

(
λ1

λ1 − λ

)
∥f∥H−1 .

Proposition 2.5. ∥I ′µ(un)∥ → 0 as n→ +∞.

Proof. Since un ∈ Λ, by Lemma 2.4, we can find εn > 0 and a
differentiable functional tn = tn(v) > 0, v ∈ H1

0 (Ω), ∥v∥µ < εn such
that

wn = tn(v)(un − v) ∈ Λ for ∥v∥µ < εn.

By the continuity of tn(v) and tn(0) = 1, without loss of generality, we
can assume that εn satisfies 1/2 ≤ tn(v) ≤ 3/2 for ∥v∥µ < εn.

It follows from condition (ii) that

Iµ(tn(v)(un − v))− Iµ(un) ≥ − 1

n
∥tn(v)(un − v)− un∥µ,

that is,

⟨I ′µ(un), tn(v)(un − v)− un⟩+ o(∥tn(v)(un − v)− un∥µ)

≥ − 1

n
∥tn(v)(un − v)− un∥µ.
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Consequently,

tn(v)⟨I ′µ(un), v⟩+ (1− tn(v))⟨I ′µ(un), un⟩

≤ 1

n
∥(tn(v)− 1)un − tn(v)v∥µ + o(∥tn(v)(un − v)− un∥µ).

By the choice of εn, we obtain

(2.6)
⟨I ′µ(un), v⟩ ≤

C

n
|⟨t′n(0), v⟩|+ o(∥v∥µ)

+
1

n
∥v∥µ + o(|⟨t′n(0), v⟩|∥un∥µ + ∥v∥µ).

If we can prove that

(2.7) |⟨t′n(0), v⟩| ≤ ∥v∥µ,

then, from (2.6), we get

⟨I ′µ(un), v⟩ ≤
C

n
∥v∥µ +

1

n
∥v∥µ + o(∥v∥µ) for ∥v∥µ ≤ εn.

Hence, for any 0 < ε < εn, we have

(2.8) ∥I ′µ(un)∥ =
1

ε
sup

∥v∥µ=ε

⟨I ′µ(un), v⟩ ≤
C

n
+

1

ε
o(ε),

for some C > 0 independent of ε and n. Taking ε → 0, we obtain
∥I ′µ(un)∥ → 0 as n→ +∞.

We now turn to proving (2.7). Indeed, by (2.1), we have

⟨t′n(0), v⟩ <
2
∫
Ω
|∇u∇v − µ(uv/|x|2)|+ 2∗

∫
Ω
|u|2∗−1|v|+ |

∫
Ω
fv|

|∥u∥2µ − λ|u|22 − (2∗ − 1)|u|2∗2∗ |

≤
(2∥un∥µ + 2∗∥un∥2

∗−1
µ + ∥f∥H−1)∥v∥µ

|∥u∥2µ − λ|u|22 − (2∗ − 1)|u|2∗2∗ |
.

Noting (2.5), in order to prove (2.7), we only need to show that

(2.9) |∥u∥2µ − λ|u|22 − (2∗ − 1)|u|2
∗

2∗ | > ρ,

for some ρ > 0 and n large. We argue by way of contradiction. Assume
that, for a subsequence, still called {un}, we have

(2.10) |∥u∥2µ − λ|u|22 − (2∗ − 1)|u|2
∗

2∗ | = o(1).
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From estimates (2.5) and (2.10) we derive

|un|2∗ ≥ ν > 0

and (∥un∥2µ − λ|u|22
2∗ − 1

)(2∗−1)/(2∗−2)

− (|un|2
∗

2∗)
(2∗−1)/(2∗−2) = o(1).

By (2.10) and the fact that un ∈ Λ, we obtain∫
Ω

fun = (2∗ − 2)|un|2
∗

2∗ + o(1).

