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SEQUENTIALLY COHEN-MACAULAYNESS
OF BIGRADED MODULES

AHAD RAHIMI

ABSTRACT. Let K be a field, S = K[x1, . . . , xm, y1, . . . ,
yn] a standard bigraded polynomial ring, and M a finitely
generated bigraded S-module. In this paper, we study
the sequentially Cohen-Macaulayness of M with respect to
Q = (y1, . . . , yn). We characterize the sequentially Cohen-
Macaulayness of L ⊗K N with respect to Q as an S-
module when L and N are non-zero finitely generated graded
modules over K[x1, . . . , xm] and K[y1, . . . , yn], respectively.
All hypersurface rings that are sequentially Cohen-Macaulay
with respect to Q are classified.

1. Introduction. In [13], Stanley introduced the notion of sequen-
tially Cohen-Macaulayness for graded modules. This concept has since
been studied by several authors; we refer the reader to [3, 4, 6, 9, 8,
12, 14]. In this paper, we define sequentially Cohen-Macaulayness for
bigraded modules and introduce some new algebraic invariants which
are relevant to this case. We let S = K[x1, . . . , xm, y1, . . . , yn] be a
standard bigraded polynomial ring over a field K, M a finitely gener-
ated bigraded S-module. We set Q = (y1, . . . , yn). In [10], M is said
to be Cohen-Macaulay with respect to Q if grade(Q,M) = cd(Q,M),
where cd(Q,M) denotes the cohomological dimension of M with re-
spect to Q.

We call a finite filtration F : 0 = M0  M1  · · ·  Mr = M of M
by bigraded submodules M a Cohen-Macaulay filtration with respect
to Q if:

(a) each quotient Mi/Mi−1 is Cohen-Macaulay with respect to Q;
(b) 0 ≤ cd(Q,M1/M0) < cd(Q,M2/M1) < · · · < cd(Q,Mr/Mr−1).
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IfM admits a Cohen-Macaulay filtration with respect to Q, then we say
that M is sequentially Cohen-Macaulay with respect to Q. The usual
notion of sequentially Cohen-Macaulayness results from our definition
if we assume that P = 0.

A finite filtration D : 0 = D0  D1  · · ·  Dr = M of M
by bigraded submodules is called the dimension filtration of M with
respect to Q if Di−1 is the largest bigraded submodule of Di for which
cd(Q,Di−1) < cd(Q,Di), for all i = 1, . . . , r. In Section 2, we show
that if M is sequentially Cohen-Macaulay with respect to Q, then
the filtration F is uniquely determined and it is merely the dimension
filtration ofM with respect to Q, that is, F = D. We explicitly describe
the structure of the submodules Di in [8]. We also show that, if M is
sequentially Cohen-Macaulay with respect to Q with grade(Q,M) > 0
and |K| = ∞, then there exists a bihomogeneous M -regular element
y ∈ Q of degree (0, 1) such that M/yM is sequentially Cohen-Macaulay
with respect to Q, too. An example is given to show that the converse
does not hold in general.

Let K[x] = K[x1, . . . , xm] and K[y] = K[y1, . . . , yn]. In Section 3,
we consider L⊗K N as an S-module where L and N are two non-zero
finitely generated graded modules over K[x] and K[y], respectively.
We characterize the sequentially Cohen-Macaulayness of L⊗K N with
respect to Q as follows: L ⊗K N is a sequentially Cohen-Macaulay
with respect to Q if and only if N is a sequentially Cohen-Macaulay
K[y]-module.

In Section 4, we let f ∈ S be a bihomogeneous element of degree
(a, b) and consider the hypersurface ring R = S/fS. Note that, if
a, b > 0, we have grade(Q,R) = n − 1 and cd(Q,R) = n; hence, R
is not Cohen-Macaulay with respect to Q. Thus, it is natural to ask
whether R is sequentially Cohen-Macaulay with respect to Q. We
classify all hypersurface rings that are sequentially Cohen-Macaulay
with respect to Q. In fact, we show that R is sequentially Cohen-
Macaulay with respect to Q if and only if f = h1h2 where deg(h1) =
(a, 0) with a ≥ 0 and deg(h2) = (0, b) with b ≥ 0.

2. Preliminaries. Let K be a field, and let

S = K[x1, . . . , xm, y1, . . . , yn]
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be a standard bigraded polynomial ring over K, in other words,
deg xi = (1, 0) and deg yj = (0, 1) for all i and j. We set P =
(x1, . . . , xm) and Q = (y1, . . . , yn). Let M be a finitely generated bi-
graded S-module. We denote by cd(Q,M) the cohomological dimen-
sion of M with respect to Q which is the largest integer i for which
Hi

Q(M) ̸= 0. Note that 0 ≤ cd(Q,M) ≤ n.

Definition 2.1. We say M is Cohen-Macaulay with respect to Q if
we have only one non vanishing local cohomology module with respect
to Q. In [10], this was referred to as relative Cohen-Macaulay with
respect to Q; here, we omit the word “relative” for simplicity.

We recall the following facts which will be used in the sequel.

Fact 2.2. Let M be a finitely generated bigraded S-module. Then

(a) cd(P,M) = dimM/QM and cd(Q,M) = dimM/PM , see [10,
formula 3].

(b) grade(Q,M) ≤ dimM − cd(P,M), and the equality holds if M is
Cohen-Macaulay, see [10, formula 5];

(c) the exact sequence 0 → M ′ → M → M ′′ → 0 of finitely generated
bigraded S-modules yields cd(Q,M) = max{cd(Q,M ′), cd(Q,M ′′)},
see the general version of [2, Proposition 4.4];

(d) cd(Q,M) = max{cd(Q,S/p) : p ∈ Ass(M)}, see the general version
of [2, Corollary 4.6].

Definition 2.3. We call a finite filtration

F : 0 = M0  M1  · · ·  Mr = M

ofM by bigraded submodules a Cohen-Macaulay filtration with respect
to Q if

(a) each quotient Mi/Mi−1 is Cohen-Macaulay with respect to Q;
(b) 0 ≤ cd(Q,M1/M0) < cd(Q,M2/M1) < · · · < cd(Q,Mr/Mr−1).

If M admits a Cohen-Macaulay filtration with respect to Q, then we
say M is sequentially Cohen-Macaulay with respect to Q.
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Observe that the ordinary definition of sequentially Cohen-Macaulay
modules results from our definition if we assume that P = 0.

Remark 2.4. By applying Fact 2.2 (a) to the exact sequences

0 −→ Mi−1 −→ Mi −→ Mi/Mi−1 −→ 0,

one immediately has cd(Q,Mi) = cd(Q,Mi/Mi−1) for i = 1, . . . , r.

Example 2.5. Cohen-Macaulay modules with respect toQ are obvious
examples of sequentially Cohen-Macaulay modules with respect to Q.
Any moduleM such that cd(Q,M) ≤ 1 is sequentially Cohen-Macaulay
with respect to Q. To show this, we may assume that M is not
Cohen-Macaulay with respect to Q. Thus, grade(Q,M) = 0 and
cd(Q,M) = 1. The filtration 0 = M0  M1  M2 = M , where
M1 = H0

Q(M) is a Cohen-Macaulay filtration with respect to Q.

Next, we show that the filtration F given in Definition 2.3 is unique.
To do so, we need some preparation.

Lemma 2.6. There is a unique largest bigraded submodule N of M for
which cd(Q,N) < cd(Q,M).

Proof. Let
∑

be the set of all bigraded submodules L of M such
that cd(Q,L) < cd(Q,M). As M is a Noetherian S-module,

∑
has

a maximal element with respect to inclusion, say N . Let T be an
arbitrary element in

∑
. Fact 2.2 (c) implies that cd(Q,T + N) <

cd(Q,M); hence, the maximality of N yields T ⊆ N . �

Definition 2.7. A filtration D: 0 = D0  D1  · · ·  Dr = M of M
by bigraded submodules is called the dimension filtration of M with
respect to Q if Di−1 is the largest bigraded submodule of Di for which
cd(Q,Di−1) < cd(Q,Di) for all i = 1, . . . , r.