The above equality, together with Lemma 2.2, implies

0 < C2ν
(N+2)/2

≤ |un|2
∗/(2∗−2)

2∗ ψ(u)

= |un|2
∗/(2∗−2)

2∗

(
CN

(∥un∥2µ − λ|u|22)(N+2)/4

|un|N/2
2∗

−
∫
Ω

fun

)

= (2∗ − 2)

((∥un∥2µ − λ|u|22
2∗ − 1

)(2∗−1)/(2∗−2)

− (|un|2
∗

2∗)
(2∗−1)/(2∗−2)

)
= o(1),

which is impossible. So we conclude that

�(2.11) ∥I ′µ(un)∥ −→ 0 as n→ +∞.

Let u0 ∈ H1
0 (Ω) be the weak limit of un. By equation (2.4), the

following holds: ∫
Ω

fu0 > 0,

and, from (2.11), we have

⟨I ′µ(u0), v⟩ = 0, for all v ∈ H1
0 (Ω),

i.e., u0 is a weak solution for (1.1). Therefore, u0 ∈ Λ, and hence,

c0 ≤ Iµ(u0) =
1

N
(∥u0∥2µ−λ|u0|22)−

N + 2

2N

∫
Ω

fu0 ≤ lim
n→+∞

Iµ(un) = c0.
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Consequently, by the above equation, un → u0 strongly in H1
0 (Ω) and

Iµ(u0) = c0 = infΛIµ. Also, from Lemma 2.1 and (2.11) it is necessarily
that u0 ∈ Λ+, see [6].

Next, we claim that u0 is a local minimum of Iµ. For every
u ∈ H1

0 (Ω) with
∫
Ω
fu > 0, from Lemma 2.1, we have

Iµ(su) ≥ Iµ(t
−u)

for every

0 < s <

(∥u∥2µ − λ|u|22
(2∗ − 1)|u|2∗2∗

)1/(2∗−2)

.

In particular, for u = u0 ∈ Λ+, we have

(2.12) t− = 1 <

(∥u0∥2µ − λ|u|22
(2∗ − 1)|u0|2

∗
2∗

)1/(2∗−2)

.

Let δ > 0 be sufficiently small so that

1 <
∥u0 − v∥2µ − λ|u− v|22
(2∗ − 1)|u0 − v|2∗2∗

for ∥v∥µ < δ. From Lemma 2.4, let t(v) > 0 be such that t(v)(u0−v) ∈
Λ for every ∥v∥µ < δ. Since t(v) → 1 as ∥v∥µ → 0, we can always
assume that

t(v) <

(∥u0 − v∥2µ − λ|u− v|22
(2∗ − 1)|u0 − v|2∗2∗

)1/(2∗−2)

for every ∥v∥µ < δ. By the above inequality, t(v)(u0 − v) ∈ Λ+, and
for

0 < s <

(∥u0 − v∥2µ − λ|u− v|22
(2∗ − 1)|u0 − v|2∗2∗

)1/(2
∗−2),

we can obtain

Iµ(u0) ≤ Iµ(t(v)(u0 − v)) ≤ Iµ(s(u0 − v)).

By equation (2.12), we can take s = 1, and obtain

Iµ(u0) ≤ Iµ(u0 − v), for all v ∈ H, ∥v∥µ < δ,

so that u0 is a local minimum for Iµ.
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Furthermore, if f ≥ 0, take t0 = t−(|u0|) > 0 with t0|u0| ∈ Λ+, we
also easily see from (2.12) that t0 ≥ 1, and Lemma 2.1 gives that

Iµ(u0) ≤ Iµ(t0|u0|) ≤ Iµ(|u0|) ≤ Iµ(u0),

so we can always take u0 ≥ 0. By the maximum principle for a weak
solution, see [15, Theorem 8.19], we can show that, if f ≥ 0, f ̸≡ 0,
then u0 > 0 in RN. �

3. The second solution. Now, we will illustrate that Iµ satisfies
the (P.S) condition at the levels below some constant.

Proposition 3.1. Every sequence {un} ⊂ H1
0 (Ω) satisfying

(a) Iµ(un) → c with c < c0 + (1/N)S
N/2
µ , where c0 is defined as in

Theorem 1.1 (1);
(b) ∥I ′µ(un)∥ → 0

has a convergent subsequence.

Proof. By the standard method, it is easy to get that ∥un∥µ is
uniformly bounded. Going, if necessary, to a subsequence, called un,
we can assume that

un ⇀ u weakly in H1
0 (Ω).

And, according to condition (b), we have

⟨I ′µ(u), v⟩ = 0, for all v ∈ H1
0 (Ω).

That means that u is a weak solution for (1.1). In particular, u ̸= 0,
u ∈ Λ and Iµ(u) ≥ c0.

Let un = u + vn with vn ⇀ 0 weakly in H1
0 (Ω). According to [2,

Lemma], we have

|un|2
∗

2∗ = |u+ vn|2
∗

2∗ = |u|2
∗

2∗ + |vn|2
∗

2∗ + o(1).
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Hence, taking n large enough that

c0 +
1

N
SN/2
µ > Iµ(u+ vn)

= Iµ(u) +
1

2
(∥vn∥2µ − λ|vn|22)−

1

2∗
|vn|2

∗

2∗ + o(1)

≥ c0 +
1

2
(∥vn∥2µ − λ|vn|22)−

1

2∗
|vn|2

∗

2∗ + o(1),

gives

(3.1)
1

2
∥vn∥2µ − 1

2∗
|vn|2

∗

2∗ <
1

N
SN/2
µ + o(1).

And, from (b), the following holds

o(1) = ⟨I ′µ(un), un⟩

= ∥u∥2µ − λ|u|22 − |u|2
∗

2∗ −
∫
Ω

fu+ ∥vn∥2µ

− λ|vn|22 − |vn|2
∗

2∗ + o(1)

= ⟨I ′µ(u), u⟩+ ∥vn∥2µ − λ|vn|22 − |vn|2
∗

2∗ + o(1),

and by the fact ⟨I ′µ(u), u⟩ = 0 and |vn|22 = o(1), we obtain

(3.2) ∥vn∥2µ − |vn|2
∗

2∗ = o(1).

Now, we claim that conditions (3.1) and (3.2) hold simultaneously if
and only if a subsequence {vnk

} of {vn}, converges strongly to zero,
i.e., ∥vnk

∥2µ → 0, as k → +∞.

Arguing by contradiction, assume that ∥vnk
∥2µ is bounded away from

zero, that is, for some constant C3 > 0, ∥vnk
∥2µ ≥ C3 holds for all n ∈ N.

From (3.2), it follows that

∥vn∥2
∗−2

2∗ ≥ Sµ + o(1);

therefore,
∥vn∥2

∗

2∗ ≥ SN/2
µ + o(1).

This and (3.1) and (3.2) yield, for n large,

1

N
SN/2
µ ≤ 1

N
∥vn∥2

∗

2∗ + o(1) =
1

2
∥vn∥2µ − 1

2∗
∥vn∥2

∗

2∗ + o(1) <
1

N
SN/2
µ ,

which is a contradiction. In conclusion, un → u strongly. �
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At this point, it would not be difficult to derive Theorem 1.2, if we
had the inequality

inf
Λ−

Iµ = c1 < c0 +
1

N
SN/2
µ .

We shall obtain it by comparison with a mountain-pass value. In order
to get this result recall u0 ̸= 0. Following [3], we let Σ ⊂ Ω be a set of
positive measures such that u0 > 0 on Σ (replace u0 with −u0 and f
with −f , if necessary).

Let η ∈ C∞
0 (Ω), with η(x) ≥ 0 and η(x) = 1 in a neighborhood of

x = 0. Set

Uε(x) = η(x)uε(x), Vε(x) =
Uε(x)

|Uε(x)|2∗
, x ∈ RN,

where uε(x) and η(x) are defined as before. Then, we have the following
estimate, see [5] and [11],

∫
RN

(
|∇Vε|2 − µ

V 2
ε

|x|2

)
dx = Sµ +O(ε2β);

∫
RN

|Vε|2 =


O(ε2) β > 1,

O(ε2β | ln ε|) β = 1,

O(ε2β) β < 1,

t2

2

∫
Ω

(
|∇Vε|2 −

µ

|x|2
V 2
ε

)
− t2

∗

2∗

∫
Ω

|Vε|2
∗
≤ 1

N
SN/2
µ +O(ε2β).