The dimension filtration introduced by Schenzel [12] is thus a
dimension filtration with respect to the maximal ideal m = P + Q.
A filtration D as in Definition 2.7 is unique by Lemma 2.6. In order
to prove the uniqueness of an F as in Definition 2.3, we will show that
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F = D. In [7], M is said to be relatively unmixed with respect to Q if
cd(Q,M) = cd(Q,S/p) for all p ∈ Ass(M).

Lemma 2.8. Let N be a non-zero bigraded submodule of M . If M is
Cohen-Macaulay with respect to Q, then cd(Q,N) = cd(Q,M).

Proof. SinceM is Cohen-Macaulay with respect to Q, it follows from
[7, Corollary 1.11] that M is relatively unmixed with respect to Q,
i.e., cd(Q,M) = cd(Q,S/p) for all p ∈ Ass(M). As N is a non-zero
submodule of M , we have Ass(N) ̸= ∅ and Ass(N) ⊆ Ass(M). Thus,
Fact 2.2 (d) implies that

cd(Q,N) = max{cd(Q,S/p) : p ∈ Ass(N)} = cd(Q,M),

as desired. �

Proposition 2.9. Let F be a Cohen-Macaulay filtration of M with
respect to Q and D be the dimension filtration of M with respect to Q.
Then, F = D.

Proof. Let

F : 0 = M0  M1  · · ·  Mr = M

and

D : 0 = D0  D1  · · ·  Ds = M.

We will show that r = s and Mi = Di for all i. By Remark 2.4, we have
cd(Q,Mi−1) < cd(Q,Mi) for all i = 1, . . . , r. Hence, Definition 2.7 says
that Mr−1 ⊆ Ds−1. Assume that Mr−1  Ds−1. Thus, Ds−1/Mr−1 is
a non-zero submodule of M/Mr−1. Since M/Mr−1 is Cohen-Macaulay
with respect to Q, it follows from Lemma 2.8 that cd(Q,Ds−1/Mr−1) =
cd(Q,M/Mr−1) = cd(Q,M), where the second equality is yielded by
Remark 2.4. Now, applying Fact 2.2 (c) to the exact sequence

0 −→ Mr−1 −→ Ds−1 −→ Ds−1/Mr−1 −→ 0,

yields cd(Q,Ds−1) = cd(Q,M), a contradiction. Thus, Mr−1 = Ds−1.
Continuing in this way, we get r = s and Mi = Di for all i. Therefore,
F = D. �
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We conclude this section with Proposition 2.11, which gives us a
class of sequentially Cohen-Macaulay with respect to Q. First, we have
Lemma 2.10.

Lemma 2.10. Let M be sequentially Cohen-Macaulay with respect
to Q. If M is relatively unmixed with respect to Q, then M is Cohen-
Macaulay with respect to Q.

Proof. Let 0 = M0  M1  · · ·  Mr = M be the Cohen-Macaulay
filtration with respect to Q. By Fact 3.3, we have grade(Q,M) =
grade(Q,M1). Since M1 is Cohen-Macaulay with respect to Q, it
follows from [7, Corollary 1.11] that M1 is relatively unmixed with
respect to Q. Thus,

grade(Q,M) = grade(Q,M1) = cd(Q,M1) = cd(Q,S/p),

for all p ∈ Ass(M1). As M is relatively unmixed with respect to Q and
Ass(M1) ⊆ Ass(M), we have grade(Q,M) = cd(Q,M), as desired. �

Proposition 2.11. Suppose that grade(Q,M) > 0 and |K| = ∞. If M
is sequentially Cohen-Macaulay with respect to Q, then there exists
a bihomogeneous M -regular element y ∈ Q of degree (0, 1) such that
M/yM is sequentially Cohen-Macaulay with respect to Q.

Proof. We assume thatM is sequentially Cohen-Macaulay and let F :
0 = M0  M1  · · ·  Mr = M be the Cohen-Macaulay filtration, with
respect to Q. Since grade(Q,M) = grade(Q,M1) = cd(Q,M1) > 0,
it follows that grade(Q,Mi/Mi−1) = cd(Q,Mi/Mi−1) > 0 for all i.
We set Ni = Mi/Mi−1. Thus, by [10, Corollary, 3.5], which is also
valid for finitely many modules that are Cohen-Macaulay and have
positive cohomological dimension with respect to Q. There exists a
bihomogeneous element y ∈ Q of degree (0, 1) such that y is Ni-
regular for all i and Ni is Cohen-Macaulay with respect to Q with
cd(Q,Ni) = cd(Q,Ni)− 1. Here, L = L/yL for any S-module L.

Consider the exact sequence:

0 −→ Mi−1 −→ Mi −→ Ni −→ 0 for all i.
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Since y is regular on Ni for all i, it follows that Tor
S
1 (S/yS,Ni) = 0 for

all i. Hence, we obtain the exact sequence:

0 −→ Mi−1 −→ Mi −→ Ni −→ 0 for all i.

Now, the filtration

G : 0 = M0  M1  · · ·  Mr = M/yM

is the Cohen-Macaulay filtration for M/yM with respect to Q. In fact,
Mi/Mi−1

∼= Ni and

grade(Q,Ni) = grade(Q,Ni)− 1 = cd(Q,Ni)− 1 = cd(Q,Ni).

Hence, grade(Q,Mi/Mi−1) = cd(Q,Mi/Mi−1). As cd(Q,Mi/Mi−1) <
cd(Q,Mi+1/Mi) for all i, we have cd(Q,Mi/Mi−1) < cd(Q,Mi+1/Mi)
for all i. �

The next example shows that the converse of Proposition 2.11 does
not hold in general.

Example 2.12. Consider the hypersurface ring

R = K[x1, x2, y1, y2]/(f)

where f = x1y1 + x2y2. One has grade(Q,R) = 1 and cd(Q,R) = 2.
By [10, Lemma 3.4], there exists a bihomogeneous R-regular element
y ∈ Q of degree (0, 1) such that cd(Q,R/yR) = cd(Q,R) − 1 = 1
and, of course, grade(Q,R/yR) = grade(Q,R) − 1 = 0. Hence,
R/yR is sequentially Cohen-Macaulay with respect to Q. On the other
hand, R is not sequentially Cohen-Macaulay with respect to Q. Indeed,
Ass(R) = {(f)} and cd(Q,R) = cd(Q,S/(f)) show that R is relatively
unmixed with respect to Q. If R is sequentially Cohen-Macaulay with
respect to Q, then by Lemma 2.10, R is Cohen-Macaulay with respect
to Q, a contradiction.

3. Sequentially Cohen-Macaulayness of L ⊗K N with re-
spect to Q. In this section, we characterize the sequentially Cohen-
Macaulayness of L ⊗K N with respect to Q as an S-module where L
and N are two non-zero finitely generated graded modules over K[x]
and K[y], respectively. For the bigraded S-module M we define the
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bigraded Matlis-dual of M to be M∨, where the (−i,−j)th bigraded
components of M∨ are given by HomK(M(i,j),K). We set

Mk = M(k,∗) = ⊕jM(k,j)

and consider it to be a finitely generated graded K[y]-module.

Lemma 3.1. Let M be a finitely generated bigraded S-module. If M is
Cohen-Macaulay with respect to Q, cd(Q,M) = q, then (Hq

Q(M)∨)(k,∗)
is a finitely generated Cohen-Macaulay K[y]-module of dimension q for
all k.

Proof. Note that

(Hi
Q(M)∨)(k,∗) ∼= (Hi

Q(M)(−k,∗))
∨

∼= (Hi
(y1,...,yn)

(M(−k,∗)))
∨

∼= Extn−i
K[y](M(−k,∗),K[y](−n)).