Lemma 3.2. Assume that β > min{1, max{(N−2)2/(2(N+2)), (N−2)/
4}}, for every t > 0, and almost every a ∈ Σ, ε0 = ε0(t, a) > 0 exists
such that

Iµ(u0 + tVε) < c0 +
1

N
SN/2
µ ,

for every 0 < ε < ε0.



NONHOMOGENEOUS ELLIPTIC PROBLEMS 703

Proof. By direct calculation, we obtain

Iµ(u0 + tVε) =
1

2

∫
Ω

(
|∇(u0 + tVε)|2 −

µ

|x|2
(u0 + tVε)

2 − λ(u0 + tVε)
2

)
− 1

2∗

∫
Ω

|u0 + tVε|2
∗
−
∫
Ω

f(u0 + tVε)

=
1

2

∫
Ω

(
|∇u0|2 −

µ

|x|2
u20 − λu20

)
− 1

2∗

∫
Ω

|u0|2
∗
−
∫
Ω

fu0

+
t2

2

∫
Ω

(
|∇Vε|2 −

µ

|x|2
V 2
ε

)
− t2

∗

2∗

∫
Ω

|Vε|2
∗
− t2

2

∫
Ω

λV 2
ε −

∫
Ω

ftVε

+

∫
Ω

(
∇u0∇tVε −

µ

|x|2
u0tVε − λu0tVε

)
− 1

2∗

∫
Ω

|u0 + tVε|2
∗

+
1

2∗

∫
Ω

|u0|2
∗
+
t2

∗

2∗

∫
Ω

|Vε|2
∗
.

We know that, if t→ ∞, then Iµ(u0 + tVε) → −∞, so we assume that
t is in a bounded set. Because u0 is a solution of (1.1), the following
holds:∫

Ω

∇u0∇(tVε)−
µ

|x|2
u0tVε − λu0tVε =

∫
Ω

|u0|2
∗−1tVε +

∫
Ω

ftVε.

So,

Iµ(u0 + tVε) = Iµ(u0) +
t2

2

∫
Ω

(
|∇Vε|2 −

µ

|x|2
V 2
ε

)
− t2

∗

2∗

∫
Ω

|Vε|2
∗
− t2

2

∫
Ω

λV 2
ε

+
1

2∗

∫
Ω

|u0|2
∗
+
t2

∗

2∗

∫
Ω

|Vε|2
∗
+

∫
Ω

|u0|2
∗−1tVε

− 1

2∗

∫
Ω

|u0 + tVε|2
∗
.
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By this estimate and the result ([11, Lemma 4.1]), we have

t2

2

∫
Ω

(|∇Vε|2 −
µ

|x|2
V 2
ε )−

t2
∗

2∗

∫
Ω

|Vε|2
∗
≤ 1

N
SN/2
µ +O(ε2β).

And, for u0, t, Vε > 0, we have the inequality

|u0 + tVε|2
∗
> u2

∗

0 + 2∗u2
∗−1

0 tVε + 2∗u0(tVε)
2∗−1 + (tVε)

2∗ ,

so that we obtain

Iµ(u0 + tVε) < c0 +
1

N
SN/2
µ +O(ε2β)−

∫
Ω

u0(tVε)
2∗−1

−


O(ε2) β > 1,

O(ε2β | ln ε|) β = 1,

O(ε2β) β < 1.

Next, let us estimate
∫
Ω
u0(tVε)

2∗−1. Since t belongs to a bounded set

and Vε = Uε/|Uε|2∗ , so we directly estimate
∫
Ω
u0U

2∗−1
ε . Set u0 = 0

outside Ω and η(x) = 1 in Ω; by the form of uε, it follows that∫
Ω

u0U
2∗−1
ε =

∫
RN
u0η(x)u

2∗−1
ε

=C

∫
RN
u0η(x)

ε(N+2)/4

|x|((N−2)/2−β)(2∗−1)(ε+|x|4β/(N−2))(N+2)/2
dx

=C

∫
RN
u0η(x)

ε−(N+2)/4

ε((N−2)/(4β))((N−2)/2−β)(2∗−1)