Since M is Cohen-Macaulay with respect to Q with cd(Q,M) = q,
it follows from [10, Proposition 1.2] that M(−k,∗) is a Cohen-Macaulay
K[y]-module of dimension q, and the conclusion follows immediately.

�

Lemma 3.2. Let M be sequentially Cohen-Macaulay with respect to Q
with Cohen-Macaulay filtration F : 0 = M0  M1  · · ·  Mr = M
with respect to Q. Then, we have

Hqi
Q (M) ∼= Hqi

Q (Mi) ∼= Hqi
Q (Mi/Mi−1),

where

qi = cd(Q,Mi) for i = 1, . . . , r

and

Hk
Q(M) = 0 for k /∈ {q1, . . . , qr}.

Proof. We proceed by induction on the length r of F . The case
r = 1 is obvious.

Now, suppose that r ≥ 2 and that the statement holds for sequen-
tially Cohen-Macaulay modules with respect to Q with filtrations of



SEQUENTIALLY COHEN-MACAULAYNESS 629

length < r. We want to prove it for M which is sequentially Cohen-
Macaulay with respect to Q and has the Cohen-Macaulay filtration F
of length r. Note that Mr−1, which appears in the filtration F of M ,
is also sequentially Cohen-Macaulay with respect to Q. Thus, by the
induction hypothesis, we have

Hqi
Q (Mr−1) ∼= Hqi

Q (Mi) ∼= Hqi
Q (Mi/Mi−1) for i = 1, . . . , r − 1

and
Hk

Q(Mr−1) = 0 for k /∈ {q1, . . . , qr−1}.

Now, the exact sequence

0 −→ Mr−1 −→ M −→ M/Mr−1 −→ 0

yields Hqr
Q (M) ∼= Hqr

Q (Mr/Mr−1) and Ht
Q(M) ∼= Ht

Q(Mr−1) for 0 ≤
t < qr. Therefore, the desired result follows. �

Fact 3.3. In the proof of Lemma 3.2, one observes that

grade(Q,Mi) = q1 for i = 1, . . . , r.

Theorem 3.4. Let L and N be two non-zero finitely generated graded
modules over K[x] and K[y], respectively. We set M = L⊗KN . Then,
the following statements are equivalent :

(a) M is a sequentially Cohen-Macaulay S-module with respect to Q;
(b) N is a sequentially Cohen-Macaulay K[y]-module.

Proof.

(a) ⇒ (b). Let F : 0 = M0  M1  · · ·  Mr = M be the Cohen-
Macaulay filtration with respect to Q. By Lemma 3.2, we have

Hqi
Q (M) ∼= Hqi

Q (Mi) ∼= Hqi
Q (Mi/Mi−1),

where qi = cd(Q,Mi) = cd(Q,Mi/Mi−1) for i = 1, . . . , r and
Hk

Q(M) = 0 for k ̸∈ {q1, . . . , qr}. Note that

Hqi
Q (M) ∼= L⊗K Hqi

Q (N) for i = 1, . . . , r,

see also the proof of [10, Proposition 1.5]. Hence,

Hqi
Q (M)∨ ∼= L∨ ⊗K Hqi

Q (N)∨,
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where (−)∨ is the Matlis-dual, see [5, Lemma 1.1]. We conclude that

(Hqi
Q (Mi/Mi−1)

∨)(k,∗) ∼= (Hqi
Q (M)∨)(k,∗)

∼= (L∨)k ⊗K Hqi
Q (N)∨

∼= Extn−qi
K[y] (N,K[y])t,

where t = dimK(L∨)k. Since each Mi/Mi−1 is Cohen-Macaulay with
respect to Q with cd(Q,Mi/Mi−1) = qi, it follows from the above iso-

morphisms and Lemma 3.1 that Extn−qi
K[y] (N,K[y]) is Cohen-Macaulay

of dimension qi for i = 1, . . . , r. If k /∈ {q1, . . . , qr}, then L⊗KHk
Q(N) ∼=

Hk
Q(M) = 0, and hence, Hk

Q(N) = 0. Thus, Extn−k
K[y](N,K[y]) = 0 for

k /∈ {q1, . . . , qr}. Therefore, the result follows from [6, Theorem 1.4].