· 1

|x/ε(N−2)/(4β)|((N−2)/2−β)(2∗−1)

· 1

(1 + |x/ε(N−2)/(4β)|(4β)/N−2))(N+2)/2
dx

=C

∫
RN
u0η(x)

ε−(N+2)/4

ε((N−2)/(4β))((N−2)/2−β)(2∗−1)
ψ

(
x

ε(N−2)/(4β)

)
dx

=Cε(N−2)2/(8β)

∫
RN
u0η(x)

1

ε((N−2)/(4β))N
ψ

(
x

ε(N−2)/(4β)

)
dx,

where

ψ(x) =
1

|x|((N−2)/2−β)(2∗−1)(1 + |x|4β/(N−2))(N+2)/2
.
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Claim. ψ(x) ∈ L1(RN). We know that∫
RN
ψ(x) dx =

∫
B1(0)

ψ(x)dx+

∫
BC

1 (0)

ψ(x) dx.

Firstly, we consider∫
B1(0)

ψ(x) dx <

∫
B1(0)

1

|x|((N−2)/2−β)(2∗−1)
dx

= C

∫ 1

0

ρN−1

ρ((N−2)/2−β)(2∗−1)
dρ

= C

∫ 1

0

ρN−1−((N−2)/2−β)(2∗−1) dρ

= CρN−((N−2)/2−β)(2∗−1)|10,

when N−((N − 2)/2−β)(2∗−1) > 0, that is, β > −(N−2)2/2(N + 2),
so we obtain that ∫

B1(0)

ψ(x) dx < +∞.

Secondly, we consider∫
BC

1 (0)

ψ(x) dx <

∫
BC

1 (0)

1

|x|((N−2)/2−β)(2∗−1)|x|2β(N+2)/(N−2)
dx

= C

∫ +∞

1

ρN−1

ρ((N−2)/2−β)(2∗−1)+(2β(N+2)/(N−2))
dρ

= C

∫ +∞

1

ρN−1−((N−2)/2−β)(2∗−1)−(2β(N+2)/(N−2)) dρ

= CρN−((N−2)/2−β)(2∗−1)−(2β(N+2)/(N−2))|+∞
1 ,

when

N −
(
N − 2

2
− β

)
(2∗ − 1)− 2β(N + 2)

N − 2
< 0,

that is,

β >
(N − 2)2

2(N + 2)
,

so we obtain that ∫
BC

1 (0)

ψ(x) dx < +∞.
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In conclusion, we obtain that, when β > (N − 2)2/2(N + 2), ψ(x)
is L1 integrable. Therefore, setting

α =

∫
RN

1

|x|((N−2)/2−β)(2∗−1)(1 + |x|4β/(N−2))(N+2)/2
dx,

we have∫
RN
u0η(x)

1

ε((N−2)/(4β))N
ψ

(
x

ε(N−2)/(4β)

)
dx −→ u0(a)α

for almost every a ∈ Σ. In other words,∫
Ω

u0(Uε)
2∗−1 = Cε(N−2)2/(8β)u0(a)α+ o(ε(N−2)2/(8β)).

Consequently,

Iµ(u0 + tVε) < c0 +
1

N
SN/2
µ +O(ε2β)

− Cε(N−2)2/(8β)u0(a)α+ o(ε(N−2)2/(8β))

−


O(ε2) β > 1,

O(ε2β | ln ε|) β = 1,

O(ε2β) β < 1.

Therefore, if β > 1, so that without consideration of
∫
Ω
u0(tVε)

2∗−1,

we have Iµ(u0 + tVε) < c0 + (1/N)S
N/2
µ . Otherwise, if β > (N − 2)/4,

then there is a 2β > (N − 2)2/(8β).