(b) ⇒ (a). Let N be a sequentially Cohen-Macaulay K[y]-module
with the Cohen-Macaulay filtration 0 = N0  N1  · · ·  Nr = N .
Consider the filtration

0 = L⊗K N0 ⊆ L⊗K N1 ⊆ · · · ⊆ L⊗K Nr = L⊗K N.

We claim this filtration is the Cohen-Macaulay filtration with respect
to Q. First, we note that L⊗KNi  L⊗KNi+1 for all i. Otherwise, we
have dimNi = dimNi+1 by [11, Corollary 2.3], a contradiction. For
all k and i we have the next isomorphisms

Hk
Q((L⊗K Ni)/(L⊗K Ni−1)) ∼= Hk

Q(L⊗K (Ni/Ni−1))

∼= L⊗K Hk
Q(Ni/Ni−1).

The first isomorphism is standard, and for the second, see the proof of
[10, Proposition 1.5]. We set Di = (L ⊗K Ni)/(L ⊗K Ni−1) for all i.
Thus, we have cd(Q,Di) = dimNi/Ni−1 for all i. This implies that
cd(Q,Di−1) < cd(Q,Di) for all i. Also, each Di is Cohen-Macaulay
with respect to Q because Ni/Ni−1 is Cohen-Macaulay for all i. �

4. Hypersurface rings that are sequentially Cohen-Macaulay
with respect to Q. Let f ∈ S be a bihomogeneous element of degree
(a, b), and consider the hypersurface ring R = S/fS. We may write

f =
∑
|α|=a
|β|=b

cαβx
αyβ where cαβ ∈ K.
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Note that R is a Cohen-Macaulay module of dimension m+n−1. Next,
we summarize some observations.

Lemma 4.1. Consider the hypersurface ring R defined above. Then,
the statements hold :

(a) if a = 0 and b > 0, then R is Cohen-Macaulay with respect to
P of cd(P,R) = m and Cohen-Macaulay with respect to Q of
cd(Q,R) = n− 1;

(b) if a > 0 and b = 0, then R is Cohen-Macaulay with respect to P
of cd(P,R) = m − 1 and Cohen-Macaulay with respect to Q of
cd(Q,R) = n;

(c) if a > 0 and b > 0, then grade(P,R) = m − 1 and cd(P,R) = m,
and grade(Q,R) = n− 1 and cd(Q,R) = n.

Proof. In order to prove (a), if a = 0, then we may write

f =
∑
|β|=b

cβy
β .

Fact 2.2 (a) implies that

cd(P,R) = dimS/(Q+ (f)) = m

and

cd(Q,R) = dimS/(P + (f)) = n− 1.

On the other hand, by Fact 2.2 (b), we have

grade(P,R) = dimR− cd(Q,R) = m+ n− 1− (n− 1) = m

and

grade(Q,R) = dimR− cd(P,R) = m+ n− 1−m = n− 1.

Thus, the conclusions follow. Parts (b) and (c) are proved in the same
way. �

Note that, if a, b > 0, then R is not Cohen-Macaulay with respect
to Q. Thus, it is natural to ask whether R is sequentially Cohen-
Macaulay with respect to Q. In the following, we classify all hyper-
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surface rings that are sequentially Cohen-Macaulay with respect to Q.
First, we have the next proposition.

Proposition 4.2. Let f ∈ S be a bihomogeneous element of degree
(a, b) such that f = h1h2, where

h1 =
∑
|α|=a

cαx
α with cα ∈ K

and

h2 =
∑
|β|=b

cβy
β with cβ ∈ K,

i.e., deg h1 = (a, 0) and deg h2 = (0, b). Consider the hypersurface ring
R = S/fS. Then, R is sequentially Cohen-Macaulay with respect to P
and Q.