When we take β > m = max{(N − 2)2/(2(N + 2)), (N − 2)/4},
Iµ(u0+tVε) < c0+(1/N)S

N/2
µ holds. In the end, under the assumption

of β > min{1, m},

(3.3) Iµ(u0 + tVε) < c0 +
1

N
SN/2
µ ,

holds for all 0 < ε < ε0. �

Our aim is to state a mountain pass theorem that produces a value

which is below the threshold c0 + (1/N)S
N/2
µ but also compares with

the value c1 = infΛ− Iµ. To this end, observe that, under assumption
(∗), the manifold Λ− disconnects H1

0 (Ω) into exactly two connected
components U1 and U2. To see this, note that, for every u ∈ H1

0 (Ω),
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∥u∥ = (∥u∥2µ − λ|u|22)1/2 = 1, and by Lemma 2.1, we can find a unique

t+(u) > 0 such that

t+(u)u ∈ Λ−, Iµ(t
+(u)u) = max

t≥tmax

Iµ(tu).

The uniqueness of t+(u) and its extremal property give that t+(u) is a
continuous function of u. Set

U1 =

{
u = 0 or u : ∥u∥ < t+

(
u

∥u∥

)}
and

U2 =

{
u : ∥u∥ > t+

(
u

∥u∥

)}
.

Clearly, H1
0 (Ω) \ Λ− = U1 ∪ U2 and Λ+ ⊂ U1, in particular, u0 ⊂ U1.

Proof of Theorem 1.2. An easy computation shows that, for a suit-
able constant C4 > 0,

0 < t+(u) < C4, for all ∥u∥ = 1, |u|2∗ > δ1 > 0.

Since
|u0 + t0Vε|2∗
∥u0 + t0Vε∥

≥ |Vε|2∗
2∥Vε∥

≥ 1

2(Sµ +O(ε2β))1/2

for t0 sufficiently large, we can choose

t0 >

(
C2

4 − ∥u0∥2

(1− λ/λ1)Sµ

)1/2

+ 1

large enough, ε0 > 0, δ1 > 0 small enough such that wε = u0 + t0Vε
satisfies |wε/∥wε∥|2∗ > δ1 for all 0 < ε < ε0. Since

∥wε∥2 = ∥u0 + t0Vε∥2

≥ ∥u0∥2 + t20

(
1− λ

λ1

)
Sµ + o(1)

> C2
4 >

(
t+

(
wε

∥wε∥

))2

,

for ε > 0 sufficiently small, we get

(3.4) wε = u0 + t0Vε ∈ U2.
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For such a choice of t0, fix ε > 0 such that (3.3) and (3.4) hold for
all 0 < ε < ε0. Set

Γ = {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = u0, γ(1) = u0 + t0Vε(x)}.

Clearly, γ : [0, 1] → H1
0 (Ω) given by γ(s) = u0 + st0Vε belongs to Γ.

So, by Lemma 3.2, we conclude

(3.5) c = inf
γ∈Γ

max
s∈[0,1]

Iµ(γ(s)) < c0 +
1

N
SN/2
µ .

Also, since the range of γ ∈ Γ intersects Λ−, we have

(3.6) c1 = inf
Λ−

Iµ ≤ c.

Similar to the proof of Theorem 1.1, we can show that Ekeland’s
variational principle gives a sequence {un} ⊂ Λ− satisfying

Iµ(un) −→ c1,

and
∥I ′µ(un)∥ −→ .

Furthermore, from (3.5) and (3.6), we have

c1 < c0 +
1

N
SN/2
µ .

Therefore, by Lemma 3.2, we obtain a subsequence of {un}, called
{un}, and u1 ∈ H1

0 (Ω) such that

un −→ u1 strongly in H1
0 (Ω).

Consequently, u1 is c critical point for Iµ, and, since Λ− is closed, we
have u1 ∈ Λ− and Iµ(u1) = c1.

Lastly, we assume that f ≥ 0 and f ̸≡ 0. Let t+ > 0 be such that

t+|u1| ∈ Λ−.

According to Lemma 2.1, we obtain

Iµ(t
+|u1|) ≤ Iµ(t

+u1) ≤ max
t≥tmax

Iµ(tu1) = Iµ(u1).
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Therefore, we can always take u1 ≥ 0. By the maximum principle for
weak solutions, see [15, Theorem 8.19], we can show that, if f ≥ 0,
f ̸≡ 0, then u1 > 0 in RN. �
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