Proof. We show that R is sequentially Cohen-Macaulay with respect
to P . The argument for Q is similar. Consider the filtration F :
0 = R0  R1  R2 = R where R1 = h2S/fS. We claim that this
filtration is the Cohen-Macaulay filtration with respect to P . Observe
that R2/R1

∼= S/h2S is Cohen-Macaulay with respect to P with
cd(P,R2/R1) = m, by Lemma 4.1 (a). Now, consider the map

φ : S −→ h2S/fS

given by

g 7−→ gh2 + fS.

We obtain the isomorphism

S/h1S ∼= h2S/fS ∼= R1/R0.

Thus, R1/R0 is Cohen-Macaulay with respect to P with cd(P,R1/R0) =
m−1, by Lemma 4.1 (b). Therefore, F is the Cohen-Macaulay filtration
of R with respect to P . �

For the proof of the main theorem, we recall the next results from [8].

Fact 4.3. Let D : 0 = D0  D1  · · ·  Dr = M be the dimension
filtration of M with respect to Q. Then
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(a) Di =
∩

pj /∈Bi,Q
Nj for i = 1, . . . , r − 1, where 0 =

∩s
j=1 Nj is a

reduced primary decomposition of 0 in M with Nj pj-primary for
j = 1, . . . , s, and

Bi,Q = {p ∈ Ass(M) : cd(Q,S/p) ≤ cd(Q,Di)};

(b) Ass(M/Di) = Ass(M) \Ass(Di) for i = 1, . . . , r;
(c) grade(Q,M/Di−1) = cd(Q,Di) for i = 1, . . . , r if and only if M is

sequentially Cohen-Macaulay with respect to Q.

Theorem 4.4. Let f ∈ S be a bihomogeneous element of degree (a, b),
and let R = S/fS be the hypersurface ring. Then, the next statements
are equivalent :

(a) R is sequentially Cohen-Macaulay with respect to Q;
(b) f = h1h2, where deg h1 = (a, 0) with a ≥ 0 and deg h2 = (0, b) with

b ≥ 0.

Proof.

(a) ⇒ (b). Assume that R is not Cohen-Macaulay with respect to
Q, see Lemma 4.1. Let

f =
r∏

i=1

fi

be the unique factorization of f into bihomogeneous irreducible factors
fi with deg fi = (ai, bi) for i = 1, . . . , r. Note that

r∑
i=1

ai = a and
r∑

i=1

bi = b.

Our aim is to show that, for each fi, we have deg fi = (ai, 0) with
ai ≥ 0 or deg fi = (0, bi) with bi ≥ 0. Assume that this is not the
case, and so there exists 1 ≤ s ≤ r such that deg fs = (as, bs) with
as, bs > 0. Thus, we may write that deg fi = (ai, 0) with ai ≥ 0 for
i = 1, . . . , s − 1, deg fi = (ai, bi) with ai, bi > 0 for i = s, s + 1, . . . , t
and deg fi = (0, bi) with bi ≥ 0 for i = t+ 1, . . . , r, and t < r. By Fact
4.3 (a), R has the dimension filtration

F : 0 = (f)/(f)  I/(f)  R = S/(f)
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with respect to Q, where

I =
t∩

i=1

(fi).

Note that cd(Q, I/(f)) = n − 1 by Fact 4.3 (b), Fact 2.2 (d) and
cd(Q,R) = n. As R is sequentially Cohen-Macaulay with respect to
Q, we must have grade(Q,S/I) = cd(Q,R) by Fact 4.3 (c). Since S/I
is Cohen-Macaulay, it follows from Fact 2.2 (b) that

grade(Q,S/I) = dimS/I − cd(P, S/I) = (m+ n− 1)−m = n− 1,

a contradiction.

(b) ⇒ (a). Follows from Proposition 4.2. �
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